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Abstract
Background  In this study, we used computed tomography (CT)-based radiomics signatures to predict the mutation status 
of KRAS in patients with colorectal cancer (CRC) and to identify the phase of radiomics signature with the most robust and 
high performance from triphasic enhanced CT.
Methods  This study involved 447 patients who underwent KRAS mutation testing and preoperative triphasic enhanced 
CT. They were categorized into training (n = 313) and validation cohorts (n = 134) in a 7:3 ratio. Radiomics features were 
extracted using triphasic enhanced CT imaging. The Boruta algorithm was used to retain the features closely associated with 
KRAS mutations. The Random Forest (RF) algorithm was used to develop radiomics, clinical, and combined clinical–radi-
omics models for KRAS mutations. The receiver operating characteristic curve, calibration curve, and decision curve were 
used to evaluate the predictive performance and clinical usefulness of each model.
Results  Age, CEA level, and clinical T stage were independent predictors of KRAS mutation status. After rigorous feature 
screening, four arterial phase (AP), three venous phase (VP), and seven delayed phase (DP) radiomics features were retained 
as the final signatures for predicting KRAS mutations. The DP models showed superior predictive performance compared 
to AP or VP models. The clinical–radiomics fusion model showed excellent performance, with an AUC, sensitivity, and 
specificity of 0.772, 0.792, and 0.646 in the training cohort, and 0.755, 0.724, and 0.684 in the validation cohort, respectively. 
The decision curve showed that the clinical–radiomics fusion model had more clinical practicality than the single clinical 
or radiomics model in predicting KRAS mutation status.
Conclusion  The clinical–radiomics fusion model, which combines the clinical and DP radiomics model, has the best predic-
tive performance for predicting the mutation status of KRAS in CRC, and the constructed model has been effectively verified 
by an internal validation cohort.
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Abbreviations
AP	� Arterial phase
CRC​	� Colorectal cancer
DP	� Delayed phase
KRAS	� Kirsten rat sarcoma
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Introduction

Colorectal cancer (CRC) is the second leading cause of 
cancer-related deaths worldwide and causes almost 881,000 
deaths every year [1]. The incidence of colorectal cancer 
is approximately threefold higher in developed countries 
than in developing countries. However, as the developing 
countries become richer, increasing trends are likely to be 
seen [2]. The Kirsten rat sarcoma (KRAS) viral oncogene 
homolog is a G protein, which occurs in 40–50% cases of 
CRCs. Following a mutation in the KRAS gene, the mutant 
protein activates the downstream mitogen-activated protein 
kinase (MAPK) pathway, subsequently leading to uncon-
trolled cell proliferation and malignancy [3]. The National 
Comprehensive Cancer Network (NCCN) clinical practice 
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guidelines have explicitly indicated that patients with CRC 
and KRAS mutations are resistant to anti-EGFR monoclonal 
antibody therapy [4]. Therefore, KRAS mutation testing is 
crucial for individualized and effective treatment of CRC.

Generally, pathologic specimens obtained via invasive 
procedures, such as colonoscopy and surgery, are usually 
required for the identification of KRAS mutation status. 
However, the presence of extensive heterogeneity in CRC 
archival samples represents a major limitation of the his-
tological approach [5]. Additionally, tissue specimens for 
genetic testing cannot be obtained for selected patients with 
metastatic CRC because they cannot undergo surgical treat-
ment [6]. Furthermore, biopsy testing might not be an effec-
tive approach to determine the mutational status of KRAS 
due to poor DNA quality [7]. Therefore, it is necessary to 
develop a non-invasive and easy-to-use method to identify 
KRAS mutation status.

Several studies have demonstrated the use of medical 
imaging technology, such as fluorine-18 fluorodeoxyglucose 
(18F-FDG) positron emission tomography (PET) and mag-
netic resonance imaging, in the prediction of KRAS status [8, 
9]. However, these studies involved small sample sizes and 
lacked validation. Radiomics provide a variety of parameters 
for quantitative analysis, which have been widely used in 
cancer diagnosis, classification, and prediction [10]. A pre-
vious study demonstrated a significant correlation between 
a CT-based radiomics signature and KRAS/NRAS/BRAF 
mutations in patients with CRC [11]. However, this study 
involved a small sample size and was only performed in the 
venous phase (VP). Moreover, the superiority of VP com-
pared to the arterial phase (AP) or delay phase (DP) in the 
prediction of KRAS mutation status in patients with CRC 
remains to be confirmed. The aim of this study was to inves-
tigate whether a CT-based radiomics signature could identify 
KRAS mutation status in patients with CRC and whether the 
VP is superior to arterial and delay phases in the prediction 
of KRAS mutation status in patients with CRC.

Materials and methods

Patients

Ethical approval has been obtained by this retrospective 
study, and the informed consent requirement was waived. 
For the primary cohort of this study, we analyzed the insti-
tutional database in Lanzhou University Second Hospital 
between March 2014 and June 2020 to identify eligible 
patients with confirmed cases of CRC who underwent cura-
tive resection. A total of 447 patients met the inclusion 
criteria in our study, which were set based on the follow-
ing factors: (1) pathologically identified cases of primary 
CRC adenocarcinoma; (2) patients who underwent KRAS 

mutation status testing prior to the treatment; and (3) pre-
treatment abdominal triphasic enhanced CT with a recon-
struction slice thickness of 1.25 mm. The exclusion crite-
ria were set based on the following factors: (1) abdominal 
triphasic enhanced CT was not performed before surgery 
or the interval between abdominal triphasic enhanced CT 
and surgery was > 2 weeks; (2) patients with CRC who have 
received any anticancer treatment prior to the collection of 
pathological tissue samples; (3) insufficient CT quality for 
qualitative and quantitative analyses; (4) incomplete clinical 
information; and (5) occurrence of intussusception in the 
area where the tumor was located. Figure 1 shows a flow dia-
gram of the recruitment pathway. Patients were categorized 
into training and validation cohorts in the ratio 7:3.

Clinicopathological characteristics and semantic 
features

Baseline clinicopathological characteristics data that 
were collected from medical records included age, sex, 
tumor location, KRAS mutation status, CEA level (thresh-
old value ≥ 5 ng/mL, < 5 ng/mL), CA125 level (threshold 
value ≥ 35 U/mL, < 35 U/mL), and CA19-9 level (threshold 
value ≥ 37 U/mL, < 37 U/mL). Two experienced gastrointes-
tinal radiologists (Y T C and J Z) analyzed the CT images 
(including tumor location, maximum diameter, clinical 
tumor (cT) stage, and clinical node (cN) stage). Both radiol-
ogists were blinded to the patient’s clinicopathological data. 
To minimize bias, qualitative data were obtained three times 
and the average was calculated; qualitative data were inde-
pendently evaluated and resolved through consultation when 
opinions were inconsistent. The maximum tumor thickness 

Fig. 1   Flow diagram of the recruitment pathway
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was defined as the maximum diameter perpendicular to the 
long axis of the cross-sectional image. The cT and cN stages 
were identified according to the eighth edition of the Ameri-
can Joint Committee on Cancer Staging System [12].

KRAS mutation status evaluation

Formalin-fixed tumor tissue samples were obtained follow-
ing CRC surgeries and confirmed that the specimens used to 
extract DNA are clearly infiltrated by the tumor. KRAS muta-
tion status (exons 2, 3, and 4) was detected via polymerase 
chain reaction (PCR).

CT image acquisition and segmentation

Abdominal triphasic enhanced CT scans were performed on 
a Discovery CT 750 HD scanner (GE Healthcare, Waukesha, 
WI) and an iCT 256 scanner (Philips, Amsterdam, Nether-
lands). The scanning parameters are listed in Supplementary 
Table S1. Enhanced CT scanning was performed using a 
high-pressure dual-cylinder syringe to inject intravenous 
iohexol (1 mL/kg) through the median cubital vein with an 
injection rate of 3.5–4.5 mL/second. Following the injection 
of the contrast medium, AP, VP, and DP were scanned at 
25–30 s, 60–70 s, and 120–150 s, respectively.

The original images of AP, VP, and DP were stored in 
the corresponding folders in DICOM format. Two gastro-
intestinal radiologists (reader 1: Y T C and reader 2: J Z) 
performed three-dimensional (3D) radiomics segmentation 
on AP, VP, and DP images using ITK-SNAP software (ver-
sion 3.6.0; www.​itksn​ap.​org). Reader 1 segmented 247 cases 
and reader 2 segmented the other 200 cases.

For 3D radiomics segmentation, the ROI was manu-
ally delineated on each slice of the tumor. Air and feces 
in the intestinal tract and pericolonic fat were carefully 
excluded from the contours (Fig. 2). Finally, each patient 
generated three ROIs (AP ROI, VP ROI, and DP ROI). To 
evaluate the inter-observer reproducibility and robustness 
of the feature extraction, reader 1 and reader 2 randomly 
selected 30 patients and performed manual segmentation. 
We estimated the reproducibility of the feature extraction 
using intra-/inter-class correlation coefficients (ICCs); 
ICC values greater than 0.80 indicate good reproducibil-
ity [13]. Additionally, 30 patients were randomly selected 
from each CT scanner to build the CT scanners set for 
calculating the ICCs.

Feature extraction

Radiomics features were extracted and selected using 
PyRadiomics software [14]. Seven classes of radiomics 
features (first-order histogram, 3D morphologic, gray level 
co-existence matrix (GLCM), gray level range-matrix 
(GLRM), gray level size zone matrix (GLSZM), neigh-
boring grey tone difference matrix (NGTDM), and grey 
level dependence matrix (GLDM) features) were extracted 
from original and filtered images (wavelet and Laplacian 
of Gaussian). Finally, 1037 3D radiomics features were 
extracted from each phase of the triphasic enhanced CT. 
The specific definitions and descriptions of the features are 
demonstrated in the Supplementary Materials.

Fig. 2   Workflow of KRAS prediction building and analysis. The 
tumors were segmented on arterial phase (A, B), delayed phase (C, 
D) and venous phase (E, F) CT images to form volumes of interest 
(VOIs). One thousand and thirty-seven quantitative radiomics fea-
tures were extracted from each patient. The least absolute shrink-
age and selection operator (LASSO) was used to select the features. 

Multivariate logistic regression was used to build radiomics, clinical, 
and clinicoradiomics combined models for KRAS prediction. Finally, 
the radiomics signature and clinical factors were incorporated into a 
nomogram for individual evaluation. Receiver operating characteris-
tic curves were used to evaluate the clinical usefulness of the nomo-
gram

http://www.itksnap.org


1239Japanese Journal of Radiology (2023) 41:1236–1246	

1 3

Feature selection and radiomics prediction model 
building

After radiomics features extraction, all missing data in 
the training cohort were replaced by the median value and 
z-score normalization was performed on each feature; the 
same preprocessing procedure was applied to the valida-
tion cohort. After preprocessing of the features, the most 
important features were selected to predict KRAS mutations 
using a three-step procedure. First, univariate analysis was 
performed for feature selection to retain the feature with 
P < 0.05 to enter the following process. Second, the Boruta 
method [15] was used to retain the features that closely asso-
ciated with KRAS mutations. Finally, multivariable stepwise 
regression further eliminated irrelevant features and retained 
the most informative features. A ten times fivefold cross-
validation was applied to avoid overfitting and identify the 
model with the best performance.

Three radiomics models (AP, VP, and DP model) were 
established based on the above radiomics signatures in 
triphasic enhanced CT phase images. For example, the VP 
model was built based on VP features in 3D segmentation 
patterns (three features). Further, the 3D-combined model 
was built based on AP, VP, and DP fusion features in 3D 
segmentation patterns (11 features).

Clinical and combined model construction

For clinical and imaging characteristics, the Chi-squared test 
or Fisher’s exact test were used to compare the differences 
in sex, tumor location, CEA, CA125, CA19-9, cT stage, and 
cN stage, whereas the Student’s t test or Mann–Whitney U 
test was used to compare the differences in age and maxi-
mum diameter between mutated KRAS and wild-type KRAS 
groups in the training cohorts. We performed multivariable 
analyses to identify the most important features. A clinical 
model was established based on the inclusion of selected 
features.

A clinical–radiomics fusion model was developed based 
on correlated clinical risk factors, strongly correlated imag-
ing characteristics, and radiomics features to verify whether 
the combination of radiomics signatures and clinical factors 
could improve performance in the prediction of KRAS muta-
tions. Two steps were followed to build the fusion model in 
this study. First, AP, VP, and DP models were compared to 
determine the enhancement phase with the best KRAS muta-
tion prediction performance. Second, the Random Forest 
(RF) algorithm was used to combine clinical factors, imag-
ing characteristics, and the radiomics features of the best 
predictive performance phase to construct a clinical–radiom-
ics fusion model in the training cohort, and the discrimina-
tion ability of the fusion model was evaluated based on the 
AUC value in the validation cohort.

Statistical analysis

All statistical analyses were conducted using the R statistical 
software package (version 3.6.3; http://​www.​Rproj​ect.​org). 
The Student’s t test, Mann–Whitney U test, and Chi-squared 
test or Fisher’s exact test were used to compare continu-
ous and categorical variables, as appropriate. A two-sided 
P value < 0.05 was considered statistically significant. The 
ICCs were used to calculate the consistency of measure-
ments between the two radiologists and the different CT 
scanners. ROC analysis was used to evaluate the predic-
tive accuracy of the different models. The AUC value, 95% 
confidence interval (CI), accuracy, sensitivity, specificity, 
positive predictive value (PPV), and negative predictive 
value (NPV) were also calculated. A calibration curve was 
constructed to assess the goodness-of-fit of the models. To 
verify the clinical usefulness of the models, we quantified 
the net benefit at different threshold probabilities in the data-
set using DCA curves.

Results

Clinical characteristics

This study involved a total of 447 patients with CRC in the 
final analysis, including 263 men (58.8%) and 184 women 
(41.2%), with an average age of 58.93 ± 12.85 years. Among 
the 447 patients, 207 had mutated KRAS and 240 had wild-
type KRAS. We used stratified sampling to categorize the 
study cohort into training (n = 313) and validation (n = 134) 
cohorts in a 7:3 ratio. The training and validation cohorts 
were used for model building and internal validation, respec-
tively. Patient and tumor characteristics in the training cohort 
are listed in Table 1.

Predictive performance of the clinical model

In the training cohort, the clinical characteristics age, CEA, 
CA19-9, and cT stage were found to be significantly differ-
ent statistically (P < 0.05), and the other characteristics not 
significantly different (P > 0.05) between mutated KRAS and 
wild-type KRAS groups (Table 1). After multivariate analy-
ses, clinical characteristics including age, CEA, and cT stage 
were selected as independent predictors of KRAS mutation 
and enrolled into clinical model. The clinical model showed 
lower performance in predicting KRAS mutation both in the 
training cohort and the validation cohort, with the AUC 
being 0.654 (95% CI 0.593–0.714) in the training cohort 
and 0.575 (95% CI 0.478–0.672) in the validation cohort 
(Table 2). The accuracy, sensitivity, and specificity were 
0.617, 0.664, and 0.573 (training cohort) and 0.552, 0.552, 
and 0.553 (validation cohort), respectively.

http://www.Rproject.org
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Radiomics signature building and discrimination 
performance assessment

The ICCs were calculated to evaluate the agreement of 
features extracted by two radiologists and different CT 
scanners; all values > 0.80 indicate good agreement. A 
total of 1037 3D radiomics features were extracted from 
each patient's AP, VP, and DP images. Finally, four, three, 
and seven radiomics features were selected as the final sig-
natures. The feature names and distributions are listed in 
Table 3. Following stepwise regression analysis, three fea-
tures were removed after combining the AP, VP, and DP 
radiomics features. Four models were built based on the 
above radiomics signatures for preoperatively predicting 
KRAS mutations. The AUC, accuracy, sensitivity, speci-
ficity, PPV, and NPV are listed in Table 2. The DP model 

had the most optimal predictive performance compared 
to the AP or VP model in both the training and valida-
tion cohorts (Fig. 3A, B, Table 2). In the training cohort, 
the predictive AUC of KRAS mutations in AP, VP, and 
DP models were 0.711, 0.692, and 0.752, respectively. In 
the validation cohort, the AUC of the three models were 
0.723, 0.673, and 0.746, respectively. The radiomics 
model combined with the triphasic enhanced CT phases 
showed moderate KRAS mutation prediction performance, 
with an AUC, accuracy, sensitivity, specificity, PPV, and 
NPV of 0.754, 0.700, 0.738, 0.665, 0.667, and 0.736 in the 
training cohort, respectively, whereas the AUC, accuracy, 
sensitivity, specificity, PPV, and NPV in the validation 
cohort were 0.775, 0.701, 0.707, 0.697, 0.641, and 0.757, 
respectively (Fig. 3A, B, Table 2).

Table 1   Demographic and 
clinical characteristics of 
and CT findings for CRC 
(mean ± SD or no. (%)

WT wild type, MT mutated type
a Continuous variables were expressed as mean ± standard deviation;  classification variables were repre-
sented by no. (%)
b Student’s t test or Mann–Whitney U test was used to compare continuous variables; Chi-squared test or 
Fisher’s exact test was used to compare categorical variables

Characteristicsa Training cohort (n = 313)

KRAS WT (n = 164) KRAS MT (n = 149) P valueb

Age (years) 57.58 ± 12.81 60.50 ± 12.75 0.023
Gender
 Female 63 (38.4%) 66 (44.3%) 0.291
 Male 101 (61.6%) 83 (55.7%)

Tumor location
 Left 115 (70.1%) 100 (67.1%) 0.567
 Right 49 (29.9%) 49 (32.9%)

CEA level
 Normal 101 (61.6%) 72 (48.3%) 0.018
 Abnormal 63 (38.4%) 77 (51.7%)

CA125 level
 Normal 150 (91.5%) 135 (90.6%) 0.790
 Abnormal 14 (8.5%) 14 (9.4%)

CA19-9 level
 Normal 120 (73.2%) 90 (60.4%) 0.016
 Abnormal 44 (26.8%) 59 (39.6%)

cT stage
 T1 2 (1.2%) 9 (6.0%) 0.023
 T2 21 (12.8%) 29 (19.5%)
 T3 107 (65.2%) 90 (60.4%)
 T4 34 (20.7%) 21 (14.1%)

cN stage
 N0 100 (61.0%) 81 (54.4%) 0.281
 N1 37 (22.6%) 33 (22.1%)
 N2 27 (16.5%) 35 (23.5%)

Maximum diameter (mm) 22.42 ± 9.95 21.85 ± 8.88 0.825
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Predictive performance of the combined model

As shown in Table 2 and Fig. 3, we developed a clini-
cal–radiomics model incorporating three clinical factors 
(age, CEA, and cT stage) and seven DP radiomics signa-
tures. The clinical–radiomics model showed excellent pre-
dictive ability for KRAS mutations. The clinical–radiomics 
fusion model showed superior predictive performance for 
KRAS mutations compared to either the clinical model or 
the radiomics model alone; the AUC values of the clini-
cal–radiomics model were 0.772 (95% CI 0.720–0.823) 
in the training cohort and 0.755 (95% CI 0.674–0.836) in 
the validation cohort. The calibration curve of each model 
showed favorable agreement between prediction and obser-
vation in predicting the risk of KRAS mutations (Fig. 4A, B).

The DCA curves for the clinical model, radiomics model, 
and clinical–radiomics model are presented in Fig. 5A, B. 
The clinical–radiomics model achieved more clinical util-
ity in predicting KRAS mutations than the clinical model 
and other radiomics models. The DCA curves of the clini-
cal–radiomics model demonstrated that when the threshold 
probability of a patient or doctor ranged between 20 and 
65%, the use of the clinical–radiomics nomogram adds 
greater benefit for KRAS mutation prediction than the treat-
all-patients scheme or the treat-none scheme in the training 
and validation cohorts.

Discussion

In this study, clinical, radiomics, and clinical–radiomics 
models were developed for the preoperative prediction of 
KRAS mutations. We verified our hypothesis that the DP 
model had a higher predictive performance than the AP 
or VP models. Additionally, the clinical–radiomics model 
showed a higher predictive performance than the clinical or 
radiomics models alone. The calibration and decision curves 
of the clinical–radiomics model showed excellent model sta-
bility and actual benefit.

KRAS mutations can lead to continuous activation of the 
EGF/RAS/RAF/ERK signaling pathway without the regu-
lation of EGFR, gradually leading to increased cell prolif-
eration and decreased apoptosis [16–18]. Colorectal cancer 
with KRAS mutations is a negative marker for anti-EGFR 
targeted drugs [19]. Numerous studies have used 18F-FDG 
PET/CT to investigate the association between KRAS muta-
tions and 18F-FDG uptake and demonstrated that cells with 
KRAS mutations had a higher 18F-FDG uptake than those 
with wild-type KRAS [20, 21]. However, there was no corre-
lation observed between them according to a study by Riklis 
et al. [22]. The major clinical use of PET/CT in CRC is to 
detect potentially curable metastases. Yang et al. [11] pro-
posed a CT-based radiomics model to identify KRAS/NRAS/Ta
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BRAF mutations in CRC and found a relatively high predic-
tive performance. However, this study defined the positive 
group based on mutations in any of KRAS/NARS/BRAF, 
which would complicate the clinical application.

In the present study, the clinical model constructed by 
clinicopathological factors has the ability to identify KRAS 
gene mutations. However, the diagnostic value of the clinical 
model was quite low. When the clinicopathological factors 

and DP radiomics features were combined as a clinical–radi-
omics model, the predictive AUC value of the clinical–radi-
omics model reached 0.772 in the training cohort and 0.755 
in the validation cohort. Thus, the radiomics features can 
provide additional benefits in predicting KRAS mutations.

During the image preprocessing stage, the LoG and 
wavelet filters were applied to process the original image. 
The LoG filter can smoothen the image and improve the 

Table 3   The final signatures selected from 3D radiomics features

Arterial phase
(4)

Venous phase
(3)

Delayed phase
(7)

Radiomics
(11)

A_original_shape_Elongation V_original_shape_Maximum2D-
DiameterSlice

D_original_shape_Elongation A_original_shape_Elongation

A_wavelet.HLL_firstorder_Skew-
ness

V_original_shape_Sphericity D_original_shape_Sphericity A_wavelet.HHL_firstorder_Skew-
ness

A_wavelet.HHH_glszm_GrayLev-
elNonUniformityNormalized

V_wavelet.HLL_ firstorder_
Median

D_wavelet.HLL_glcm_Idn A_wavelet.HHH_glszm_GrayLev-
elNonUniformityNormalized

A_wavelet.LLL_glcm_MCC D_wavelet.LLL_glcm_Idn A_wavelet.LLL_glcm_MCC
D_original_shape_Maximum3D-

Diameter
V_original_shape_Maximum2D-

DiameterSlice
D_original_shape_SurfaceArea D_original_shape_Elongation
D_wavelet.HLL_gldm_Small-

DendenceLowGrayLevelEm-
phasis

D_original_shape_Maximum3D-
Diameter

D_original_shape_Sphericity
D_wavelet.HLL_glcm_Idn
D_wavelet.HLL_gldm_Small-

DendenceLowGrayLevelEm-
phasis

D_wavelet.LLL_glcm_Idn

Fig. 3   ROC curves of the different models in training (A) and vali-
dation cohorts (B). AUC​ area under the curve, A radiomics model 
of arterial phase, D radiomics model of delayed phase, V radiomics 

model of venous phase, Radiomics radiomics model of fusion of arte-
rial phase, delayed phase and venous phase features, COMB fusion of 
clinical risk factors and radiomics features of delayed phase
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efficiency of capturing phenotypic features related to tumor 
heterogeneity [23]. The wavelet filter could disassemble the 
frequency signal of the image to extract edges and substan-
tial features of the tumor more effectively. This study finally 
screened out 25 radiomics features as the radiomics signa-
tures of the AP, VP, DP, and triphasic enhanced combined 
phase. The features with wavelet filtering accounted for 52% 
(13/25) of the total features. This shows that the wavelet 
filter is important for extracting features related to KRAS 
mutation status, whereas the features with LoG filters are 
not used as radiomics signatures for predicting KRAS muta-
tions, indicating that the features extracted from the LoG 
filter images were weakly correlated with KRAS mutations.

Using multivariable regression analysis combined with 
the radiomics signatures of the triphasic enhanced phases, 
11 radiomics features were retained as key features for 

identifying KRAS mutation status (Table  3), including 
5 texture features: A_wavelet.HHH_glszm_GrayLevel-
NonUniformityNormalized, A_wavelet.LLL_glcm_MCC, 
D_wavelet.HLL_glcm_Idn, D_wavelet.HLL_gldm_Small-
DendenceLowGrayLevelEmphasis, and D_wavelet.LLL_
glcm_Idn. Texture features are microscopic tumor descrip-
tions, which reflects the interaction between adjacent pixels 
as well as tumor heterogeneity [24]. These features are not 
easily identified by the human visual system and cannot 
be interpreted as having a clear meaning. Previous studies 
have shown that texture features may be associated with the 
tumor microenvironment reflecting tumor heterogeneity and 
the presence of hypoxia or angiogenesis [25–27]. A previ-
ous study found that KRAS mutations were associated with 
higher texture characteristic values (Gskewness and SDs), 
indicating that mutated KRAS had more tumor heterogeneity 

Fig. 4   Calibration curves of the different models in training (A) and 
validation cohorts (B). A radiomics model of arterial phase, D radi-
omics model of delayed phase, V radiomics model of venous phase, 

Radiomics radiomics model of fusion of arterial phase, delayed phase 
and venous phase features, COMB fusion of clinical risk factors and 
radiomics features of delayed phase

Fig. 5   Decision curve analysis of different models in training (A) and 
validation cohorts (B). A radiomics model of arterial phase, D radi-
omics model of delayed phase, V radiomics model of venous phase, 

Radiomics radiomics model of fusion of arterial phase, delayed phase 
and venous phase features, COMB fusion of clinical risk factors and 
radiomics features of delayed phase
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than wild-type KRAS [28]. The radiomics score values of 
texture features (A_wavelet. LLL_glcm_MCC and D_wave-
let. HLL_gldm_SmallDendenceLowGrayLevelEmphasis) in 
the KRAS mutation group were higher than that in the wild-
type group, which suggests more tumor heterogeneity in the 
tumor tissue in the ROI range. The results of this study in 
combination with that of other studies shows that texture 
features can be used as non-invasive imaging markers for 
predicting KRAS mutations status.

In addition, five morphological features (A_original_
shape_Elongation, V_original_shape_Maximum2DDiam-
eterSlice, D_original_shape_Elongation, D_original_shape_
Maximum3DDiameter, and D_original_shape_Sphericity) 
were closely correlated with KRAS mutations, suggesting 
that the morphological characteristics of mutant KRAS and 
wild-type KRAS tumors were significantly different, which is 
consistent with previous literatures. A previous study found 
that morphological features (elongation and flatness) were 
closely associated with KRAS mutations in rectal cancer 
[23]. Another study explored the correlation between KRAS 
mutations in rectal cancer and tumor morphology in mag-
netic resonance images, and found that the average axial/
longitudinal ratio of KRAS mutations in rectal cancer was 
greater than that of KRAS wild-type tumors (0.46 ± 0.29 vs. 
0.36 ± 0.20, P = 0.009) [9].

Among the triphasic enhanced phase models of KRAS 
mutation prediction in the training cohort, the DP model 
showed the highest performance, with an AUC value of 
0.752, followed by 0.711 in the AP model and 0.692 in 
the VP model. To our knowledge, this is the first time that 
triphasic enhanced CT radiomics has been used in KRAS 
mutation prediction. Although the VP is the most commonly 
used phase in gastrointestinal radiomics research, contrary 
to the results observed in this study, the enhancement phase 
with the best predictive performance was the DP rather than 
the VP phase. The high predictive performance of the DP 
model might be due to the possibility of high content and 
uniform distribution of the contrast agent in the DP lesions 
or because the ROI range of tumors in the DP images is 
larger than that in the AP and VP images [29].

In terms of clinical characteristics, age, CEA, and 
CA19-9 were independent predictors for KRAS mutations. 
In this study, patients with KRAS mutations were signifi-
cantly older than those with KRAS wild-type P < 0.05, which 
is consistent with the findings of a previous study [30]. 
CEA and CA19-9 were significantly higher for the mutated 
KRAS group than for the wild-type KRAS group in our study, 
which is in line with findings from previous studies [31, 32]. 
Both KRAS mutations and elevated serum levels of CEA 
and CA19-9 are associated with more aggressive biologi-
cal behavior in patients with CRC [33–35]. A correlation 
between KRAS mutations and higher CEA and CA19-9 lev-
els suggests that genetic alterations may have independent 

influences on CRC development, thus resulting in increased 
tumor biomarkers [36].

Triphasic enhanced CT is often conducted in CT exami-
nation of gastrointestinal tumors. The AP is used for tumor 
detection, the VP to differentiate the tumor from adjacent 
organs, and the DP to determine the depth of tumor inva-
sion [37]. As for radiation dose, the average DLP value of 
triphasic enhanced scans was 1917.52 ± 152.31 mGy cm, 
which is slightly higher than the diagnostic reference level 
for adults (1490 mGy cm) published by China's National 
Health Industry standard (WS/T 637-2018) [38]. Applica-
tion of new techniques such as multi-model iterative recon-
struction technology could effectively reduce the radiation 
dose in clinical practice [39].

Our study should be interpreted after considering sev-
eral limitations. First, 269 patients were excluded because 
they did not meet the inclusion and exclusion criteria, which 
inevitably produced a selection bias. Second, our study only 
included a single team with an internal validation cohort. 
The reproducibility should be addressed in future multi-
center studies. Third, due to the irregular shape of some 
tumors, the ROI delineation process is difficult and time con-
suming. In future studies, it will be necessary to develop an 
automated or semi-automated tool to achieve effective and 
automatic tumor segmentation. Finally, we used different 
imaging instruments and acquisition parameters to complete 
the CT scanning. The influence of different instruments and 
different parameters on radiomics features is obvious. There-
fore, it is important to standardize scanning protocols in dif-
ferent instruments and different institutions.

Conclusion

In conclusion, triphasic enhanced CT radiomics models 
were constructed to predict KRAS mutation status in colo-
rectal cancer, and the results showed that the AP, VP, and 
DP models could better predict KRAS mutation status in 
the training and validation cohorts. The DP model showed 
a higher predictive performance compared to the AP or VP 
models. Additionally, the clinical–radiomics model, which 
incorporates both clinical risk factors and radiomics fea-
tures of DP images, showed good performance in predict-
ing KRAS mutations. The clinical–radiomics fusion model 
can be used as a potential imaging marker for preoperative 
detection of KRAS mutation status and guide the selection 
of molecular targeted drug therapy for CRC.
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