Skip to main content

Advertisement

Log in

Locally advanced squamous cervical carcinoma (M0): management and emerging therapeutic options in the precision radiotherapy era

  • Review
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Squamous cervical carcinoma (SCC) requires particular attention in diagnostic and clinical management. New diagnostic tools, such as (positron emission tomography–magnetic resonance imaging) PET–MRI, consent to ameliorate clinical staging accuracy. The availability of new technologies in radiation therapy permits to deliver higher dose lowering toxicities. In this clinical scenario, new surgical concepts could aid in general management. Lastly, new targeted therapies and immunotherapy will have more room in this setting. The aim of this narrative review is to focus both on clinical management and new therapies in the precision radiotherapy era.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbyn M et al. Worldwide burden of cervical cancer in 2008, Ann Oncol 22, fasc. 12: 2675–2686, dic. 2011, https://doi.org/10.1093/annonc/mdr015.

  2. Bhatla N et al. Revised FIGO staging for carcinoma of the cervix uteri, Int J Gynecol Obstet., 145, fasc. 1, 129–135, apr. 2019, https://doi.org/10.1002/ijgo.12749.

  3. Mahmoud O, Kilic S, Khan AJ, Beriwal S, e W. J. Small. External beam techniques to boost cervical cancer when brachytherapy is not an option—theories and applications, Ann Transl Med 5, fasc. 10: 207–207, mag. 2017, https://doi.org/10.21037/atm.2017.03.102.

  4. Marth C, Landoni F, Mahner S, McCormack M, Gonzalez-Martin A, e N. Colombo Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up, Ann Oncol 28: iv72–iv83, lug. 2017, https://doi.org/10.1093/annonc/mdx220.

  5. Hricak H et al., Role of Imaging in Pretreatment Evaluation of Early Invasive Cervical Cancer: Results of the Intergroup Study American College of Radiology Imaging Network 6651–Gynecologic Oncology Group 183, J Clin Oncol. 23, fasc. 36; 9329–9337, dic. 2005, https://doi.org/10.1200/JCO.2005.02.0354.

  6. The International Collaboration of Epidemiological Studies of Cervical Cancer, Comparison of risk factors for invasive squamous cell carcinoma and adenocarcinoma of the cervix: Collaborative reanalysis of individual data on 8,097 women with squamous cell carcinoma and 1,374 women with adenocarcinoma from 12 epidemiological studies: Squamous Cell Carcinoma and Adenocarcinoma of the Cervix, Int. J. Cancer, 120, fasc. 4: 885–891, feb. 2007, https://doi.org/10.1002/ijc.22357.

  7. Bray F et al. Trends in Cervical Squamous Cell Carcinoma Incidence in 13 European Countries: Changing Risk and the Effects of Screening, Cancer Epidemiol. Biomarkers Prev., 14, fasc. 3: 677–686, mar. 2005, https://doi.org/10.1158/1055-9965.EPI-04-0569.

  8. Bray F et al., Incidence Trends of Adenocarcinoma of the Cervix in 13 European Countries, Cancer Epidemiol Biomarkers Prev., 14, fasc. 9: 2191–2199, set. 2005, https://doi.org/10.1158/1055-9965.EPI-05-0231.

  9. Kersemaekers AM et al. Oncogene alterations in carcinomas of the uterine cervix: overexpression of the epidermal growth factor receptor is associated with poor prognosis. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 5, fasc. 3: 577–586, mar. 1999.

  10. Wright AA et al. Oncogenic mutations in cervical cancer: genomic differences between adenocarcinomas and squamous cell carcinomas of the cervix, Cancer., 119, fasc. 21: 3776–3783, nov. 2013, https://doi.org/10.1002/cncr.28288.

  11. Tn ZFS, CDFM, e B. R, Molecularly targeted therapies in cervical cancer. A systematic review. Gynecol. Oncol., 126, fasc. 2, ago. 2012, https://doi.org/10.1016/j.ygyno.2012.04.007.

  12. Hu X-L et al. Long noncoding RNA MIR210HG is induced by hypoxia-inducible factor 1α and promotes cervical cancer progression. Am J Cancer Res., 12, fasc. 6: 2783–2797, 2022.

  13. Kaufman RH, Adam E, Vonka eV Human papillomavirus infection and cervical carcinoma, Clin Obstet Gynecol., 43, fasc. 2: 363–380, giu. 2000, https://doi.org/10.1097/00003081-200006000-00016.

  14. Laurson J, Khan S, Chung R, Cross K, Raj eK, Epigenetic repression of E-cadherin by human papillomavirus 16 E7 protein, Carcinogenesis, 31, fasc. 5: 918–926, mag. 2010, https://doi.org/10.1093/carcin/bgq027.

  15. Lin D et al., icrobiome factors in HPV-driven carcinogenesis and cancers, PLoS Pathog., 16, fasc. 6: e1008524, giu. 2020, https://doi.org/10.1371/journal.ppat.1008524.

  16. Chen X-J et al. Clinical Significance of CD163+ and CD68+ Tumor-associated Macrophages in High-risk HPV-related Cervical Cancer, J. Cancer, 8, fasc. 18: 3868–3875, ott. 2017, https://doi.org/10.7150/jca.21444.

  17. Barros MR, de Melo CML, Barros MLCMGR, de Cássia Pereira de Lima R, de Freitas AC, Venuti eA Activities of stromal and immune cells in HPV-related cancers, J Exp Clin Cancer Res CR, 37: 137, lug. 2018, https://doi.org/10.1186/s13046-018-0802-7.

  18. Draghiciu O, Lubbers J, Nijman HW, Daemen eT, Myeloid derived suppressor cells-An overview of combat strategies to increase immunotherapy efficacy, Oncoimmunology, 4, fasc. 1: e954829, gen. 2015, https://doi.org/10.4161/21624011.2014.954829.

  19. Weber R, et al. Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors. Front Immunol. 2018;9:1310. https://doi.org/10.3389/fimmu.2018.01310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heine A et al. Generation and functional characterization of MDSC-like cells, Oncoimmunology, 6, fasc. 4: 1295203, 2017, https://doi.org/10.1080/2162402X.2017.1295203.

  21. Schmid MP et al. Magnetic resonance imaging for assessment of parametrial tumour spread and regression patterns in adaptive cervix cancer radiotherapy, Acta Oncol., 52, fasc. 7: 1384–1390, ott. 2013, https://doi.org/10.3109/0284186X.2013.818251.

  22. Kidd EA et al., Clinical outcomes of definitive intensity-modulated radiation therapy with fluorodeoxyglucose–positron emission tomography simulation in patients with locally advanced cervical cancer, Int J Radiat Oncol, 77, fasc. 4: 1085–1091, lug. 2010, https://doi.org/10.1016/j.ijrobp.2009.06.041.

  23. Adam JA, van Diepen PR, Mom CH, Stoker J, van Eck-Smit BLF, Bipat eS [18F]FDG-PET or PET/CT in the evaluation of pelvic and para-aortic lymph nodes in patients with locally advanced cervical cancer: A systematic review of the literature, Gynecol Oncol 159, fasc. 2: 588–596, nov. 2020, https://doi.org/10.1016/j.ygyno.2020.08.021.

  24. Jadvar H, Colletti ePM Competitive advantage of PET/MRI, Eur J Radiol. 83, fasc. 1: 84–94, gen. 2014. https://doi.org/10.1016/j.ejrad.2013.05.028.

  25. Li‐Ou Z et al. Correlation between tumor glucose metabolism and multiparametric functional MRI (IVIM and R2*) metrics in cervical carcinoma: Evidence from integrated 18 F‐FDG PET/MR, J. Magn. Reson. Imaging, 49, fasc. 6: 1704–1712, giu. 2019. https://doi.org/10.1002/jmri.26557.

  26. Nazir A, Matthews R, Chimpiri A, Henretta M, Varughese J, Franceschi eD Fluorodeoxyglucose positron-emission tomography-magnetic resonance hybrid imaging: An emerging tool for staging of cancer of the uterine cervix, World J Nucl Med, 20, fasc. 02: 150–155, apr. 2021, https://doi.org/10.4103/wjnm.WJNM_53_20.

  27. Oldan JD et al. Quantitative accuracy of positron emission tomography/magnetic resonance and positron emission tomography/computed tomography for cervical cancer. World J Nucl Med., 17, fasc. 04: 213–218, ott. 2018. https://doi.org/10.4103/wjnm.WJNM_56_17.

  28. Xu C, Du S, Zhang S, Wang B, Dong C, Sun eH, Value of integrated PET-IVIM MR in assessing metastases in hypermetabolic pelvic lymph nodes in cervical cancer: a multi-parameter study. Eur. Radiol., 30, fasc. 5: 2483–2492, mag. 2020. https://doi.org/10.1007/s00330-019-06611-z.

  29. Xu C, Yu Y, Li X, Sun eH Value of integrated PET-IVIM MRI in predicting lymphovascular space invasion in cervical cancer without lymphatic metastasis. Eur J Nucl Med Mol Imaging, 48, fasc. 9: 2990–3000, ago. 2021, https://doi.org/10.1007/s00259-021-05208-3.

  30. Brandmaier P et al. Simultaneous [18F]FDG-PET/MRI: Correlation of Apparent Diffusion Coefficient (ADC) and Standardized Uptake Value (SUV) in Primary and Recurrent Cervical Cancer, PLOS ONE, 10, fasc. 11: e0141684, nov. 2015, https://doi.org/10.1371/journal.pone.0141684.

  31. Grueneisen J et al. Correlation of Standardized Uptake Value and Apparent Diffusion Coefficient in Integrated Whole-Body PET/MRI of Primary and Recurrent Cervical Cancer. PLoS ONE, 9, fasc. 5: e96751, mag. 2014, https://doi.org/10.1371/journal.pone.0096751.

  32. Gong J et al. Cervical cancer evaluated with integrated 18F‑FDG PET/MR, Oncol Lett giu. 2019, https://doi.org/10.3892/ol.2019.10514.

  33. Floberg JM et al. Spatial relationship of 2-deoxy-2-[18F]-fluoro-D-glucose positron emission tomography and magnetic resonance diffusion imaging metrics in cervical cancer. EJNMMI Res., 8, fasc. 1: 52, dic. 2018, https://doi.org/10.1186/s13550-018-0403-7.

  34. JJ, WK, LX, YY, WX, e SH, Relationship between tumor heterogeneity and volume in cervical cancer: Evidence from integrated fluorodeoxyglucose 18 PET/MR texture analysis. Nucl Med Commun 42: fasc. 5, gen. 2021, https://doi.org/10.1097/MNM.0000000000001354.

  35. Esfahani SA et al. Publisher Correction to: PET/MRI and PET/CT Radiomics in Primary Cervical Cancer: A Pilot Study on the Correlation of Pelvic PET, MRI, and CT Derived Image Features. Mol Imaging Biol., 24, fasc. 1: 70, feb. 2022, https://doi.org/10.1007/s11307-021-01671-4.

  36. Zhang S, Xin J, Guo Q, Ma J, Ma Q, e H. Sun, Comparison of Tumor Volume Between PET and MRI in Cervical Cancer With Hybrid PET/MR, Int J Gynecol Cancer, 24, fasc. 4: 744–750, mag. 2014, https://doi.org/10.1097/IGC.0000000000000097.

  37. Sun H et al., Anatomical and functional volume concordance between FDG PET, and T2 and diffusion-weighted MRI for cervical cancer: a hybrid PET/MR study, Eur J Nucl Med Mol Imaging, 41, fasc. 5: 898–905, mag. 2014, https://doi.org/10.1007/s00259-013-2668-4.

  38. Zhang S et al. Accuracy of PET/MR image coregistration of cervical lesions. Nucl Med Commun., 37, fasc. 6; 609–615, giu. 2016, https://doi.org/10.1097/MNM.0000000000000482.

  39. Ahangari S et al. Toward PET/MRI as one-stop shop for radiotherapy planning in cervical cancer patients, Acta Oncol., 60, fasc. 8: 1045–1053, ago. 2021, https://doi.org/10.1080/0284186X.2021.1936164.

  40. Sarabhai T, et al. Simultaneous multiparametric PET/MRI for the assessment of therapeutic response to chemotherapy or concurrent chemoradiotherapy of cervical cancer patients: preliminary results. Clin Imaging. 2018;49:163–8. https://doi.org/10.1016/j.clinimag.2018.03.009.

    Article  PubMed  Google Scholar 

  41. Gao S, Du S, Lu Z, Xin J, Gao S, Sun eH, Multiparametric PET/MR (PET and MR-IVIM) for the evaluation of early treatment response and prediction of tumor recurrence in patients with locally advanced cervical cancer, Eur. Radiol., 30, fasc. 2: 1191–1201, feb. 2020, https://doi.org/10.1007/s00330-019-06428-w.

  42. . Xu C, Sun H, Du S, Xin eJ Early treatment response of patients undergoing concurrent chemoradiotherapy for cervical cancer: An evaluation of integrated multi-parameter PET-IVIM MR, Eur J Radiol., 117: 1–8, ago. 2019, https://doi.org/10.1016/j.ejrad.2019.05.012.

  43. Daniel M et al., Impact of hybrid PET/MR technology on multiparametric imaging and treatment response assessment of cervix cancer, Radiother. Oncol., 125, fasc. 3: 420–425, dic. 2017, https://doi.org/10.1016/j.radonc.2017.10.036.

  44. Parisi S et al. Non-stereotactic radiotherapy in older cancer patients, Heliyon, 8, fasc. 6: e09593, mag. 2022, https://doi.org/10.1016/j.heliyon.2022.e09593.

  45. Green J et al. Concomitant chemotherapy and radiation therapy for cancer of the uterine cervix, Cochrane Database Syst Rev., fasc. 3: CD002225, lug. 2005, https://doi.org/10.1002/14651858.CD002225.pub2.

  46. Petrelli F, De Stefani A, Raspagliesi F, Lorusso D, Barni eS Radiotherapy with concurrent cisplatin-based doublet or weekly cisplatin for cervical cancer: A systematic review and meta-analysis, Gynecol Oncol., 134, fasc. 1: 166–171, lug. 2014, https://doi.org/10.1016/j.ygyno.2014.04.049.

  47. Datta NR et al. Concurrent chemoradiotherapy vs. radiotherapy alone in locally advanced cervix cancer: A systematic review and meta-analysis, Gynecol Oncol, 145, fasc. 2: 374–385, mag. 2017. https://doi.org/10.1016/j.ygyno.2017.01.033.

  48. Lim K et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer, Int J Radiat Oncol Biol Phys., 79, fasc. 2: 348–355, feb. 2011, https://doi.org/10.1016/j.ijrobp.2009.10.075.

  49. Fave X et al. Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer?, Med Phys., 42, fasc. 12:6784–6797, dic. 2015, https://doi.org/10.1118/1.4934826.

  50. van Timmeren JE, Leijenaar RTH, van Elmpt W, Reymen B, Lambin eP Feature selection methodology for longitudinal cone-beam CT radiomics, Acta Oncol Stockh. Swed., 56, fasc. 11: 1537–1543, nov. 2017, https://doi.org/10.1080/0284186X.2017.1350285.

  51. Salama JK, Mundt AJ, Roeske J, Mehta eN Preliminary outcome and toxicity report of extended-field, intensity-modulated radiation therapy for gynecologic malignancies, Int J Radiat Oncol Biol Phys., 65, fasc. 4: 1170–1176, lug. 2006, https://doi.org/10.1016/j.ijrobp.2006.02.041.

  52. Beriwal S et al. Early Clinical Outcome With Concurrent Chemotherapy and Extended-Field, Intensity-Modulated Radiotherapy for Cervical Cancer, Int J Radiat Oncol Biol Phys., 68, fasc. 1: 166–171, mag. 2007, https://doi.org/10.1016/j.ijrobp.2006.12.023.

  53. Chen M-F, Tseng C-J, Tseng C-C, Kuo Y-C, Yu C-Y, Chen eW-C Clinical outcome in posthysterectomy cervical cancer patients treated with concurrent Cisplatin and intensity-modulated pelvic radiotherapy: comparison with conventional radiotherapy. Int. J. Radiat. Oncol. Biol. Phys., 67, fasc. 5: 1438–1444, apr. 2007, https://doi.org/10.1016/j.ijrobp.2006.11.005.

  54. Chen M-F, Tseng C-J, Tseng C-C, Yu C-Y, Wu C-T, Chen eW-C Adjuvant concurrent chemoradiotherapy with intensity-modulated pelvic radiotherapy after surgery for high-risk, early stage cervical cancer patients, Cancer J Sudbury Mass, 14, fasc. 3: 200–206, 2008, https://doi.org/10.1097/PPO.0b013e318173a04b.

  55. . Loiselle C, Koh eW-J The emerging use of IMRT for treatment of cervical cancer. J Natl Compr Cancer Netw JNCCN, 8, fasc. 12: 1425–1434, dic. 2010, https://doi.org/10.6004/jnccn.2010.0106.

  56. Maemoto H, et al. Predictive factors of uterine movement during definitive radiotherapy for cervical cancer. J Radiat Res. 2017;58(3):397–404. https://doi.org/10.1093/jrr/rrw101.PMID:27744403;PMCID:PMC5441382.

    Article  PubMed  Google Scholar 

  57. Klopp AH et al. Hematologic toxicity in RTOG 0418: a phase 2 study of postoperative IMRT for gynecologic cancer, Int J Radiat Oncol Biol Phys., 86, fasc. 1: 83–90, mag. 2013, https://doi.org/10.1016/j.ijrobp.2013.01.017.

  58. Klopp AH et al. Patient-Reported Toxicity During Pelvic Intensity-Modulated Radiation Therapy: NRG Oncology-RTOG 1203, J Clin Oncol Off J Am Soc Clin Oncol., 36, fasc. 24: 2538–2544, ago. 2018, https://doi.org/10.1200/JCO.2017.77.4273.

  59. Fyles A, Keane TJ, Barton M, Simm eJ The effect of treatment duration in the local control of cervix cancer, Radiother Oncol J Eur Soc Ther Radiol Oncol., 25, fasc. 4: 273–279, dic. 1992, https://doi.org/10.1016/0167-8140(92)90247-r.

  60. Girinsky T et al. Overall treatment time in advanced cervical carcinomas: a critical parameter in treatment outcome. Int J Radiat Oncol Biol Phys., 27, fasc. 5: 1051–1056, dic. 1993, https://doi.org/10.1016/0360-3016(93)90522-w.

  61. Lanciano RM, Pajak TF, Martz K, Hanks eGE The influence of treatment time on outcome for squamous cell cancer of the uterine cervix treated with radiation: a patterns-of-care study, Int J Radiat Oncol Biol Phys., 25, fasc. 3: 391–397, feb. 1993, https://doi.org/10.1016/0360-3016(93)90058-4.

  62. Perez CA, Grigsby PW, Castro-Vita H, Lockett eMA, Carcinoma of the uterine cervix. I. Impact of prolongation of overall treatment time and timing of brachytherapy on outcome of radiation therapy, Int J Radiat Oncol Biol Phys., 32, fasc. 5: 1275–1288, lug. 1995, https://doi.org/10.1016/0360-3016(95)00220-S.

  63. Petereit DG et al. The adverse effect of treatment prolongation in cervical carcinoma, Int J Radiat Oncol Biol. Phys., 32, fasc. 5: 1301–1307, lug. 1995, https://doi.org/10.1016/0360-3016(94)00635-X.

  64. Lee LJ et al. American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part III: Low-dose-rate and pulsed-dose-rate brachytherapy, Brachytherapy, 11, fasc. 1: 53–57, gen. 2012, https://doi.org/10.1016/j.brachy.2011.07.001.

  65. Ferini G et al., First-ever Clinical Experience With Magnetic Resonance-based Lattice Radiotherapy for Treating Bulky Gynecological Tumors, Anticancer Res, 42, fasc. 9: 4641–4646, set. 2022, https://doi.org/10.21873/anticanres.15968.

  66. Nag S, Orton C, Young D, Erickson eB The American brachytherapy society survey of brachytherapy practice for carcinoma of the cervix in the United States. Gynecol Oncol., 73, fasc. 1: 111–118, apr. 1999, https://doi.org/10.1006/gyno.1998.5334.

  67. Erickson B, Eifel P, Moughan J, Rownd J, Iarocci T, Owen eJ Patterns of brachytherapy practice for patients with carcinoma of the cervix (1996–1999): a patterns of care study, Int J Radiat Oncol Biol Phys, 63, fasc. 4: 1083–1092, nov. 2005, https://doi.org/10.1016/j.ijrobp.2005.04.035.

  68. Haie-Meder C et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV, Radiother Oncol J Eur Soc Ther Radiol Oncol, 74, fasc. 3: 235–245, mar. 2005, https://doi.org/10.1016/j.radonc.2004.12.015.

  69. Nag S et al. Proposed guidelines for image-based intracavitary brachytherapy for cervical carcinoma: report from Image-Guided Brachytherapy Working Group, Int J Radiat Oncol Biol Phys., 60, fasc. 4: 1160–1172, nov. 2004, https://doi.org/10.1016/j.ijrobp.2004.04.032.

  70. Mayadev J et al. American brachytherapy task group report: a pooled analysis of clinical outcomes for high-dose-rate brachytherapy for cervical cancer. Brachytherapy. 2017; 16(1):22–43. https://doi.org/10.1016/j.brachy.2016.03.008. PMID: 28109631; PMCID: PMC5497694.

  71. Viswanathan AN, Thomadsen B, American Brachytherapy Society Cervical Cancer Recommendations Committee, e American Brachytherapy Society, American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part I: general principles, Brachytherapy, 11, fasc. 1: 33–46, 2012, https://doi.org/10.1016/j.brachy.2011.07.003.

  72. Hanks GE, Herring DF, Kramer eS Patterns of care outcome studies. Results of the national practice in cancer of the cervix, Cancer, 51, fasc. 5: 959–967, mar. 1983, https://doi.org/10.1002/1097-0142(19830301)51:5<959::aid-cncr2820510533>3.0.co;2-k.

  73. Han K, Milosevic M, Fyles A, Pintilie M, Viswanathan eAN Trends in the utilization of brachytherapy in cervical cancer in the United States, Int J Radiat Oncol Biol Phys., 87, fasc. 1: 111–119, set. 2013, https://doi.org/10.1016/j.ijrobp.2013.05.033.

  74. Pötter R et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology, Radiother Oncol J Eur Soc Ther Radiol Oncol., 78, fasc. 1: 67–77, gen. 2006, https://doi.org/10.1016/j.radonc.2005.11.014.

  75. Hellebust TP et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group: considerations and pitfalls in commissioning and applicator reconstruction in 3D image-based treatment planning of cervix cancer brachytherapy, Radiother Oncol J Eur Soc Ther Radiol Oncol., 96, fasc. 2: 153–160, ago. 2010, https://doi.org/10.1016/j.radonc.2010.06.004.

  76. Tan Mbbs Mrcp Frcr Md LT et al. Image-guided Adaptive Radiotherapy in Cervical Cancer, Semin. Radiat. Oncol., 29, fasc. 3: 284–298, lug. 2019, https://doi.org/10.1016/j.semradonc.2019.02.010.

  77. Humphrey P, Bennett C, Cramp eF The experiences of women receiving brachytherapy for cervical cancer: A systematic literature review, Radiogr Lond Engl 1995, 24, fasc. 4: 396–403, nov. 2018, https://doi.org/10.1016/j.radi.2018.06.002.

  78. Viswanathan AN et al. International brachytherapy practice patterns: a survey of the gynecologic cancer intergroup (GCIG), Int J Radiat Oncol Biol Phys., 82, fasc. 1: 250–255, gen. 2012, https://doi.org/10.1016/j.ijrobp.2010.10.030.

  79. Tagliaferri L. et al. Current state of interventional radiotherapy (brachytherapy) education in Italy: results of the INTERACTS survey. J Contemp Brachytherapy. 2019;11(1):48–53. https://doi.org/10.5114/jcb.2019.83137. Epub 2019 Feb 28. PMID: 30911310; PMCID: PMC6431105.

  80. Landoni F et al. Randomised study of radical surgery versus radiotherapy for stage Ib-IIa cervical cancer, Lancet Lond Engl., 350, fasc. 9077: 535–540, ago. 1997, https://doi.org/10.1016/S0140-6736(97)02250-2..

  81. Naga Ch P, Gurram L, Chopra S, Mahantshetty eU The management of locally advanced cervical cancer, Curr Opin Oncol., 30, fasc. 5: 323–329, set. 2018, https://doi.org/10.1097/CCO.0000000000000471.

  82. Cibula D et al. ESGO/ESTRO/ESP Guidelines for the management of patients with cervical cancer—Update 2023, Virchows Arch., mag. 2023, https://doi.org/10.1007/s00428-023-03552-3.

  83. Shim S-H, Kim S-N, Chae SH, Kim JE, Lee eSJ, Impact of adjuvant hysterectomy on prognosis in patients with locally advanced cervical cancer treated with concurrent chemoradiotherapy: a meta-analysis, J Gynecol Oncol. 29, fasc. 2: e25, mar. 2018, https://doi.org/10.3802/jgo.2018.29.e25.

  84. van Kol KGG, Ebisch RMF, Piek JMJ, Zusterzeel PLM, Vergeldt TFM, Bekkers eRLM Salvage surgery for patients with residual disease after chemoradiation therapy for locally advanced cervical cancer: a systematic review on indication, complications, and survival, Acta Obstet Gynecol Scand., 100, fasc. 7: 1176–1185, lug. 2021, https://doi.org/10.1111/aogs.14093.

  85. Westin SN et al. Overall survival after pelvic exenteration for gynecologic malignancy, Gynecol. Oncol., 134, fasc. 3: 546–551, set. 2014, https://doi.org/10.1016/j.ygyno.2014.06.034.

  86. Brown KGM, Solomon MJ, Koh eCE Pelvic Exenteration surgery: the evolution of radical surgical techniques for advanced and recurrent pelvic malignancy, Dis Colon Rectum, 60, fasc. 7: 745–754, lug. 2017, https://doi.org/10.1097/DCR.0000000000000839.

  87. Vizzielli G et al. Is a Vaginectomy enough or is a pelvic exenteration always required for surgical treatment of recurrent cervical cancer? a propensity-matched study, Ann Surg Oncol., 28, fasc. 6: 3281–3290, giu. 2021, https://doi.org/10.1245/s10434-020-09207-w.

  88. Reinisch M, Ataseven B, Kümmel eS Neoadjuvant Dose-dense and dose-intensified chemotherapy in breast cancer—review of the literature, Breast Care, 11, fasc. 1: 13–20, feb. 2016, https://doi.org/10.1159/000444543.

  89. Shibutani T et al. Dose-dense paclitaxel and carboplatin vs. conventional paclitaxel and carboplatin as neoadjuvant chemotherapy for advanced epithelial ovarian, fallopian tube, or primary peritoneal cancer: a retrospective study, Int J Clin Oncol., 25, fasc. 3: 502–507, mar. 2020, https://doi.org/10.1007/s10147-019-01567-y.

  90. McCormack M INTERLACE: A Phase III multicentre trial of weekly induction chemotherapy followed by standard chemoradiation versus standard chemoradiation alone in patients with locally advanced cervical cancer. https://clinicaltrials.gov/ct2/show/NCT01566240 (consultato 5 aprile 2023).

  91. Singh RB et al. Neoadjuvant chemotherapy with weekly paclitaxel and carboplatin followed by chemoradiation in locally advanced cervical carcinoma: a pilot study, Gynecol Oncol. 129, fasc. 1: 124–128, apr. 2013, https://doi.org/10.1016/j.ygyno.2013.01.011.

  92. McCormack M et al. A phase II study of weekly neoadjuvant chemotherapy followed by radical chemoradiation for locally advanced cervical cancer, Br. J. Cancer, 108, fasc. 12: 2464–2469, giu. 2013, https://doi.org/10.1038/bjc.2013.230.

  93. T. S, K. K, L. M, L. P, M. S, e S. B, Adjuvant chemotherapy after concurrent chemoradiation for locally advanced cervical cancer, Cochrane Database Syst Rev., 2014, fasc. 12, mar. 2014, https://doi.org/10.1002/14651858.CD010401.pub2.

  94. Liu H, et al. Concurrent chemoradiotherapy followed by adjuvant chemotherapy versus concurrent chemoradiotherapy alone in locally advanced cervical cancer: A systematic review and meta-analysis. Front Oncol. 2022;12: 997030. https://doi.org/10.3389/fonc.2022.997030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Eskander RN, Tewari eKS. Beyond angiogenesis blockade: targeted therapy for advanced cervical cancer, J. Gynecol Oncol., 25, fasc. 3; 249, 2014, https://doi.org/10.3802/jgo.2014.25.3.249.

  96. Monk BJ et al. Phase II, Open-Label Study of Pazopanib or Lapatinib Monotherapy Compared With Pazopanib Plus Lapatinib Combination Therapy in Patients With Advanced and Recurrent Cervical Cancer, J Clin Oncol., 28, fasc. 22: 3562–3569, ago. 2010, https://doi.org/10.1200/JCO.2009.26.9571.

  97. Frenel J-S et al. Pembrolizumab in patients with advanced cervical squamous cell cancer: Preliminary results from the phase Ib KEYNOTE-028 study, J Clin Oncol., mag. 2016, https://doi.org/10.1200/JCO.2016.34.15_suppl.5515.

  98. Heong V, Ngoi N, Tan eDSP, Update on immune checkpoint inhibitors in gynecological cancers, J Gynecol Oncol., 28, fasc. 2: e20, 2017, doi: https://doi.org/10.3802/jgo.2017.28.e20.

  99. Hsieh C et al. Stereotactic body radiation therapy via helical tomotherapy to replace brachytherapy for brachytherapy-unsuitable cervical cancer patients &ndash; a preliminary result, OncoTargets Ther., 59, feb. 2013, https://doi.org/10.2147/OTT.S40370.

  100. Barraclough LH, Swindell R, Livsey JE, Hunter RD, Davidson eSE External Beam Boost for Cancer of the Cervix Uteri When Intracavitary Therapy Cannot Be Performed, Int J Radiat Oncol., 71, fasc. 3: 772–778, lug. 2008, https://doi.org/10.1016/j.ijrobp.2007.10.066.

  101. Mollà M et al. Fractionated stereotactic radiotherapy boost for gynecologic tumors: An alternative to brachytherapy?, Int J Radiat Oncol., 62, fasc. 1: 118–124, mag. 2005, https://doi.org/10.1016/j.ijrobp.2004.09.028.

  102. Kubicek GJ, et al. Stereotactic Body Radiotherapy as an Alternative to Brachytherapy in Gynecologic Cancer. BioMed Res Int. 2013;2013:1–6. https://doi.org/10.1155/2013/898953.

    Article  Google Scholar 

  103. Dirix P, Haustermans K, Vandecaveye eV The Value of Magnetic Resonance Imaging for Radiotherapy Planning, Semin Radiat Oncol., 24, fasc. 3, 151–159, lug. 2014, https://doi.org/10.1016/j.semradonc.2014.02.003.

  104. Corradini S et al. R-guidance in clinical reality: current treatment challenges and future perspectives, Radiat Oncol., 14, fasc. 1; 92, dic. 2019, https://doi.org/10.1186/s13014-019-1308-y.

  105. Hadi I et al. MR-guided SBRT boost for patients with locally advanced or recurrent gynecological cancers ineligible for brachytherapy: feasibility and early clinical experience, Radiat Oncol., 17, fasc. 1: 8, dic. 2022, https://doi.org/10.1186/s13014-022-01981-z.

  106. Guckenberger M et al. Stereotactic body radiotherapy for local boost irradiation in unfavourable locally recurrent gynaecological cancer, Radiother Oncol., 94, fasc. 1: 53–59, gen. 2010, https://doi.org/10.1016/j.radonc.2009.12.004.

  107. Lazzari R et al. Intensity modulated radiation therapy boost in locally-advanced cervical cancer in the absence of brachytherapy, Int J Gynecol Cancer, 30, fasc. 5: 607–612, mag. 2020, doi: https://doi.org/10.1136/ijgc-2019-000735.

  108. Chang JH et al. Intensity modulated radiation therapy dose painting for localized prostate cancer using 11C-choline positron emission tomography scans, Int J Radiat Oncol. 83, fasc. 5: e691–e696, ago. 2012, https://doi.org/10.1016/j.ijrobp.2012.01.087.

  109. Mayr NA et al. Translating response during therapy into ultimate treatment outcome: a personalized 4-dimensional mri tumor volumetric regression approach in cervical cancer, Int J Radiat Oncol., 76, fasc. 3: 719–727, mar. 2010, https://doi.org/10.1016/j.ijrobp.2009.02.036.

  110. Schmid MP et al. Residual tumour volumes and grey zones after external beam radiotherapy (with or without chemotherapy) in cervical cancer patients: a low-field MRI study», Strahlenther Onkol., 189, fasc. 3: 238–245, mar. 2013, https://doi.org/10.1007/s00066-012-0260-7.

  111. Chin S et al. Magnetic resonance‐guided radiation therapy: a review. J Med Imaging Radiat Oncol., 64, fasc. 1: 163–177, feb. 2020, https://doi.org/10.1111/1754-9485.12968.

  112. Menten MJ, Wetscherek A, Fast eMF MRI-guided lung SBRT: Present and future developments, Phys Med., 44, pp. 139–149, dic. 2017, https://doi.org/10.1016/j.ejmp.2017.02.003.

  113. Kupelian P, Sonke e J-J Magnetic resonance–guided adaptive radiotherapy: a solution to the future, Semin Radiat Oncol., 24, fasc. 3: 227–232, lug. 2014, https://doi.org/10.1016/j.semradonc.2014.02.013.

  114. Campitelli M et al. Brachytherapy or external beam radiotherapy as a boost in locally advanced cervical cancer: a Gynaecology Study Group in the Italian Association of Radiation and Clinical Oncology (AIRO) review, Int J Gynecol Cancer, 31, fasc. 9: 1278–1286, set. 2021, https://doi.org/10.1136/ijgc-2020-002310.

  115. Ito K et al. Determining the recommended dose of stereotactic body radiotherapy boost in patients with cervical cancer who are unsuitable for intracavitary brachytherapy: a phase I dose-escalation study, Jpn J Clin Oncol., 49, fasc. 9: 856–861, set. 2019, https://doi.org/10.1093/jjco/hyz074.

  116. Okonogi N, et al. Long-term outcomes of carbon-ion radiotherapy for locally advanced squamous cell carcinoma of the uterine cervix. Anticancer Res. 2018;38(1):457–63. https://doi.org/10.21873/anticanres.12244.

    Article  CAS  PubMed  Google Scholar 

  117. Okonogi N, et al. A phase Ib study of durvalumab (medi4736) in combination with carbon-ion radiotherapy and weekly cisplatin for patients with locally advanced cervical cancer (decision study): the early safety and efficacy results. Int J Mol Sci. 2023;24(13):10565. https://doi.org/10.3390/ijms241310565.PMID:37445743;PMCID:PMC10342070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ferrantelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parisi, S., Sciacca, M., Ferrantelli, G. et al. Locally advanced squamous cervical carcinoma (M0): management and emerging therapeutic options in the precision radiotherapy era. Jpn J Radiol 42, 354–366 (2024). https://doi.org/10.1007/s11604-023-01510-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-023-01510-2

Keywords

Navigation