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Abstract
In this review, we address the issue of fairness in the clinical integration of artificial intelligence (AI) in the medical field. As 
the clinical adoption of deep learning algorithms, a subfield of AI, progresses, concerns have arisen regarding the impact of 
AI biases and discrimination on patient health. This review aims to provide a comprehensive overview of concerns associ‑
ated with AI fairness; discuss strategies to mitigate AI biases; and emphasize the need for cooperation among physicians, AI 
researchers, AI developers, policymakers, and patients to ensure equitable AI integration. First, we define and introduce the 
concept of fairness in AI applications in healthcare and radiology, emphasizing the benefits and challenges of incorporating 
AI into clinical practice. Next, we delve into concerns regarding fairness in healthcare, addressing the various causes of 
biases in AI and potential concerns such as misdiagnosis, unequal access to treatment, and ethical considerations. We then 
outline strategies for addressing fairness, such as the importance of diverse and representative data and algorithm audits. 
Additionally, we discuss ethical and legal considerations such as data privacy, responsibility, accountability, transparency, 
and explainability in AI. Finally, we present the Fairness of Artificial Intelligence Recommendations in healthcare (FAIR) 
statement to offer best practices. Through these efforts, we aim to provide a foundation for discussing the responsible and 
equitable implementation and deployment of AI in healthcare.
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Introduction

Fairness is one of the core principles of artificial intelli‑
gence (AI) ethics [1–3], and in recent years, there has been 
an increase in efforts focusing on fairness in AI, with a 
growing number of publications highlighting the need for 
improvement [4–9]. Various biases are involved in devel‑
oping and applying AI, and these biases can affect fairness 
by erroneously skewing AI results [10]. In the medical 
field, bias and discrimination in AI have been studied in 
various domains [11, 12]. The World Medical Associa‑
tion's Geneva Declaration cites factors such as “age, dis‑
ease or disability, creed, ethnic origin, gender, national‑
ity, political affiliation, race, sexual orientation, social 
standing or any other factor” as examples that should not 
influence a physician’s obligation to their patients [13]. 
Therefore, fairness concerns arise if AI does not perform 
adequately for specific patients.

AI research in radiology is an active field in healthcare 
owing to its affinity for imaging [14], with the number of 
AI‑related publications and medical device certifications 
increasing annually [15–17]. One important reason for 
this is the global shortage of radiologists [18–21]. In par‑
ticular, Japan has numerous publications on AI use in the 
field of radiology, including X‑ray [22–25], mammography 
[26–30], US [31], CT [32–40], MRI [41–50], and PET [51, 
52]. This surge in Radiological AI publications in Japan 
could be related to Japan having both the lowest number of 
radiologists per capita and the highest number of CT and 
MRI machines per capita among the Organization for Eco‑
nomic Co‑operation and Development (OECD) countries 
[53]. Furthermore, owing to the coronavirus disease 2019 
(COVID‑19) pandemic, the number of COVID‑19‑related 
studies from Japan has increased [54–61], with a signifi‑
cant increase in such research focusing on AI [62–64].

As physicians in this era of AI clinical practice, we 
must be mindful of fairness concerns arising from AI bias 
in healthcare to provide better care to all patients. This 
review aims to provide a comprehensive overview of con‑
cerns related to AI fairness, discuss strategies to mitigate 
AI biases, and emphasize the need for collaboration among 
stakeholders to ensure equitable AI integration. In doing 
so, it lays the foundation for discussing the responsible 
and equitable implementation and deployment of AI in 
healthcare.

First, fairness in healthcare is discussed. We then 
discuss the issue of bias in AI systems used in health‑
care. Next, we suggest strategies to reduce bias such as 
using diverse data, validating algorithms, and educating 
clinicians and patients regarding AI. We then discuss 
ethical and legal issues such as patient consent, data pri‑
vacy, accountability, and the need for transparency in AI 

systems. Collaboration is key in this context; therefore, 
we explore the roles of various stakeholders, including 
physicians, AI researchers, policymakers, regulatory 
authorities, patients, advocacy groups, and professional 
associations. We include the best practices recommended 
for fairness in AI and the areas where more research is 
needed. Finally, we conclude the paper with a summary 
of our main findings.

Fairness concerns in healthcare

Defining fairness in healthcare

Fairness in healthcare is a multidimensional concept that 
includes the equitable distribution of resources, opportuni‑
ties, and outcomes among diverse patient populations [65]. 
The concept of fairness is based on the fundamental ethi‑
cal principles of justice, beneficence, and non‑maleficence. 
Healthcare systems must provide access to high‑quality care 
for all individuals without discrimination. In the context 
of radiology, fairness in AI refers to the development and 
deployment of unbiased AI that provides accurate diagno‑
ses and treatments for all patients regardless of their social 
status or ethnic differences. Achieving this fairness requires 
a comprehensive understanding of the potential causes of 
bias in AI and development of strategies to mitigate these 
biases [66].

Biases of AI in healthcare

Generally, biases in AI can emerge from two main sources: 
the data used for algorithm training (data bias) and inher‑
ent design or learning mechanisms of the algorithm itself 
(algorithmic bias). However, in the healthcare context, addi‑
tional biases may arise because of the complex nature of 
human interactions and decision‑making processes. These 
additional biases can be classified into two types: those that 
originate from AI–clinician interactions and those that origi‑
nate from AI–patient interactions [11]. An overview of these 
biases is shown in Fig. 1.

Data biases

Data bias refers to problems arising from the collection 
and organization of data used in AI training that can poten‑
tially have harmful effects on fairness and accuracy [67]. 
The types of data biases include minority bias, missing 
data bias, informativeness bias, and training–serving skew 
[11]. Minority bias occurs when the number of protected 
group members in the dataset is insufficient for AI to learn 
accurate statistical patterns. This can lead to decreased 
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performance and biased results when the algorithm is 
applied to these underrepresented groups. For example, 
many cardiovascular risk prediction algorithms have a his‑
tory of being trained primarily on male patient data [68, 
69]. This has led to an inaccurate risk assessment in female 
patients with different symptoms and risk factors. Miss‑
ing data bias occurs when data from protected groups are 
missing nonrandomly, making it difficult for AI to generate 
accurate predictions. For example, if patients in contact 
isolation have fewer vital sign records than other patients, 
the algorithm may struggle to identify clinical deteriora‑
tion. Informativeness bias occurs when the features used 
for detection are not as apparent for certain protected 
groups, lowering their informativeness when predictions 
are made. For example, identifying melanoma from images 
of patients with dark skin is more challenging than those 
with light skin [70, 71]. Training–serving skew refers to 
the mismatch between the data used for AI training and 
those used during deployment. This can arise from non‑
representative training data due to selection bias or from 
the deployment of the model on patients with a popula‑
tion prevalence different from that of the training data. 
In a study training AI to diagnose pneumonia from chest 
X‑rays, the performance on unseen data from the institu‑
tion where the training data were collected was signifi‑
cantly higher than its performance on data collected from 
external hospitals [72]. This common scenario means that 
estimations of AI performance based on internal test data 

may overestimate its real‑world performance on external 
data [73–75].

Algorithmic biases

Algorithmic bias refers to problems arising from the devel‑
opment and implementation of AI, which can negatively 
affect fairness and effectiveness. Even with representative 
data without data bias, AI can exhibit bias because of its 
inherent design or learning mechanisms. Algorithmic biases 
include label and cohort bias [11]. Label bias is a broad 
concept that includes test referral and interpretation bias. 
This occurs when AI training uses inconsistent labels, which 
may be influenced by healthcare disparities rather than uni‑
versally accepted truths. This can lead to biased decision‑
making based on inaccurate or inconsistent information in 
the AI algorithms. For example, significant racial bias has 
been observed in commercially available algorithms used to 
predict patients' healthcare needs. Although several biases 
were affected, a major contributing factor to this algorithm’s 
bias was its design, which used cost as a proxy for healthcare 
needs, leading to an underestimation of the needs of Black 
patients compared with those who are White with similar 
conditions [76]. Cohort bias occurs when AI is developed 
based on traditional or easily measurable groups without 
considering other potentially protected groups or varying 
levels of granularity. For example, mental health disorders 
have been underdiagnosed or misdiagnosed within lesbian, 
gay, bisexual, transgender, queer or questioning, intersex, 

Fig. 1  Biases in healthcare of AI
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asexual, and other (LGBTQ +) populations [77]. One reason 
for this is that algorithms often do not take the granularity of 
the LGBTQ + population into account and rely only on infor‑
mation about biological males and females. AI trained on 
such data may continue to overlook or misdiagnose mental 
health issues in these populations, potentially perpetuating 
existing disparities in mental healthcare.

Clinician interaction‑related biases

When healthcare professionals interact with AI, biases 
related to interactions can occur, potentially affecting the 
algorithm's performance, fairness, and adoption [11]. One 
such bias is automation bias, which refers to the tendency 
to overly rely on AI when tasks are transferred from health‑
care professionals to AI programs [78]. Overconfidence in 
algorithms can result in inappropriate actions based on inac‑
curate predictions. One study found that incorrect AI advice 
negatively affected radiologists' mammogram reading per‑
formance across all expertise levels. Inexperienced radiolo‑
gists are more likely to follow incorrect AI suggestions [79]. 
Another bias related to interactions is the feedback loop [80]. 
This occurs when clinicians accept AI recommendations 
even if they are incorrect, leading the algorithm to relearn 
and perpetuate the same mistakes. Rejection bias refers to 
the conscious or unconscious desensitization to excessive 
alerts. Alert fatigue is a manifestation of this bias, as clini‑
cians may ignore important alerts owing to an overwhelm‑
ing number of false alarms [81, 82]. Finally, an allocation 
discrepancy occurs when the positive predictive values for 
protected groups are disproportionately low, leading the AI 
to withhold necessary resources, such as clinical attention 
or social services. Such resource allocation discrepancies 
can exacerbate disparities in care and outcomes among the 
affected groups.

Patient interaction‑related biases

Biases related to interactions between patients and AI or 
the systems that incorporate them include privilege bias, 
informed mistrust, and agency bias [11]. Privilege bias 
occurs when certain populations cannot access AI in care 
settings or when these algorithms require technology or 
sensors that are not available to all populations [83]. This 
can lead to an unequal distribution of AI‑driven healthcare 
benefits, potentially exacerbating existing healthcare dispari‑
ties. Informed mistrust refers to the skepticism protected 
groups may have toward AI owing to historical exploitation 
and unethical practices in healthcare [84, 85]. This mistrust 
may lead these patients to avoid care or intentionally conceal 
information from clinicians or systems using AI. Agency 
bias arises when protected groups lack a voice in the devel‑
opment, use, and evaluation of AI [86]. These groups may 

lack the access, resources, education, or political influence 
necessary to detect AI biases, voice concerns, and affect 
change. This lack of agency can result in AI inadequate at 
considering the needs and perspectives of protected groups, 
potentially leading to biases and disparities in healthcare 
outcomes.

Strategies to mitigate bias

Diverse and representative data

One of the most effective methods of mitigating AI biases 
is to ensure the use of diverse and representative datasets 
during AI development and training [67, 87]. This process 
entails carefully collecting and incorporating data from a 
wide range of sources to accurately reflect the demographics, 
characteristics, healthcare needs, and potential disparities in 
the target population. This diversity is not only critical for 
developing AI systems capable of catering to a multitude of 
patient requirements but also for fostering trust and confi‑
dence in AI‑driven healthcare solutions. By incorporating 
data from various patient populations, age groups, disease 
stages, cultural and socioeconomic backgrounds, and health‑
care settings, AI can learn to recognize, diagnose, and treat a 
broad spectrum of patient conditions with greater precision 
and contextual understanding. This comprehensive approach 
to data collection and curation prevents potential biases from 
occurring in AI systems, resulting in a reduction of dispari‑
ties and promotion of equity in healthcare outcomes [76]. 
Furthermore, a diverse and representative dataset ensures 
that AI algorithms are rigorously tested across different 
scenarios, thereby enhancing their overall performance 
and utility. This enables healthcare providers to rely on AI‑
driven diagnostics and treatment recommendations, leading 
to improved patient care and reduced clinician workload.

Algorithm auditing and validation

Regular audits and AI validation play crucial roles in iden‑
tifying and addressing potential biases and ensuring that 
AI systems remain fair, accurate, and effective in diverse 
healthcare settings. Independent audits by external experts 
or organizations can be conducted to evaluate the fair‑
ness, accuracy, and performance of AI, with adjustments 
made to the algorithms to correct identified biases [88]. 
The healthcare landscape is constantly changing; there‑
fore, there is no guarantee that an AI algorithm with high 
performance will maintain its high performance in the 
future [89]. Validation studies are essential for verifying 
the effectiveness of AI in different patient populations 
and conditions [72]. The establishment of a dedicated 
department within hospitals for algorithm quality con‑
trol has been advocated [90]. This department should be 
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responsible for continuously monitoring AI performance, 
identifying potential biases, and making the necessary 
updates to algorithms. This proactive approach to quality 
control would ensure that AI systems are held accountable 
and maintain their effectiveness in providing accurate and 
equitable care for all patients. Considering the growing 
prevalence of medical AI, practitioners must remain vigi‑
lant and evaluate key indicators, such as underdiagnosis 
rates and other health disparities, during the algorithm 
development process and after deployment. This ongoing 
evaluation will help identify and rectify emerging issues, 
ensuring that AI systems continue to serve patients effec‑
tively and equitably.

Education to both clinicians and patients

Educating clinicians and patients on the biases inherent in 
AI is crucial for fostering a shared understanding and pro‑
moting fairness in healthcare [1]. This educational process 
involves raising awareness of potential biases, sharing best 
practices to address them, and encouraging open discus‑
sions on the implications of AI in healthcare decision‑
making. Clinicians aware of AI biases can avoid overreli‑
ance on AI‑generated results and make decisions based on 
more accurate information [91]. This increased awareness 
enables healthcare professionals to critically evaluate AI 
recommendations, weigh potential risks and benefits, and 
consider alternative sources of information when making 
patient care decisions. Additionally, clinicians can advo‑
cate for, and participate in, the development and evaluation 
of AI systems to ensure that their expertise and experience 
are incorporated into the models, further enhancing their 
accuracy and reliability. Patients who understand AI biases 
can make more informed and satisfactory decisions [92, 
93]. By being aware of the potential limitations and biases 
of AI‑generated recommendations, patients can engage in 
more meaningful conversations with their healthcare pro‑
viders regarding treatment options and play a more active 
role in their care. This empowerment promotes patient‑
centered care and ensures that individual preferences, 
values, and circumstances are considered when making 
healthcare decisions. To foster a culture of continuous 
learning and improvement of AI, creating channels for 
feedback and collaboration among healthcare profession‑
als and patients is essential. This can be achieved through 
workshops, conferences, online forums, or interdiscipli‑
nary collaborations that bring together diverse perspec‑
tives and experiences. By sharing knowledge, insights, 
and best practices, they can work together to identify and 
address biases and continuously refine AI systems to better 
serve the needs of all patients.

Ethical and legal considerations

Data privacy and security

Ensuring data privacy is an important ethical and legal con‑
sideration for AI fairness, as it has a significant impact on 
patient autonomy, trust in AI, and compliance with legal 
frameworks. Respecting patient autonomy and protect‑
ing confidential medical information is the foundation of 
ethical AI implementation, which can only be achieved by 
addressing important issues related to data privacy [94, 95]. 
One such issue is obtaining informed consent for data use 
[96, 97]. Patients must fully understand how their data are 
used, shared, and stored by AI. To achieve this, transparent 
communication regarding the purpose, risks, and benefits of 
data sharing is required to enable patients to make informed 
decisions regarding participating in AI‑driven healthcare 
initiatives. Protecting data storage and transmission is an 
important aspect of data privacy [98]. Robust security meas‑
ures, such as encryption and anonymization techniques, are 
required to protect patient data from unauthorized access, 
data breaches, and other cybersecurity threats. Moreover, 
strict access controls and audit mechanisms must be imple‑
mented to monitor and track data use, ensure accountability, 
and prevent data misuse. Compliance with privacy regula‑
tions, such as the Health Insurance Portability and Account‑
ability Act (HIPAA) in the United States and the General 
Data Protection Regulation (GDPR) in the European Union, 
is essential for legally and ethically sound AI practice [99]. 
These regulations provide strict guidelines for the collection, 
storage, and processing of personal health information, and 
AI researchers and healthcare professionals must adhere to 
standardized data protection protocols. By addressing these 
challenges and ensuring data privacy, AI developers and 
healthcare professionals can foster trust in AI, maintain 
patient autonomy, and adhere to ethical and legal standards. 
This promotes the development and implementation of fair 
and equitable AI‑driven healthcare solutions that respect the 
privacy and dignity of all patients.

Liability and accountability

To address the potential errors, harmful outcomes, and 
biases in the predictions generated by AI, clear guide‑
lines for responsibility and accountability in healthcare 
AI must be established. This includes determining the 
roles and responsibilities of various stakeholders, such 
as physicians, AI developers, and healthcare institutions, 
in cases where misdiagnoses or other patient harm occur 
[100, 101]. Physicians should be responsible for verify‑
ing AI‑generated diagnoses and integrating them into the 
clinical decision‑making process. This may involve criti‑
cally evaluating the AI outputs, considering them along 
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with other relevant clinical information, and making 
informed decisions regarding patient care. Conversely, AI 
developers have a responsibility to ensure the accuracy, 
reliability, and fairness of their algorithms. This includes 
addressing biases and continuously improving the algo‑
rithms based on feedback from the clinical community. 
Developers also need to provide clear guidance on the 
intended use and limitations of AI solutions, enabling 
physicians to make informed judgments regarding their 
application in patient care. Healthcare institutions play a 
crucial role in overseeing the integration of AI solutions 
into clinical workflows [90]. They must ensure that the 
necessary infrastructure, training, and support are avail‑
able for the safe and effective use of AI. This includes 
developing policies and procedures for managing poten‑
tial risks and harmful outcomes as well as monitoring and 
evaluating AI performance to ensure continuous quality 
improvement. A robust framework for accountability and 
responsibility enables AI stakeholders to address poten‑
tial ethical and legal issues more effectively. As a result, 
trust in AI‑driven healthcare solutions can increase, fos‑
tering responsible use and improving patient outcomes 
and overall care quality.

Transparency and explainability

Transparency and accountability are essential elements 
of ethical AI as they enable healthcare professionals 
and patients to understand the basis of AI‑generated 
predictions and foster trust in AI [102]. To enhance the 
accountability of AI, developing interpretable algorithms, 
visualizing decision‑making processes, and provid‑
ing comprehensible explanations for AI predictions are 
important [103]. By improving transparency and account‑
ability in AI in healthcare, both healthcare professionals 
and patients can be supported in making informed deci‑
sions, and ethical and legal concerns associated with the 
use of AI in healthcare can be addressed [104]. However, 
recognizing the limitations of explainability is important 
[104–107]. Even with saliency maps that visualize the 
areas of an image contributing to AI judgment, humans 
must decipher the meaning behind the explanation. When 
people favor meanings that confirm their beliefs or hypoth‑
eses, this is called confirmation bias. In other words, 
humans tend to interpret explanations positively even if 
the AI is not accurate or trustworthy. Recognizing the 
limitations of explainable AI is important for maintaining 
a realistic perspective of its potential benefits and draw‑
backs. By striking a balance among transparency, account‑
ability, and understanding the limitations of explainable 
AI, healthcare professionals can address the ethical and 
legal concerns associated with the use of AI in healthcare.

Collaboration among stakeholders

Physicians, AI researchers, and AI developers

Collaboration among physicians, AI researchers, and AI 
developers is essential to address fairness concerns in AI 
[108, 110]. Physician participation can provide valuable 
domain expertise and insights for AI researchers. Recent 
AI, developed to utilize images [14, 111], and radiologists 
are particularly well matched. A cycle of improvement can 
be achieved through communicating expertise in the field 
with physicians and sharing their experience in using AI in 
actual medical practice. By working together, stakeholders 
can identify potential biases and develop effective strate‑
gies to mitigate them, ensuring that AI is fair, equitable, 
and effective. Additionally, empirical research on AI biases 
is often difficult for independent researchers to analyze as 
large‑scale deployed algorithms are generally proprietary 
[112]. This makes it difficult to adequately assess bias, and 
active collaboration of not only AI researchers but also AI 
developers from companies is essential.

Policymakers and regulatory authorities

Policymakers and regulatory authorities play a crucial role 
in ensuring AI fairness through establishing comprehensive 
guidelines, standards, and regulations that govern the devel‑
opment and deployment of AI in healthcare [95, 113–115]. 
Through proactively shaping policies, they can promote 
the development of frameworks for AI design, training, 
and validation, ensuring that AI is built with fairness and 
inclusivity in mind. Fostering transparency and account‑
ability in AI is also an important aspect of their respon‑
sibilities [5, 116]. Policymakers and regulatory authorities 
can implement requirements for AI developers to disclose 
their methodologies, data sources, and performance met‑
rics, allowing for a better evaluation and comparison of AI. 
Furthermore, policymakers and regulatory authorities can 
allocate resources and funding towards AI innovation and 
research as well as towards addressing issues on fairness and 
equity in AI‑driven healthcare. Through formulating policies 
that encourage the development of AI technologies focused 
on health equity, policymakers and regulators can minimize 
bias and ensure that all patients benefit from AI, regardless 
of their background or circumstances. This will contribute 
to a more equitable healthcare system, in which AI‑driven 
solutions can improve patient outcomes and reduce dispari‑
ties in access to high‑quality care.

Patients and advocacy groups

Patients and advocacy groups serve a crucial function in 
advancing AI fairness as they contribute valuable insights 
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and firsthand experiences to the conversation. They can 
provide valuable insights into the needs and preferences of 
diverse patient populations, ensuring that AI addresses the 
specific challenges faced by various communities [86, 117, 
118]. As patients directly affected by the AI output, they 
have a vested interest in identifying areas in which AI may 
be subject to potential biases and disparities in healthcare 
outcomes. By collaborating with patients and advocacy 
groups, physicians, AI researchers, and AI developers can 
gain a deeper understanding of the unique challenges and 
concerns faced by various patient populations and promote 
the development of more equitable and effective AI solu‑
tions tailored to individual needs [119]. This can also help 
build trust in AI‑driven healthcare [84, 85]. By giving them 
a voice in the design, implementation, and evaluation of AI, 
organizations can demonstrate their commitment to patients 
by addressing their concerns and enhancing transparency.

Professional associations

Professional associations are pivotal in steering the develop‑
ment and implementation of AI‑driven healthcare solutions, 
addressing ethical challenges, and promoting best practices. 
Establishing guidelines, standards, and ethical frameworks, 
fostering interdisciplinary collaborations, and facilitating 
open dialogue among all stakeholders will bridge this gap. 
Their unique position allows them to contribute to the devel‑
opment of fair and transparent policies and practices while 
ensuring that AI technologies are developed and deployed 
responsibly, equitably, and in the best interests of patients.

Recommendations and future directions

Best practices in healthcare for fairness of AI

To promote AI equity in healthcare and ensure fair and accu‑
rate care for all patients, developing a comprehensive strat‑
egy that addresses biases at multiple levels as well as ethi‑
cal, legal, and practical concerns is essential. This approach 
should foster collaboration among key stakeholders to 
achieve equitable AI‑driven healthcare solutions. We present 
the following recommendations, called the FAIR (Fairness 
of Artificial Intelligence Recommendations in healthcare) 
principles, which aim to ensure fair and equitable AI‑driven 
healthcare solutions (see Table 1):

1. Ensuring diverse and representative data in AI develop‑
ment

Utilize diverse and representative data during AI 
development and training. This ensures that AI systems 
can better recognize, diagnose, and treat a wide range of 

patient conditions, reduce disparities, and promote equity 
in healthcare outcomes.

2. Independent audits and validation of AI algorithms

Implement regular audits and validate AI algorithms by 
independent experts or organizations. This ensures objec‑
tivity and transparency in the evaluation process and helps 
identify potential biases, leading to necessary adjustments 
in the algorithms. Establish a dedicated system within hos‑
pitals for algorithm quality control to monitor AI perfor‑
mance continuously, identify potential biases, and update 
algorithms accordingly.

3. Education on AI biases for clinicians and patients

Educate clinicians and patients on the biases inherent in 
AI with ongoing education as needed. This will promote a 
shared understanding and encourage open discussions on 
the implications of AI in healthcare decision‑making by 
creating channels for feedback and collaboration among 
healthcare professionals and patients. This can be achieved 
through workshops, conferences, online forums, and inter‑
disciplinary collaborations.

4. Strengthening data privacy and security measures

Strengthen data privacy and security measures, ensur‑
ing compliance with existing legal frameworks such as 
HIPAA and GDPR. Develop transparent communication 
protocols to educate patients regarding data usage, storage, 
and sharing, allowing them to make informed decisions 
regarding participating in AI‑driven healthcare initiatives.

5. Establishing liability and accountability frameworks

A robust framework for liability and accountabil‑
ity should be established, clearly defining the roles and 
responsibilities of physicians, AI developers, and health‑
care institutions. Encourage continuous feedback and 
improvement of AI algorithms while maintaining trans‑
parency and providing guidance on the intended use and 
limitations of AI solutions.

6. Enhancing AI transparency and explainability

Enhance transparency and explainability in AI by devel‑
oping interpretable algorithms, visualizing the model’s 
decision‑making processes, and providing explanations for 
AI predictions. Recognize the limitations of explainable 
AI and address potential biases to prevent overreliance on 
AI‑generated outputs.
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7. Collaboration between physicians, AI researchers, and 
developers

Foster collaboration among physicians, AI researchers, 
and developers to share expertise, identify potential biases, 
and develop strategies to mitigate them. Active participation 
of AI companies should be encouraged to support independ‑
ent research on AI biases and improve algorithm fairness.

8. Policymaker and regulatory authority involvement

Engage policymakers and regulatory authorities in 
developing comprehensive guidelines, standards, and reg‑
ulations to ensure AI fairness; promote transparency and 

accountability; and allocate resources to support research 
and innovation in AI‑driven healthcare.

9. Patient and advocacy group participation in AI develop‑
ment and evaluation

Involve patients and advocacy groups in the design, 
implementation, and evaluation of AI solutions, giving 
them a voice in the decision‑making process. Leverage their 
insights and experiences to address unique challenges and 
promote the development of equitable AI solutions tailored 
to individual needs.

 10. Professional association support

Table 1  FAIR (Fairness of Artificial Intelligence Recommendations in healthcare) statement

AI artificial intelligence, HIPAA the health insurance portability and accountability act, GDPR the general data protection regulation

1. Ensuring diverse and representative data in AI development
Utilize diverse and representative data during AI development and training. This will ensure that AI systems can better recognize, diagnose, and 

treat a wide range of patient conditions, reducing disparities and promoting equity in healthcare outcomes
2. Independent audits and validation of AI algorithms
Implement regular audits and validation of AI algorithms by independent experts or organizations. This will ensure objectivity and transparency 

in the evaluation process and help identify potential biases, leading to necessary adjustments in the algorithms. Establish a dedicated system 
within hospitals for algorithm quality control to continuously monitor AI performance, identify potential biases, and update algorithms accord‑
ingly

3. Education on AI biases for clinicians and patients
Educate clinicians and patients on the biases inherent in AI with ongoing education as needed. This will promote a shared understanding and 

encourage open discussions on the implications of AI in healthcare decision‑making by creating channels for feedback and collaboration 
among healthcare professionals and patients. This can be achieved through workshops, conferences, online forums, and interdisciplinary col‑
laborations

4. Strengthening data privacy and security measures
Strengthen data privacy and security measures, ensuring compliance with existing legal frameworks such as HIPAA and GDPR. Develop 

transparent communication protocols to educate patients regarding data usage, storage, and sharing, allowing them to make informed decisions 
regarding participating in AI‑driven healthcare initiatives

5. Establishing liability and accountability frameworks
Establish a robust framework for liability and accountability, clearly defining the roles and responsibilities of physicians, AI developers, and 

healthcare institutions. Encourage continuous feedback and improvement of AI algorithms, while maintaining transparency and providing 
guidance on AI solutions' intended use and limitations

6. Enhancing AI transparency and explainability
Enhance transparency and explainability in AI by developing interpretable algorithms, visualizing decision‑making processes, and providing 

understandable explanations for AI predictions. Recognize the limitations of explainable AI and address potential biases to prevent overreli‑
ance on AI‑generated outputs

7. Collaboration between physicians, AI researchers, and developers
Foster collaboration between physicians, AI researchers, and developers to share expertise, identify potential biases, and develop strategies to 

mitigate them. Encourage active participation of AI companies to support independent research on AI biases and improve algorithm fairness
8. Policymaker and regulatory authority involvement
Engage policymakers and regulatory authorities in developing comprehensive guidelines, standards, and regulations to ensure AI fairness, pro‑

mote transparency and accountability, and allocate resources to support research and innovation in AI‑driven healthcare
9. Patient and advocacy group participation in AI development and evaluation
Involve patients and advocacy groups in the design, implementation, and evaluation of AI solutions, giving them a voice in the decision‑making 

process. Leverage their insights and experiences to address unique challenges and promote the development of equitable AI solutions tailored 
to individual needs

10. Professional association support
Professional associations help establish guidelines, standards, and ethical frameworks, and promote interdisciplinary collaborations and open 

discussions among all stakeholders. Their unique position enables them to aid in creating fair and transparent policies and practices
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   Professional associations help establish guidelines, 
standards, and ethical frameworks, and promote inter‑
disciplinary collaborations and open discussions among 
all stakeholders. Their unique position enables them to 
create fair and transparent policies and practices.

By implementing these recommendations and addressing 
biases in data and algorithms, stakeholders in the AI‑driven 
healthcare sector can foster trust, transparency, and inclusiv‑
ity. This will ensure that AI technologies are developed and 
deployed ethically, responsibly, and equitably for the benefit 
of all patients regardless of their differences. Ultimately, this 
approach contributes to a more equitable healthcare system 
and improves patient outcomes.

Research gaps and future work

Several research gaps and opportunities for future research 
to address concerns regarding AI bias and fairness exist. 
Randomized controlled trials should be conducted to explore 
the potential of AI in improving patient care and outcomes. 
These trials should include diverse populations and AI that 
are tailored to the specific needs of different demographic 
groups. The long‑term impact of AI adoption in healthcare 
on patient treatment, outcomes, and physician workload 
should be investigated. The models should be monitored 
regularly to address biases that may emerge over time [89]. 
Developing new technologies for explainability and trans‑
parency is necessary to enable healthcare professionals and 
patients to better understand AI‑generated predictions, foster 
trust in AI, and ensure its ethical deployment.

Conclusion

In this review, we first defined fairness in AI in the health‑
care domain, introduced various biases with examples and 
potential countermeasures, and emphasized the importance 
of collaborating with stakeholders. Subsequently, we dis‑
cussed important ethical and legal issues. As a result, we 
summarized the best practices into the FAIR statement. This 
includes preparing diverse and representative data, con‑
tinuously validating AI, educating physicians and patients, 
and emphasizing the importance of interdisciplinary col‑
laboration. Although implementing each best practice is 
difficult, these efforts have become increasingly important 
as AI integration advances in the medical field. Further‑
more, AI technology is still evolving, and the situation is 
constantly changing, with new challenges emerging one 
after another. The emergence of tools like Chat Generative 
Pre‑trained Transformer (ChatGPT) is expected to greatly 
change white‑collar jobs, and physicians are no exception 

[120–122]. We are currently in an era in which physicians 
require flexible thinking and the ability to respond quickly 
to new technologies.

Since its inception, AI has influenced several aspects of 
modern society, leading to notable advancements. The medi‑
cal field has not remained untouched by this wave of change, 
with radiology particularly poised to harness the power of AI 
[123]. Given this unique position, the radiology community 
has a vital responsibility to share its experience in actively 
integrating AI into medicine [124–126], providing invalu‑
able guidance and insight for other medical specialties. As 
pioneers in the implementation of AI, radiologists should 
champion AI equity in healthcare. Our early experience navi‑
gating the complex landscape of AI adoption and overcoming 
the challenges associated with its deployment can serve as 
a roadmap for other medical professionals. By doing so, we 
can ensure that AI benefits all patients, regardless of their 
backgrounds, and contributes to the greater good of society.
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