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Abstract
Purpose As of March 2023, the number of patients with COVID-19 worldwide is declining, but the early diagnosis of patients 
requiring inpatient treatment and the appropriate allocation of limited healthcare resources remain unresolved issues. In this 
study we constructed a deep-learning (DL) model to predict the need for oxygen supplementation using clinical information 
and chest CT images of patients with COVID-19.
Materials and methods We retrospectively enrolled 738 patients with COVID-19 for whom clinical information (patient 
background, clinical symptoms, and blood test findings) was available and chest CT imaging was performed. The initial data 
set was divided into 591 training and 147 evaluation data. We developed a DL model that predicted oxygen supplementation 
by integrating clinical information and CT images. The model was validated at two other facilities (n = 191 and n = 230). In 
addition, the importance of clinical information for prediction was assessed.
Results The proposed DL model showed an area under the curve (AUC) of 89.9% for predicting oxygen supplementation. 
Validation from the two other facilities showed an AUC > 80%. With respect to interpretation of the model, the contribution 
of dyspnea and the lactate dehydrogenase level was higher in the model.
Conclusions The DL model integrating clinical information and chest CT images had high predictive accuracy. DL-based 
prediction of disease severity might be helpful in the clinical management of patients with COVID-19.
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AG ratio  Albumin:globulin ratio
ALB  Albumin
ALT  Alanine aminotransferase
AST  Aspartate aminotransferase
AUC   Area under the receiver operating charac-

teristic curve
Baso  Basophil
BMI  Body mass index
BUN  Blood urea nitrogen
Cl  Chloride ion
COPD  Chronic obstructive pulmonary disease
COVID-19  Coronavirus disease 2019
CPK  Creatine phosphokinase
Cre  Creatinine
CRP  C-reactive protein

DL  Deep learning
ECMO  Extracorporeal membrane oxygenation
eGFR  Estimated glomerular filtration rate
Eosino  Eosinophil
GLU  Glucose
Grad-Cam  Gradient-weighted class activation 

mapping
Hct  Hematocrit
HFNC  High-flow nasal canula
HGB  Hemoglobin
K  Potassium
KL-6  Sialylated carbohydrate antigen
LDH  Lactate dehydrogenase
LIME  Local interpretable model-agnostic 

explanations
Lympho  Lymphocyte
MCH  Mean corpuscular hemoglobin
MCHC  Mean corpuscular hemoglobin 

concentration
MCV  Mean corpuscular volume
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Mono  Monocyte
Na  Sodium
NA  Not assessed
Neutro  Neutrophil
PLT  Platelet
PNI  Prognostic nutritional index
RBC  Red blood cell
RT-PCR  Real-time reverse transcriptase chain 

reaction
SARS-CoV-2  Severe acute respiratory syndrome corona-

virus 2
T-Bil  Total bilirubin
TP  Total protein
UA  Uric acid
WBC  White blood cell

Introduction

The pandemic of the coronavirus disease 2019 (COVID-19) 
has caused > 750 million infections and 6.8 million deaths 
worldwide as of 1 March 2023 [1]. The overall trend in 
infections is downward, but there are still no signs of dis-
ease eradication. Rapid and effective triage also remains an 
unresolved issue for optimal treatment and effective alloca-
tion of limited healthcare resources [2].

The viral nucleic acid real-time reverse transcriptase 
chain reaction (RT-PCR) is the gold standard for the diag-
nosis of COVID-19 infection [3, 4]. RT-PCR has several 
limitations, however, such as dependence of the diagnosis 
on the viral load and sampling technique [5]. With the rapid 
increase in the number of cases, there are problems regard-
ing the time required for testing and the lack of reagents. 
Furthermore, challenges remain, including the diagnosis of 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) pneumonia and determination of disease severity 
[6].

Numerous studies have shown the utility of chest CT 
images for the diagnosis of SARS-CoV-2 pneumonia [7–9], 
even in PCR-negative cases [10]. SARS-CoV-2 pneumo-
nia is characterized by ground glass opacities in the lung 
parenchyma bilaterally on radiographs [11]; subsequently, 
infiltrating shadows are apparent. Numerous reports have 
quantified ground glass opacities, semi-consolidated, and 
consolidated lesions, and concluded that abnormal lung 
areas exceeding a specified value are associated with severe 
disease [12, 13]. Analyses using radiomic features have also 
been reported [14].

The relationship between COVID-19 disease severity and 
clinical characteristics has also been reported. Early reports 
have described the patient characteristics that are associated 
with severe disease, including older age, gender, obesity, 
and co-morbidities, such as hypertension, diabetes, chronic 

lung diseases and coronary artery disease [15–17]. Subse-
quent reports indicated that coagulopathies and vasculitis 
contribute to critical illness in patients with COVID-19 [18, 
19]. Markers of lung fibrosis, such as sialylated carbohydrate 
antigen (KL-6), have also been reported to contribute to the 
progression from pneumonia to secondary lung fibrosis [20].

In parallel, deep learning (DL)-based chest image anal-
ysis has been used to predict COVID-19 disease severity, 
survival, and death [21], with some reports showing a diag-
nostic accuracy > 80% [22]. A recent study proposed nomo-
grams and scoring systems using DL to determine COVID-
19 patient status and predict critical illness [23]. However, a 
DL model has not been fully described in detail using clini-
cal information and chest images together [24]. It has been 
recently reported that a DL model using x-rays predicts the 
presence or absence of oxygen supplementation, a predictor 
of hospitalization and delayed discharge, which is associated 
with disease severity [25]. Thus, we considered a DL model 
that combined clinical and CT imaging findings to predict 
oxygen supplementation in an early stage. In addition, if 
we enable visualization of the elements on which the DL 
model is built, such a DL model will facilitate healthcare 
professionals’ efforts to provide appropriate treatment and 
allocate healthcare resources in the next pandemic and for 
other respiratory diseases.

Therefore, we constructed a DL model for predicting 
oxygen supplementation at an early stage in COVID-19 
infection that integrated clinical information and chest CT 
images.

Methods

Study subjects

To construct the prediction model, we enrolled 819 consecu-
tive COVID-19 patients who were hospitalized and treated at 
Chiba Aoba Municipal Hospital (No. 20200301) Municipal 
Hospital from February 2020 to September 2021. The sub-
jects were required to meet all of the following inclusion cri-
teria: (1) Patients with symptoms suspicious for COVID-19 
who were diagnosed with COVID-19 during the COVID-19 
outbreak; (2) Patients who underwent RT-PCR tests of naso-
pharyngeal swab samples to establish a COVID-19 diagnosis; 
and (3) Patients with a positive PCR test result and a request 
for treatment and hospitalization from the local health depart-
ment. We excluded subjects under 20 years of age (n = 31), 
subjects who did not undergo CT scanning (n = 32), data mis-
matches (n = 14), pregnant patients (n = 3), and a transfer case 
(n = 1); thus 738 patients were finally enrolled.

External validation was performed at two other facilities. 
These two medical facilities differ in location, local popula-
tion, and function as hospitals. The first external validation 
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included 191 patients with COVID-19 who were admitted 
and treated at Kashiwa Kousei General Hospital (No. 21005) 
General Hospital. The second external validation included 
230 patients with COVID-19 who were admitted and treated 
at Eastern Chiba Medical Center (No.161) Medical Center.

This retrospective multi-center study was approved by 
the Institutional Review Boards of Chiba University (No. 
4074), Chiba Aoba Municipal Hospital (No. 20200301), 
Kashiwa Kousei General Hospital (No. 21005), and Eastern 
Chiba Medical Center (No.161). The study was conducted 
in accordance with the principles of the Declaration of Hel-
sinki. The institutional review boards of all hospital institu-
tions included in the present study provided ethical approval. 
The requirement for written informed consent was waived. 
To avoid any potential breach of patient confidentiality, the 
data were deidentified and had no linkage to the researchers.

Clinical information

We obtained data by reviewing patient charts at the time of 
admission and during hospitalization. Patient background, 
clinical symptoms, and blood test findings were collected for 
clinical information. These data were collected within 24 h 
of the first visit or admission. Patient background included 19 
items and clinical symptoms included 9 items. Blood test find-
ings included 34 items [Supplementary Table 1(a) and (b)].

Each item was based on data obtained from at least 80% 
of patients from the first derivation facility. The total number 
of items was 62. To construct the DL model, each patient 
data set was normalized and any missing data were filled in 
using the mode method.

Chest CT scanning

At the initial facility, the patients underwent chest CT using 
an 80-row CT scanner (Siemens, Erlangen, Germany). The 
patients were scanned from the thoracic inlet to the dia-
phragm during full inspiration without contrast enhance-
ment. The CT settings were as follows: 120 kV; CT-auto 
exposure control; gantry rotation time, 0.5 s; and beam pitch, 
0.83. All images were reconstructed using soft (I40f) and 
sharp reconstruction kernels (B70f) with a slice thickness 
of 3 mm and a reconstruction interval of 3 mm.

At the facility for the first validation, the patients under-
went chest CT using a 64-row CT scanner (Siemens) and 
were scanned from the thoracic inlet to the diaphragm dur-
ing full inspiration without contrast enhancement. The CT 
settings were as follows: 120 kV; CT-auto exposure control; 
gantry rotation time, 0.5 s; and beam pitch, 1.2. All images 
were reconstructed using soft (I31f) and sharp reconstruc-
tion kernels (B70f) with a slice thickness of 5 mm and a 
reconstruction interval of 5 mm.

At the facility for the second validation, the patients 
underwent chest CT using an 80-row CT scanner (Aquilion 
ONE; Canon Medical Systems, Otawara, Tochigi, Japan) 
and were scanned from the thoracic inlet to the diaphragm 
during full inspiration without contrast enhancement. The 
CT settings were as follows: 120 kV; CT-auto exposure 
control; gantry rotation time, 0.5 s; and beam pitch, 0.813. 
All images were reconstructed using soft (FC03) and sharp 
reconstruction kernels (FC51) with a slice thickness of 5 mm 
and a reconstruction interval of 5 mm. In the present study, 
only the soft reconstruction kernel was used for each model 
construction. The sharp reconstruction kernel was used for 
the data confirmation.

Clinical end point

The patients were divided into two groups according to the 
oxygen requirements during hospitalization. In the present 
retrospective study, oxygen supplementation was introduced 
when the following conditions were confirmed: a partial 
pressure of arterial oxygen ≤ 60 mmHg or oxygen saturation 
by pulse oximetry  (SpO2) ≤ 93% and the attending physician 
considered oxygen supplementation necessary, as specified 
by the Japanese COVID-19 guidelines [26]. An oxygen 
requirement was defined as 1 and no oxygen requirement 
was defined as 0.

The Japanese COVID-19 guideline for oxygen supply 
is an  SpO2 93% as an additional 3% error in measurement 
to the general standard of an  SpO2 ≤ 90%, which reflects a 
 PaO2 ≤ 60 mmHg for respiratory failure. Mild disease is an 
 SpO2 ≥ 96% without respiratory symptoms or no dyspnea 
with cough only. No findings suggestive of pneumonia were 
present in any of these cases. Moderate I is an  SpO2 > 93% 
but < 96% with findings of dyspnea and pneumonia and no 
requirement for oxygenation, but requires careful follow-up 
in case of deterioration. Moderate II requires oxygen admin-
istration with an  SpO2 ≤ 93%. Critical illness requires ICU 
admission or ventilatory management.

Data set

After excluding mismatch data, the data were randomly 
divided into training and evaluation data sets (4: 1). The total 
number of the data sets was 738. The number of training 
data sets was 591 and the number of evaluation data sets was 
147. For the first external validation, the test data set was 
191. For the second external validation, the data set was 230.

DL model

In this study we created three DL models and compared 
the prediction accuracies. The first DL model was desig-
nated the clinical network architecture, which used clinical 
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information (Fig. 1(a)). The clinical information (patient 
background, symptoms, and blood test findings; n = 62 
items) was reformed into 62 channels, convo-transposed 
twice, and passed through a fully connected layer to gener-
ate outputs (1 for oxygen supplementation; 0 for no oxygen 
supplementation).

The second DL model was designated the image net-
work architecture, referring to previous reports based on 
DenseNet [22, 27]. The image network architecture model 
was implemented using chest CT images (Fig. 1(b)). Chest 
CT images were trimmed around the lungs and resized to 
320 × 200 × 150 pixels. After passing through the convolu-
tion layer, the model passed through three transitions: dense 
block, convolution layer, and average pooling. Then, after 
going through global average pooling, the model passed 
through the fully connected layer to produce the output.

The third model combined the clinical and image net-
work architectures, and was designated the proposed net-
work architecture (Fig. 2). Referring to the transfer learning 
method [28], the clinical network block generated by the 
clinical network architecture and the image network block 
generated by the image network architecture were fixed 

based on the optimal parameters, respectively. Then the clin-
ical and image network blocks were combined and passed 
through ResNet [29], and finally through a fully connected 
layer. Only the parameters in the layers after ResNet were 
updated by learning. Then, the final output was generated.

The learning environment was as follows: the number of 
epochs was 20; the loss function was binary cross-entropy; 
the optimization method was Adam; and the learning rate 
was 0.001.

Analysis of factors affecting the prediction 
of oxygen supplementation

As an additional validation, we evaluated the importance 
of each clinical datum. To interpret DL models, gradient-
weighted class activation mapping (Grad-Cam) for the 
image input [30] and local interpretable model-agnostic 
(LIME) were used for the table data [31]. Of note, there is no 
general analysis method to identify the contribution of meth-
ods that combine CT images and clinical information, such 
as the model we created. Hence, we evaluated the impor-
tance of each item using the following formula, where M is 

Fig. 1  Development of the DL models. Notes: The first DL model is 
the clinical network architecture, which is a DL model using clini-
cal information (a). The clinical information (patient background, 
symptoms, and blood test findings; n = 62 items) was reformed into 
62 channels, convo-transposed twice, and passed through a fully con-
nected layer to generate outputs (1 for oxygen supplementation; 0 for 
no oxygen supplementation). The second DL model is the image net-
work architecture, referring to a previous report based on Densenet 
[22]. This model was implemented using chest CT images (b). After 

passing through the convolution layer, the model passed through 
three transitions: dense block, convolution layer, and average pooling. 
Then, after going through global average pooling, the model passed 
through the fully connected layer to produce the output. In each dense 
block, each network layer has a tightly coupled structure consisting of 
a 3*3 convolutional layer and a 3*3*3 convolutional layer. These lay-
ers are N-connected and have a residual structure where the outputs 
of each layer are added together from behind
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the learned model: Ip is the 3D chest CT image of patient 
p(1 ≤ p ≤ P) ; and Cp1,Cp2 ⋯CpN(N = 62) are the clinical 
items. M

(
Ip,Cp1,⋯Cpn ⋯ ,CpN

)
 denotes the output (1 or 

0) of the learned model to the input,Ip,Cp1,⋯Cpn ⋯ ,CpN.
The importance of the nth clinical item was defined as 

Importancen(%).

Here, mn represents the mean of P values in terms of the 
nth clinical item. The importance is the absolute value of 
the difference between the original estimate and the esti-
mate obtained by inputting the value of the nth clinical item 
of each subject fixed at mean values ( mn ) into the learned 
model and averaged over all patients. The importance of 
each of the 62 items was estimated for each of the original 
derivation and external evaluation data.

Statistical analysis

The results are expressed as the mean ± standard deviation 
(± SD). Categorical data are expressed as a number (%). 
All the statistical analyses were performed using JMP Pro 
version 17.0 software (SAS Institute, Cary, NC, USA). Dif-
ferences between the three groups were evaluated by the 
Kruskal–Wallis test for data and comparisons between the 
two groups were performed using the Steel–Dwass method. 
We also calculated the areas under the receiver operating 

Importancen(%) =

(
1

P

∑

p

|||
M
(
Ip,Cp1,⋯Cpn ⋯ ,CpN

)
−M

(
Ip,Cp1,⋯mn,⋯CpN

)|||

)

× 100,

curve (AUC), accuracy, sensitivity, and specificity for the 
prediction of oxygen supplementation during the hospitali-
zation. Model performance was quantified by the AUC and 
compared using Delong’s test. A P value < 0.05 was consid-
ered significant.

Results

Characteristics of the study participants

The demographic participants are shown in Table 1. At the 
first facility, the average patient age was 52 years, males 
predominated, and the mean time interval from symptom 
onset to CT was 5.4 days. The chief symptom at the time of 
admission was fever for 86% of the patients, cough in 51%, 
dyspnea in 35%, fatigue in 46%, and dysgeusia or dysosmia 
in 26%.

A comparison between the first facility, and the first and 
2nd external facilities showed differences in age and ciga-
rette smoking status, etc. There were also differences in the 
proportion of subjects with hypertension, diabetes mellitus, 
and chronic obstructive pulmonary disease (COPD), and 
differences in clinical items, such as dyspnea, fatigue, sore 
throat and dysgeusia or dysosmia.

Fig. 2  Development of the pro-
posed DL model and proposed 
network architecture. Notes: 
The third model combined the 
clinical network with the image 
network. The DL model is the 
proposed network architecture. 
The products from the clinical 
network and image network 
were combined and passed 
through a fully connected layer, 
then through Resnet structures, 
and finally through a fully 
connected layer. Then, the final 
output was generated
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Outcome of the patients

At the first facility, the number of patients receiving oxygen 
during hospitalization was 250 (34%), and 35 (5%) were 
on oxygenation at the time of admission. The number of 
patients with high-flow nasal canula (HFNC) therapy was 79 

(11%). Twenty patients (3%) were intubated. Two patients 
needed extracorporeal membrane oxygenation (ECMO). 
Twenty-five of the total number of patients did not survive 
(Table 1).

Comparisons between the three groups showed that 
the first facility and 2 external facilities differed in the 

Table 1  Demographics of the 
study subjects (n = 738, 191, 
230)

Data are expressed as the mean ± standard deviation
BMI body mass index; COPD chronic obstructive pulmonary disease; ECMO extracorporeal membrane 
oxygenation; NA not assessed
The difference between original derivation and the first external validation
† p < 0.05; ††, p < 0.01; †††, p < 0.001
The difference between original derivation and the second external validation
‡ p < 0.05; ‡‡, p < 0.01; ‡‡‡, p < 0.001
The difference between the first and second external validations
*p < 0.05; **, p < 0.01; ***, p < 0.001

Original derivation 
(n = 738)
n (%, percentage)

1st External validation  
(n = 191)
n (%, percentage)

2nd External validation 
(n = 230)
n (%, percentage)

Age 52 (20–99) 58 (20–97) ††† 62 (20–97) ‡‡‡, ***

Gender (male) 444 (60%) 117 (61%) 128 (56%) ‡ **

BMI 24.4 ± 4.6 24.8 ± 5.7 24.7 ± 4.6
Current smoker 218 (30%) 20 (10%) ††† 35 (15%) ‡‡‡

Pack-years 10.8 ± 20.3 7.5 ± 18.5††† 13.7 ± 23.9***

Alcohol consumption 381 (52%) 52 (28%) ††† N.A
Symptom onset to CT (days) 5.4 ± 4.7 5.9 ± 4.2 4.7 ± 3.5 ‡‡‡ ***

Co-morbidities
Hypertension 186 (25%) 74 (39%) ††† 97 (42%) ‡‡‡

Diabetes mellitus 96 (13%) 45 (24%) ††† 52 (23%) ‡‡

Dyslipidemia 90 (12%) 22 (12%) 44 (19%) ‡

Coronary disease 15 (2%) 13 (7%) †† 12 (5%) *

Bronchial asthma 37 (5%) 10 (5%) 11 (5%)
COPD 4 (0.5%) 9 (5%) ††† 9 (4%) ‡‡‡

Symptom
Fever 633 (86%) 180 (94%) †† 186 (81%) ***

Cough 373 (51%) 84 (44%) 120 (52%)
Dyspnea 253 (35%) 102 (53%) ††† 56 (24%) ‡***

Fatigue 338 (46%) 39 (20%) ††† 84 (37%) ‡***

Sore throat 201 (27%) 26 (14%) ††† 36 (16%) ‡‡‡

Diarrhea 85 (12%) 14 (7%) 27 (12%)
Nausea/vomitting 50 (7%) 9 (5%) 4 (2%)‡‡

Dysgeusia/dysosmia 191 (26%) 8 (4.2%) ††† 24 (10%) ‡‡‡*

None 17 (2%) 2 (1%) 9 (4%)
Outcome
Oxygen supplementation 250 (34%) 130 (68%) ††† 97 (42%) ***

Oxygen supplementation at 
time of hospital admission

35 (5%) 126 (66%) ††† 62 (27%) ‡‡‡ ***

High-flow nasal oxygen 79 (11%) 23 (12%) 12 (5%) ‡*

Intubation 20 (3%) 15 (8%) †† 16 (7%) ‡‡

ECMO 2 (0.3%) 2 (1%) 4 (2%) ‡

Survival/death 713 (97%)/ 25 (3%) 178(93%)/13 (7%) 219(95%)/11 (5%)
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proportion of patients with oxygen supplementation (34%, 
68%, and 42%, respectively). There were also differences 
in the proportion of patients receiving oxygen supplemen-
tation on admission (5%, 66%, and 27%, respectively). In 
contrast, there were no apparent differences in survival/
death.

Major blood test findings of the patients

At the first facility, the aspartate aminotransferase (AST), 
lactate dehydrogenase (LDH), C-reactive protein (CRP), 
blood glucose, and d-dimer levels were slightly elevated 
compared to the normal ranges (Table 2).

Comparisons between the three groups of patients showed 
differences in the albumin (ALB) level, albumin:globulin 
ratio (AG ratio), white blood cell (WBC) count, periph-
eral compartment cell types (basophil (Baso), eosinophil 
(Eosino), neutrophil (Neutro)), and the prognostic nutritional 
index (PNI), etc.

Performance of the prediction model for oxygen 
supplementation

The prediction accuracy for oxygen supplementation 
from the first derivation is shown in Fig. 3(a). We used 
the combined method to predict oxygen supplementa-
tion. In Fig. 3(b), the AUC was 0.899, the accuracy was 
0.861, the sensitivity was 0.805, and the specificity was 
0.889. The AUC was statistically superior for the integrated 
model compared to the clinical information model, and for 
the integrated model compared to the image model (vs. 
clinical information; p = 0.017 and vs. image; p = 0.007, 
respectively).

Results of external facility data validations

To test model robustness, we tested model performance in 
two independent cohorts with different locations and popula-
tions, patient backgrounds, and levels of medical resources. 
Using the proposed method, as shown in Fig. 4, the AUC of 
the 1st external validation was 0.836 and the AUC of the 2nd 
external validation was 0.864. In the first external validation, 
there was a significant difference between the integrated and 
image models (p = 0.0365), while there was no significant 
difference between the integrated and clinical information 
models (p = 0.3322). In the second external validation, there 
was a significant difference between the integrated and clini-
cal information models (p = 0.0026), while there was no sig-
nificant difference between the integrated and image models 
(p = 0.7017).

Analysis of factors influencing oxygen 
supplementation prediction among clinical 
information

Factors influencing the prediction of oxygen supplementa-
tion in clinical information are shown in Fig. 5. With respect 
to patient background and clinical symptoms, the presence 
of dyspnea was the most significant contributor (Fig. 5(a)), 
while LDH was the most significant blood laboratory param-
eter contributor (Fig. 5(b)).

Discussion

In the present study we presented a DL prediction model for 
oxygen supplementation using clinical information and chest 
CT images in patients with COVID-19. Oxygen supplemen-
tation is one of the key factors determining the need for 
inpatient treatment; the AUC of the proposed model in the 
original facility was as high as 89.9%. Since the beginning 
of the pandemic, detailed integration of patient demograph-
ics and radiographic features has not been fully utilized. We 
have also enabled visualization of the elements on which the 
DL model was based.

Compared to the model built using clinical information 
and radiologic images separately, the model combining 
the two components had higher prediction accuracy. CT 
images and clinical information function separately as dif-
ferent detectors in the model. Because the patient's condition 
was assessed by clinical information consisting of patient 
background and blood test findings, and imaging findings 
in different ways, the combined model may have acted as 
a stronger detector and contributed to improved prediction 
accuracy. Blood test findings reflect a variety of multi-organ 
parameters, including systemic inflammation, the condition 
of various organs (such as kidney and liver function), blood 
glucose levels, and blood clotting markers. Blood testing 
findings also strongly reflect the condition of each patient at 
the time of the procedure and have been used for the predic-
tion of COVID-19 severity [32, 33].

In contrast, CT imaging mainly evaluates lung findings, 
which have numerous imaging characteristics. It takes time 
for pneumonia to become established after infection, and 
each image has normal and abnormal areas, as well as areas 
of improvement and exacerbation that reflect not only the 
condition at the time of the procedure, but also longitudinal 
changes [34, 35]. Therefore, the model combining clini-
cal information and CT images may have contributed to 
improvement in prediction accuracy.

The model in the present study was relatively simple, 
requiring only a combination of clinical findings avail-
able in an exam room and CT images in order to predict a 
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Table 2  Major blood test 
findings of the study subjects 
(n = 738, 191, 230)

Data are expressed as the mean ± standard deviation
TP total protein; ALB albumin; AG ratio albumin:globulin ratio; AST aspartate aminotransferase; ALT ala-
nine aminotransferase; LDH lactate dehydrogenase; T-Bil total bilirubin; γ-GTP γ-glutamyltransferase; 
BUN blood urea nitrogen; Cre creatinine; UA uric acid; eGFR estimated glomerular filtration rate; Na 
sodium; K potassium; Cl chloride ion; CPK creatine phosphokinase; CRP C-reactive protein; GLU glu-
cose; WBC white blood cell; RBC red blood cell; HGB hemoglobin; Hct hematocrit; MCV mean corpus-
cular volume; MCH mean corpuscular hemoglobin; MCHC mean corpuscular hemoglobin concentration; 
PLT platelet; Baso basophil; Eosino eosinophil; Neutro neutrophil; Lympho lymphocyte; Mono monocyte; 
PNI prognostic nutritional index; NA not assessed
The difference between the original derivation and the first external validation
† p < 0.05; ††, p < 0.01; †††, p < 0.001
The difference between the original derivation and the second external validation
‡ p < 0.05; ‡‡, p < 0.01; ‡‡‡, p < 0.001
The difference between the first and second external validations
*p < 0.05; **, p < 0.01; ***, p < 0.001

Laboratory indices Original derivation 1st External validation 2nd External validation

TP (g/dL) 7.1 ± 0.6 6.7 ± 0.6††† 6.8 ± 0.5‡‡‡ *

ALB (g/dL) 4.0 ± 0.6 3.4 ± 0.6††† 3.7 ± 0.6‡‡‡***

AG ratio 1.3 ± 0.3 1.1 ± 0.3††† 1.2 ± 0.3‡‡‡***

AST (IU/L) 40.6 ± 34.0 51.6 ± 43.9††† 41.1 ± 36.7‡‡‡

ALT (IU/L) 37.7 ± 41.2 42.6 ± 40.9 33.9 ± 28.0*

LDH (U/dL) 295.5 ± 146.3 368.3 ± 180.2††† 282.1 ± 152.7***

T-Bil (mg/dL) 0.69 ± 0.34 0.61 ± 0.33† 0.69 ± 0.32**

γ-GTP (IU/L) 67.6 ± 104.7 80.5 ± 98.6††† 56.3 ± 75.2***

BUN (mg/dL) 14.9 ± 7.9 16.5 ± 9.6 16.5 ± 8.2‡‡

Cre (mg/dL) 0.84 ± 0.34 0.93 ± 0.97 0.92 ± 0.61
UA (mg/dL) 4.6 ± 1.6 4.8 ± 1.9 N.A
eGFR (ml/min/1.73  m2) 77.2 ± 21.0 73.8 ± 24.9 67.1 ± 21.0‡‡‡**

Na (mEq/L) 137.7 ± 3.8 136.9 ± 4.5† 138.4 ± 3.6‡***

K (mEq/L) 4.0 ± 0.4 4.0 ± 0.4 4.0 ± 0.4
Cl (mEq/L) 101.1 ± 4.2 100.2 ± 4.8† 101.4 ± 3.7**

CPK (U/L) 195.4 ± 873.5 281.1 ± 1068.2††† 270.2 ± 1074.6*

CRP (mg/dL) 4.0 ± 4.8 6.8 ± 6.7††† 4.5 ± 5.5‡‡‡

GLU (mg/dL) 124.0 ± 47.0 141.0 ± 58.9††† 132.3 ± 47.6‡‡‡

WBC count (/μL) 5353 ± 2252 6071 ±  3254††† 5373 ±  2179‡‡‡***

RBC count (×  104/μL) 476.8 ± 59.9 463.1 ± 71.3 463.3 ± 70.9
HGB (g/dL) 14.4 ± 1.8 14.1 ± 2.1 14.0 ± 2.1
Hct (%) 41.9 ± 4.8 41.4 ± 5.7 40.9 ± 5.8
MCV (fL) 88.1 ± 5.3 89.9 ± 5.2†† 88.5 ± 5.4
MCH (pg) 30.2 ± 2.2 30.4 ± 2.0 30.3 ± 2.2
MCHC (%) 34.3 ± 1.3 33.9 ± 1.2††† 34.2 ± 1.2*

PLT (×  104/μL) 20.4 ± 7.1 18.8 ± 7.4†† 18.9 ± 6.2‡

Baso (%) 0.39 ± 0.37 0.03 ± 0.17††† 0.28 ± 0.27‡‡‡***

Eosino (%) 0.98 ± 1.62 0.40 ± 1.88††† 0.66 ± 1.23‡‡‡***

Neutro (%) 64.0 ± 18.8 74.2 ± 12.0††† 68.7 ± 13.8‡‡‡***

Lympho (%) 23.7 ± 10.6 19.3 ± 10.0††† 22.1 ± 10.8*

Mono (%) 7.3 ± 3.3 6.2 ± 3.1††† 7.4 ± 3.5***

Neutro count (/μL) 3628 ± 1928 4555 ±  2367††† 3847 ±  2131‡‡‡**

PNI 39.8 ± 6.7 39.0 ± 6.4†† 42.0 ± 6.8‡‡‡***

D-dimer (ug/mL) 1.9 ± 10.9 4.2 ± 22.6 1.6 ± 4.2‡‡‡
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patient's oxygen requirements. The proposed model com-
bined DenseNet and ResNet, and integrated clinical informa-
tion with CT images. Previous studies have used DL models, 
such as DenseNet-based models [22] and fully connected-
based models [23] in COVID-19. Initially, with respect 

to the prediction of severe COVID-19 disease, there were 
limited reports from Japan, where the number of infected, 
severely ill, and critical cases was relatively small compared 
to the United States and other European countries; however, 
the increasing number of patients has caused a depletion 

Fig. 3  Receiver operating char-
acteristic (ROC) curve analysis 
of oxygen supplementation pre-
diction by the DL model com-
bined with clinical information 
and CT images. Notes: The pre-
diction accuracy of the model 
combining clinical information 
and CT images was higher than 
that of clinical information and 
CT images alone. Green line; 
Clinical information. Thin blue 
line; CT image. Indigo line; 
Total data (Clinical informa-
tion + CT image)

Fig. 4  Receiver operating characteristic (ROC) curve analysis of 
oxygen supplementation prediction by the DL model combined with 
clinical information and CT images using externally-validated data. 
Notes: The validation results at the other two sites were > 80%. a and 

b First external validation. c and d Second external validation. Green 
line; Clinical information. Thin blue line; CT image. Indigo line; 
Total data (Clinical information + CT image)
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Fig. 5  Analysis of factors affecting oxygen supplementation pre-
diction. Notes: Using the learned parameters, the importance of 
each item was evaluated by the proposed formula. Dyspnea, a clini-
cal symptom, and LDH, a blood test finding, were shown to have a 
strong influence on the presence of oxygen supplementation. a The 
contribution of the items among patient background and clinical 
symptoms. b The contribution of the items among blood test find-
ings. Abbreviations: BMI body mass index; COPD chronic obstruc-
tive pulmonary disease; TP total protein; ALB albumin; AG ratio 
albumin:globulin ratio; AST aspartate aminotransferase; ALT alanine 

aminotransferase; LDH lactate dehydrogenase; T-Bil total bilirubin; 
γ-GTP γ-glutamyltransferase; BUN blood urea nitrogen; Cre cre-
atinine; UA uric acid; eGFR estimated glomerular filtration rate; Na 
sodium; K potassium; Cl chloride ion; CPK creatine phosphokinase; 
CRP C-reactive protein; GLU glucose; WBC white blood cell; RBC 
red blood cell; HGB hemoglobin; Hct hematocrit; MCV mean cor-
puscular volume; MCH mean corpuscular hemoglobin; MCHC mean 
corpuscular hemoglobin concentration; PLT platelet; Baso basophil; 
Eosino eosinophil; Neutro neutrophil; Lympho lymphocyte; Mono 
monocyte; PNI prognostic nutritional index
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of medical resources that exceeded institution capacity. 
According to the COVID-19 Inpatient Registry in Japan 
(COVIREGI-JP), the breakdown of severity among 2638 
patients with COVID-19 hospitalized in the early stages of 
the epidemic (March-July 2020) was as follows: no oxygen 
(62%), oxygen (30%), and ventilator therapy in intensive 
care (9%) [36, 37]. A similar trend was observed in the 
facilities where the proposed model was derived. The pres-
ence of oxygen supplementation is one of the key factors in 
determining the need for hospital admission and readiness 
for discharge. We believe that the proposed DL model can be 
used to properly identify patients in need of hospitalization, 
which may lead to appropriate use of healthcare resources.

In the current study, we tried to visualize the factors 
on which the DL model was based. Since the beginning 
of the pandemic, gender, age, obesity, and co-morbidities 
(e.g., diabetes, chronic respiratory disease, cardiovascular 
disease, chronic kidney disease, malignancy, and immuno-
compromise immunity) have been reported as risk factors 
for severely ill patients [38]. In subsequent studies, blood 
tests have been reported to be predictive factors, such as 
CRP, erythrocyte sedimentation rate, granulocyte-lympho-
cyte ratio, KL-6, nutritional status, and elevated D-dimer 
[39–41]. In the present DL model, most of these factors were 
considered as clinical information inputs. As a method for 
evaluating the importance of the inputs to the DL estimation 
results, Grad-Cam for image input [42] and local interpret-
able model-agnostic (LIME) for table data [43] have been 
used in COVID-19. The analytic method for clarifying the 
contribution of methods that combine CT images and clini-
cal information, such as the proposed DL model, has not 
been clarified. Therefore, we evaluated the importance of 
each item by the proposed formula using learned param-
eters. Dyspnea for clinical symptoms and LDH for blood 
tests were shown to strongly influence on the presence of 
oxygen supplementation. The high level of serum lactate 
dehydrogenase (LDH) and the presence of dyspnea have 
been reported to contribute to adverse outcomes in criti-
cally ill COVID-19 patients [44–46]. These two items reflect 
the severity and progression of SARS-CoV-2 pneumonia. 
The results of contributors by the proposed DL model were 
consistent with previous clinical reports and could provide 
a clear rationale for a DL model.

In this study, the prediction accuracy was reasonable 
at two external sites other than the first site where the DL 
model was constructed. The original facility and two different 
external facilities differed in location, local population, medi-
cal resources, and hospital functions. Specifically, in the first 
external validation, the integrated model improved predictive 
performance over the image-only model, and in the second 
external validation, the integrated model improved predictive 

performance over the clinical information-only model. We 
demonstrated that models based on either clinical information 
or images may have unstable accuracy due to the nature of the 
data, and suggested that integrating the two different types of 
data results in a more stable performance. We showed that a 
DL prediction model based on patient background, blood test 
findings, and radiologic features from one facility could be 
applied to other regional hospitals and outpatient clinics. To 
further improve the overall performance and consistency of the 
model, it is necessary to apply fine tuning with a small amount 
of data at each site. Recently, Menéndez et al. [47] created a 
nomogram for the severity score based on multi-center data 
from one surge, and showed that the results adapted to the fol-
lowing surges were acceptable. In the near future, our results 
will need to be further validated.

Numerous prognostic analyses using the DL model have 
been reported, especially in patients with malignant diseases 
[48], and many reports in COVID-19 also state that the DL 
model has improved the diagnostic performance of clinicians 
[14, 49]. The DL model proposed herein, which integrated 
clinical information with CT images, might be useful for the 
early prediction of disease severity in the next wave and for 
prediction of oxygen supplementation in other chronic res-
piratory diseases in the post-pandemic era, especially if the 
results can be incorporated into online entries in an examina-
tion room and electronic medical records.

This study had several limitations. First, this study was 
conducted as a retrospective study. Our data were obtained 
from a relatively small number of patients compared to gen-
eral image recognition studies. Second, the internal valida-
tion showed an increase in prediction accuracy with models 
integrating clinical information and images. However, two 
external validations showed that the integrated model may 
not have sufficient generalization performance, with each 
integrated model showing only usefulness for one of the 
models. These results suggest that the integrated model 
may not be sufficiently robust to data features from different 
facilities. Further improvements in robustness and predic-
tion accuracy are needed in the future, such as by increas-
ing the number of data from other facilities in the training 
dataset, to improve generalization performance. Third, the 
duration of the study does not allow for detailed identifica-
tion of the variant strain, although the type of variant strain 
can be estimated. In addition, patient vaccination status was 
not evaluated. Fourth, in the current retrospective study, 
it is possible that the decision to administer oxygen or not 
was based on careful judgement by the physician in charge 
especially when a patient with a chronic respiratory disease 
was asymptomatic or had a possible  CO2 narcosis. Prospec-
tive studies with uniform criteria will be needed in the near 
future. Fifth, a longitudinal data set, including treatment for 
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COVID-19, was not analyzed. We are conducting a corollary 
study to validate our model using longitudinal data, includ-
ing hospitalized treatments. These preliminary results need 
to be confirmed in a larger multi-center longitudinal cohort.

Conclusion

The model's prediction accuracy in combining clinical 
information and CT images for oxygen supplementation 
was high. Deep learning-based severity prediction might be 
helpful in clinical practice in patients with COVID-19.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11604- 023- 01466-3.
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