
Vol:.(1234567890)

Japanese Journal of Radiology (2023) 41:1216–1225
https://doi.org/10.1007/s11604-023-01452-9

1 3

ORIGINAL ARTICLE

Denoising approach with deep learning‑based reconstruction 
for neuromelanin‑sensitive MRI: image quality and diagnostic 
performance

Sonoko Oshima1 · Yasutaka Fushimi1  · Kanae Kawai Miyake2 · Satoshi Nakajima1 · Akihiko Sakata1 · Sachi Okuchi1 · 
Takuya Hinoda1 · Sayo Otani1 · Hitomi Numamoto2 · Koji Fujimoto3 · Atsushi Shima4 · Masahito Nambu5 · 
Nobukatsu Sawamoto6 · Ryosuke Takahashi7 · Kentaro Ueno8 · Tsuneo Saga2 · Yuji Nakamoto1

Received: 10 March 2023 / Accepted: 16 May 2023 / Published online: 31 May 2023 
© The Author(s) 2023

Abstract
Purpose Neuromelanin-sensitive MRI (NM-MRI) has proven useful for diagnosing Parkinson’s disease (PD) by showing 
reduced signals in the substantia nigra (SN) and locus coeruleus (LC), but requires a long scan time. The aim of this study was 
to assess the image quality and diagnostic performance of NM-MRI with a shortened scan time using a denoising approach 
with deep learning-based reconstruction (dDLR).
Materials and methods We enrolled 22 healthy volunteers, 22 non-PD patients and 22 patients with PD who underwent 
NM-MRI, and performed manual ROI-based analysis. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in ten 
healthy volunteers were compared among images with a number of excitations (NEX) of 1 (NEX1), NEX1 images with 
dDLR (NEX1 + dDLR) and 5-NEX images (NEX5). Acquisition times for NEX1 and NEX5 were 3 min 12 s and 15 min 
58 s, respectively. Diagnostic performances using the contrast ratio (CR) of the SN (CR_SN) and LC (CR_LC) and those by 
visual assessment for differentiating PD from non-PD were also compared between NEX1 and NEX1 + dDLR.
Results Image quality analyses revealed that SNRs and CNRs of the SN and LC in NEX1 + dDLR were significantly higher 
than in NEX1, and comparable to those in NEX5. In diagnostic performance analysis, areas under the receiver operating 
characteristic curve (AUC) using CR_SN and CR_LC of NEX1 + dDLR were 0.87 and 0.75, respectively, which had no 
significant difference with those of NEX1. Visual assessment showed improvement of diagnostic performance by applying 
dDLR.
Conclusion Image quality for NEX1 + dDLR was comparable to that of NEX5. dDLR has the potential to reduce scan time 
of NM-MRI without degrading image quality. Both 1-NEX NM-MRI with and without dDLR showed high AUCs for diag-
nosing PD by CR. The results of visual assessment suggest advantages of dDLR. Further tuning of dDLR would be expected 
to provide clinical merits in diagnosing PD.
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Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder 
involving progressive loss of dopaminergic neurons in 
the substantia nigra (SN) and noradrenergic neurons in 
the locus coeruleus (LC), both of which contain pigments 
called neuromelanin [1, 2]. Neuromelanin is a strong che-
lator of heavy metals, particularly iron, and plays impor-
tant roles in protecting against neurotoxicity caused by 
free iron [3, 4]. Symptoms of PD are thought to appear 
after 50–60% of dopamine neurons have degenerated, and 
the presymptomatic phase often spans more than 20 years 
[5, 6].

Given this background, neuromelanin-sensitive MRI 
(NM-MRI) methods have been investigated for the early 
diagnosis of PD [7–19]. Neuromelanin-iron complexes 
have T1-shortening effects, and magnetization transfer 
(MT) effects also contribute to the signal contrast by 
suppressing signals from background brain parenchyma 
[7–15, 17–20]. Previous NM-MRI studies have shown 
decreased signal intensity in the SN of patients with PD 
[7–19]. However, NM-MRI requires a relatively long scan 
time of 7–10 min, because a high resolution with an ade-
quate signal-to noise ratio (SNR) is required due to the 
small sizes of the SN and LC, and NM-MRI is usually 
acquired using a number of excitations (NEX) greater than 
1 [7–10, 12–15, 19]. This long scan time causes difficulty 
in obtaining sufficient image quality from PD patients with 
tremor or involuntary movements. A smaller NEX would 
reduce the scan time, but at the expense of reducing SNR. 
Although short-scan MR techniques have been tried for 
NM-MRI (e.g., NM-MRI using a chemical shift selective 
pulse instead of an MT pulse with scan time of 3 min 20 s 
and lower image resolution), the diagnostic performance 
for PD has not been evaluated. [21]. A few reports have 
described the application of parallel imaging to NM-MRI, 
and none appear to have used compressed sensing [22, 23].

A denoising approach with deep learning-based recon-
struction (dDLR) has been applied for MRI recently 
[24–27]. The dDLR is trained using vast amounts of 
high-quality image data, and makes use of a deep learn-
ing neural network to remove image noise and produce 
clear images in clinical practice. We hypothesized that 
short-scan time NM-MRI of sufficient image quality would 
be achievable by applying dDLR to NM-MRI with a fewer 
NEX. To shorten the scan time as much as possible, we 
used NEX-1 NM-MRI as source images. To the best of our 
knowledge, no previous studies have examined the image 
quality or diagnostic accuracy of NM-MRI with dDLR.

The purposes of this study were thus: (1) to compare 
image quality between NEX-1 NM-MRI without dDLR, 
NEX-1 NM-MRI with dDLR, and a reference standard 

of NEX-5 NM-MRI; and (2) to compare the diagnostic 
capability of NEX-1 NM-MRI with and without dDLR 
for differentiating patients with PD from non-PD patients.

Materials and methods

Study population

This prospective study was approved by the institutional 
ethics committee. Written informed consent was obtained 
from both healthy volunteers and patients prior to enrolment. 
For the image quality study, we prospectively enrolled 22 
healthy volunteers. We recruited relatively young volunteers, 
because we needed them to stay still for about 16 min to 
acquire images from NEX-5 NM-MRI. For the diagnostic 
performance study, we enrolled 22 patients with PD who 
agreed to participate in this study, all of whom fulfilled the 
Movement Disorder Society PD Criteria for the diagnosis 
of PD [28], and 22 age- and sex-matched non-PD patients. 
Underlying diseases in the non-PD patients were brain 
aneurysm (n = 13), old brain infarction or ischemic change 
(n = 6) and cerebral artery stenosis (n = 3). All the lesions 
were located outside of the brainstem and no apparent brain-
stem abnormalities associated with old brain infarction such 
as Wallerian degeneration were observed. All participants 
underwent NM-MRI at our hospital between September 
2019 and March 2021. No participants were excluded due 

Fig. 1  Flowchart of study participants and image analysis. PD Par-
kinson’s disease, NEX number of excitations, dDLR denoising 
approach with deep learning-based reconstruction
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to insufficient image quality or large brainstem lesions. 
Figure 1 summarizes the participant inclusion process and 
image analysis.

Image acquisition

We acquired images from NM-MRI using a 2-dimensional 
gradient echo (2D-GRE) pulse sequence with MT contrast 
(MTC) preparation on a 3-T scanner (Vantage Centurian; 
Canon Medical Systems, Otawara, Japan) with a 32-channel 
head coil. 1-NEX NM-MRI was acquired from all healthy 
volunteers, and 5-NEX NM-MRI was acquired from 10 
out of 22 volunteers (Fig. 1). For patients with PD, only 
1-NEX NM-MRI was performed in this study. Brain MRI 
for screening had been finished on another day, and no spe-
cific abnormalities were found. For non-PD patients, 1-NEX 
NM-MRI and the other clinical brain scans were performed. 
Scan parameters were as follows: repetition time /echo time, 
460/2.7 ms; 15 slices; slice thickness, 3 mm with no gap; 
field of view, 230 × 230 mm; matrix, 416 × 416; in-plane 
resolution, 0.55 × 0.55 mm; flip angle, 40°; bandwidth, 
244.1 Hz/pixel; MTC pulses, 300°; off-resonance, 1.2 kHz; 
and acquisition time, 3 min 12 s for the 1-NEX scan and 
15 min 58 s for the 5-NEX scan. No parallel imaging was 
applied.

Post‑imaging procedure

Denoising was applied to 1-NEX images (NEX1) using a 
commercially available deep learning-based reconstruction 
algorithm (Advanced intelligent Clear-IQ Engine [AiCE]; 
Canon Medical Systems) to create NEX1 + dDLR. AiCE 
is a whole reconstruction pipeline from raw complex data 
to final image generation. The complex images are pro-
cessed for denoising in this pipeline which incorporates 

convolutional neural network. Its details were described in 
the previous literature [24]. Online Resource 1 displays its 
architecture. CNN architecture consists of multiple layers: 
the feature extraction, feature conversion and image genera-
tion layers. In the feature extraction layer, the input noisy 
image is convolved by the 7 × 7 discrete cosine transforma-
tion to derive 49 components, which is divided into 48 high-
frequency components and a zero-frequency component. A 
soft-shrinkage activation function is applied to 48 high-fre-
quency components. Next, the 48 high-frequency compo-
nents undergo repeated 3 × 3 convolution and soft shrink-
age in the feature conversion layers. Finally, in the image 
generation layer, the denoised output image is generated by 
the 7 × 7 inverse discrete cosine transform convolution of 
both the output data from the feature conversion layers and 
the bypassed zero-frequency component. The soft-shrinkage 
activation function enables adaptive noise removal using a 
threshold calculated from the noise level and a coefficient. 
Thus, there are two parameters to be trained: the 3 × 3 con-
volution kernels in the feature conversion layer and the coef-
ficient of the soft-shrinkage activation function in the feature 
extraction and feature conversion layers. These parameters 
have been determined to minimize the differences between 
the training data and the output denoised image through the 
training process of AiCE.

Image analysis

All images were analyzed using ImageJ software (National 
Institutes of Health) as the consensus decisions of 2 board-
certified radiologists (S.O. and Y.F. with 9 and 22 years of 
experience in neuroradiology, respectively). Regions of 
interest (ROIs) of the SN, decussation of superior cerebel-
lar peduncle (SCP), LC and pons were manually placed on 
the slice where the SN or LC was most clearly delineated 

Table 1  Characteristics of volunteers and patients

*Mean age ± standard deviation (years), with range shown in parentheses
**Healthy volunteers vs patients with PD
***Non-PD patients vs patients with PD
PD Parkinson’s disease, HY Hoehn and Yahr, UPDRS Unified Parkinson’s disease rating scale

Healthy volunteers Non-PD patients Patients with PD p value** p 
value***

Sex (Female/Male) 17/5 14/8 14/8 0.32 1
Age* [year]
  Total 36.1 ± 7.8 (26–54) 68.0 ± 11.9 (49–82) 66.7 ± 9.6 (53–86)  < 0.001 0.94
  Female 36.5 ± 8.5 (28–54) 65.3 ± 9.1 (49–82) 68.0 ± 9.8 (53–86)  < 0.001 0.98
  Male 34.0 ± 5.2 (26–40) 67.9 ± 9.1 (54–81) 64.5 ± 8.6 (55–83)  < 0.001 0.88
HY stage, medication on/off – – 2 (1–3)/3 (2–5) – –
UPDRS part III, medication on/off – – 24.5 (5–45)/44 (15–67) – –
Disease duration [year] – – 8 (1–30) – –
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(Online Resource 2). As for the ROIs of the SN, three circles 
were placed for right and left, respectively, and the signal 
intensities of the six ROIs were averaged [29]. The SCP and 
pons were used as background areas for the SN and LC, 
respectively. The shape and size of ROIs were the same in 
all images.

1. Image quality
  Image quality was assessed quantitatively and qualita-

tively using images from 10 healthy volunteers and from 
22 patients with PD.

  For quantitative assessment, we calculated SNR of the 
SCP (SNR_SCP), SNR of the pons (SNR_pons), con-
trast-to-noise ratio (CNR) between SN and background 
SCP (CNR_SN) and CNR between LC and background 
pons (CNR_LC). We measured signal intensity (SI) in 
each ROI  (SISCP,  SIpons,  SISN, and  SILC). SNR and CNR 
were defined as follows [30]:

  SNR_SCP = mean  SISCP / SD of  SISCP,
  SNR_pons = mean  SIpons / SD of  SIpons,
  CNR_SN = (mean  SISN − mean  SISCP) / SD of  SISCP 

and
  CNR_LC = (mean  SILC  −  mean  SIpons) / SD of 

 SIpons, where SD is the standard deviation.
  For qualitative assessment of image quality, three 

neuroradiologists (S.N., S.O. and S.O. with 15, 13 and 
10 years of experience in neuroradiology, respectively) 
visually evaluated overall image quality, artifacts, struc-
tural conspicuity and noise of the images at the SN and 
LC level by consensus using a 5-point Likert scale. The 
criteria for image assessment on the 5-point Likert scale 
are presented in Online Resource 3.

2. Diagnostic performance by contrast ratio

  To assess diagnostic performance, we calculated con-
trast ratios (CRs) of the SN and LC using images from 
22 non-PD patients, 22 patients with PD and 22 healthy 
volunteers. CRs were defined as follows:

  CR_SN = mean  SISN / mean  SISCP and
  CR_LC = mean  SILC / mean  SIpons
3. Diagnostic performance by visual assessment
  Three neuroradiologists (S.N., S.O. and S.O. with 15, 

13 and 10 years of experience in neuroradiology, respec-
tively) visually assessed NEX1 and NEX1 + dDLR 
images at the level of the SN and LC, respectively, to 
differentiate PD from non-PD. Raters selected “PD”, 
“non-PD” and “difficult to diagnose” in accordance 
with the following criteria. As for SN, raters focused 
on whether the lateral part of SN is conspicuous or 
obscure. As for LC, raters focused on whether bilateral 
high intensities suggesting LC are well defined or not. If 
it was difficult to determine, “difficult to diagnose” was 
selected.

Statistical analysis

For quantitative image quality analysis, SNRs and CNRs 
were compared among NEX1, NEX1 + dDLR and 5-NEX 
images without dDLR (NEX5) using analysis of variance 
(ANOVA) with Bonferroni correction for healthy volunteers, 
and among NEX1 and NEX1 + dDLR using paired t-test for 
patients with PD. For qualitative analysis, each qualitative 
index for the three types of images was compared using the 
Wilcoxon signed-rank test.

For diagnostic performance analysis by contrast ratio, we 
evaluated difference in CR_SN and CR_LC between age- 
and sex-matched non-PD and PD groups using Student’s 
t-test. We then performed receiver operating characteristic 
curve analyses for differentiating patients with PD from 
non-PD patients and compared the area under the receiver 
operating characteristic curve (AUC) between NEX1 and 
NEX1 + dDLR images using the DeLong test. In addition, 
differences in CR_SN and CR_LC between healthy and PD 
groups were assessed and receiver operating characteristic 
curve analyses were performed.

For diagnostic performance analysis by visual assess-
ment, accuracy was calculated by dividing the number of 
cases with correct diagnosis by the total number of cases.

MedCalc version 20.009 software (MedCalc Software, 
Ostend Belgium) was used for statistical analyses, with dif-
ferences of p < 0.05 considered significant.

Fig. 2  Images of the SN (arrowheads in the upper row) and LC 
(arrows in the lower row) from NEX1, NEX1 + dDLR and NEX5 for 
a 30-year-old healthy female participant. NEX, number of excitations; 
dDLR, denoising approach with deep learning-based reconstruction
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Results

The characteristics of participants are listed in Table 1. A 
total of 66 participants (age range, 26–86 years; mean ± SD 
age, 56.6 ± 17.0 years; 45 women) were enrolled includ-
ing 22 healthy volunteers (age range, 26–54 years; mean 
age, 36.1 ± 7.8 years; 17 women), 22 patients with PD (age 
range, 58–86 years; mean age, 66.7 ± 9.6 years; 14 women) 
and age- and sex-matched 22 non-PD patients (age range, 
49–82 years; mean age, 67.0 ± 9.1 years; 14 women).

1. Image quality
  Representative images of the SN and LC from a 

30-year-old healthy female volunteer are shown in 
Fig. 2. NEX1 + dDLR and NEX5 images visualize the 
SN and LC more clearly than NEX1 images. Results 
for SNR and CNR of healthy volunteers are presented 
in Fig. 3 and Table 2. P values are shown in Online 
Resource 4. SNR and CNR were significantly higher 
for NEX1 + dDLR than for NEX1 (p < 0.001) at the SN 
and LC. SNR and CNR from NEX1 + dDLR did not 

Fig. 3  Box-and-whisker plots and scatter plots for SNR and CNR 
from NEX1, NEX1 + dDLR and NEX5 images of healthy volunteers. 
SNR and CNR from NEX1 + dDLR were significantly higher than 
those from NEX1 and showed no significant difference from those of 

NEX5. SNR signal-to-noise ratio; CNR contrast-to-noise ratio, NEX 
number of excitations, dDLR denoising approach with deep learning-
based reconstruction
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show any significant difference from those of NEX5. For 
patients with PD, SNR and CNR at the SN and LC were 
significantly higher for NEX1 + dDLR than for NEX1 
(p < 0.001) (Table 2).

  The results of qualitative assessment are shown in 
Online Resource 5. Scores for overall image quality, 
structural conspicuity and noise were significantly bet-
ter for NEX5 among the three types of images (p < 0.01), 
and those for NEX1 + dDLR were significantly better 
than those of NEX1 (p < 0.001) for both the SN and LC. 
No significant differences in scores for artifacts were 
seen among the three images for both the SN and LC.

2. Diagnostic performance by contrast ratio

  Representative images of the SN and LC from a 
73-year-old female non-PD patient and a 54-year-old 
female patient with PD are shown in Fig. 4. The SN and 
LC were visualized less clearly for the patient with PD 
compared to the non-PD patient. CR_SN and CR_LC 
from patients with PD were significantly decreased com-
pared with those from non-PD patients in both NEX1 
(CR_SN, 1.24 ± 0.03 for non-PD and 1.19 ± 0.04 for 
PD [p < 0.001]; CR_LC, 1.27 ± 0.03 for non-PD and 
1.23 ± 0.03 for PD [p < 0.001]) and NEX1 + dDLR 
(CR_SN, 1.23 ± 0.03 for non-PD and 1.18 ± 0.04 for 
PD [p < 0.001]; CR_LC, 1.25 ± 0.03 for non-PD and 
1.22 ± 0.03 for PD [p = 0.003]) (Fig. 5). The diagnostic 
performances of NEX1 and NEX1 + dDLR in differen-
tiating PD from non-PD are presented in Table 3. AUCs 
of NEX1 + dDLR for CR_SN and CR_LC (CR_SN, 0.87 
[95% confidence interval (CI), 0.73–0.95]; CR_LC, 0.75 
[95%CI, 0.59–0.87]) were not significantly different 
from those of NEX1 (CR_SN, 0.87 [95%CI, 0.74–0.95]; 
CR_LC, 0.79 [95%CI, 0.64–0.90]). As for differentiation 
between healthy volunteers and patients with PD, AUCs 
of NEX1 + dDLR were 0.92 for CR_SN and 0.82 for 
CR_LC (Online Resource 6).

3. Diagnostic performance by visual assessment
  The results of diagnosis by visual assessment are 

shown in Table 4. Accuracy of each rater for NEX1 and 
NEX1 + dDLR was 0.45–0.59 and 0.59–0.64 for the SN, 
while 0.32–0.39 and 0.39–0.41 for the LC, respectively.

Discussion

In this study, we applied dDLR to NM-MRI with an NEX 
of 1, which offers a much shorter scan time than conven-
tional NM-MRI, and examined the resulting image qual-
ity and diagnostic performance. Image quality analyses 
showed approximately 1.5-fold improvement in SNR and 
CNR by applying dDLR to NEX1 images. The diagnostic 
performance using CR_SN and CR_LC in NEX1 + dDLR 

Table 2  Results of SNR 
and CNR from NEX1, 
NEX1 + dDLR and NEX5 of 
healthy volunteers and patients 
with PD

*Significantly higher than NEX1 (p < .001)
NEX number of excitations, dDLR denoising approach with deep learning-based reconstruction, SNR_SCP 
signal-to-noise ratio of the decussation of superior cerebellar peduncle, SNR_pons signal-to-noise ratio of 
the pons, CNR_SN contrast-to-noise ratio between the substantia nigra and decussation of superior cerebel-
lar peduncle, CNR_LC contrast-to-noise ratio between the locus coeruleus and pons

Healthy volunteers Patients with PD

NEX1 NEX1 + dDLR NEX5 NEX1 NEX1 + dDLR

SNR_SCP 21.91 ± 3.38 36.29 ± 6.61* 33.42 ± 8.00* 20.47 ± 3.98 34.14 ± 7.78*
SNR_pons 17.07 ± 1.36 26.75 ± 2.84* 27.81 ± 2.62* 16.96 ± 1.31 26.58 ± 2.64*
CNR_SN 5.48 ± 0.83 8.92 ± 1.68* 8.65 ± 1.61* 3.82 ± 1.04 6.14 ± 1.91*
CNR_LC 4.50 ± 0.77 6.50 ± 1.11* 7.56 ± 1.39* 1.99 ± 0.32 2.91 ± 0.45

Fig. 4  Images of the SN (arrowheads in the upper row) and LC 
(arrows in the lower row) from NEX1 + dDLR for a 73-year-old 
female non-PD patient (left column) and a 54-year-old female patient 
with PD (right column). PD Parkinson’s disease



1222 Japanese Journal of Radiology (2023) 41:1216–1225

1 3

Fig. 5  Box-and-whisker plots and scatter plots of contrast ratios for 
the substantia nigra and locus coeruleus in patients with PD and 
non-PD patients from NEX1 and NEX1 + dDLR. Contrast ratios 

of patients with PD were significantly lower than those of non-PD 
patients for both images. PD Parkinson’s disease

Table 3  Diagnostic 
performance of NEX1 and 
NEX1 + dDLR in differentiating 
PD from non-PD

95% confidence intervals are shown in parentheses
NEX number of excitations, dDLR denoising approach with deep learning-based reconstruction, PD Par-
kinson’s disease, AUC   area under the curve, CR_SN contrast ratio of the substantia nigra, CR_LC contrast 
ratio of the locus coeruleus

AUC Optimal cutoff Sensitivity Specificity

CR_SN NEX1 0.87 (0.74–0.95) 1.21 0.86 (0.65–0.97) 0.82 (0.60–0.95)
NEX1 + dDLR 0.87 (0.73–0.95) 1.21 0.86 (0.65–0.97) 0.81 (0.60–0.95)

CR_LC NEX1 0.79 (0.64–0.90) 1.26 0.82 (0.60–0.95) 0.68 (0.45–0.86)
NEX1 + dDLR 0.75 (0.59–0.87) 1.24 0.82 (0.60–0.95) 0.64 (0.41–0.83)
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was comparable to that of NEX1. These results may suggest 
that NEX1 images are sufficient to differentiate between PD 
and non-PD patients and no apparent benefit for diagnostic 
performance by dDLR. However, diagnosis by visual assess-
ment showed slight improvement of diagnostic performance 
by applying dDLR, which suggests the advantages of dDLR 
in diagnostic performance. Further tuning of dDLR would 
be expected to provide clinical merits in diagnosing PD. 
Our study showed a lower diagnostic capability of the LC 
for PD compared with that of the SN, which was consist-
ent with previous studies [9, 31, 32]. The lower diagnostic 
performance of the LC than SN and the lower diagnostic 
performance of NEX1 + dDLR than NEX1 for the LC in 
our results may be because the LC is so small a structure 
that limited resolution of MR imaging can make it difficult 
to quantify the signal intensity accurately. Also, a previous 
study demonstrated that the optimal flip angle for LC imag-
ing is different from that for SN [33]. Optimization of flip 
angle to increase contrast of LC may be required for stable 
measurement of LC and for taking full advantage of dDLR 
for LC images.

Several articles have already applied deep learning meth-
ods to MRI for diagnosing PD, such as for the creation of 
diagnostic biomarkers for PD [34], automatic segmentation 
of the SN on NM-MRI [35–37], and interpretation of nigro-
some 1 on susceptibility map-weighted imaging [38]. How-
ever, to the best of our knowledge, no previous studies have 
applied deep learning-based denoising methods to NM-MRI. 
Our study demonstrated the utility of using dDLR for NM-
MRI to reduce examination times without degrading image 
quality. Acquisition times for NEX5 and NEX1 are 15 min 
58 s and 3 min 12 s, respectively; so, using NEX1 + dDLR 
instead of NEX5 would achieve a time reduction of around 
12 min. This is quite advantageous, particularly for evaluat-
ing patients with PD who have tremors or involuntary move-
ments. Furthermore, there is a possibility that denoising by 
dDLR can be beneficial for diagnosis by visual assessment. 
Considering that there have not been established criteria 
for visual diagnosis of PD by NM-MRI, further studies are 
required in the future.

Several limitations to this study should be considered. 
First, the number of participants was relatively small. Sec-
ond, diagnostic performance using NEX5 images was not 
evaluated. This was because the scan time for NEX5 (15 min 
58 s) was too long and uncomfortable for patients with PD, 
who suffer from tremors or involuntary movements with tol-
erate. Although we did not compare diagnostic performance 
between NEX1 + dDLR and NEX5, NEX1 + dDLR showed 
sufficiently high AUCs (0.87 for CR_SN, 0.75 for CR_LC). 
Third, age- and sex-matched healthy volunteers were not 
enrolled, because we recruited relatively young volunteers 
who could stay still during the scan of about 16 min. Diag-
nostic performance in this study was therefore evaluated Ta
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between patients with PD and age- and sex-matched non-
PD patients. Fourth, we used 2D NM-MRI in this study and 
we did not perform voxel-wise analysis as in previous papers 
[13]. Further investigations should be performed to assess 
the usefulness of dDLR in the application to 3D NM-MRI. 
Fifth, various 2D and 3D image sequences including turbo 
spin echo and GRE have been used for NM-MRI other than 
the 2D-GRE sequence we used. A future comprehensive 
study of NM-MRI using these sequences for healthy vol-
unteers and patients with PD is required to determine the 
most appropriate NM-MRI. Lastly, our study used a vendor-
supplied DLR algorithm to assess its clinical feasibility at 
only one institution. A multicenter study with various MRI 
scanners is therefore required.

In conclusion, 1-NEX NM-MRI with dDLR provided 
comparable image quality to 5-NEX NM-MRI, which rep-
resented the reference standard in this study. Our study 
demonstrated the potential of dDLR to reduce scan time of 
NM-MRI without degrading image quality. The diagnos-
tic performance of 1-NEX NM-MRI using contrast ratio 
of the SN and that of LC was sufficiently good enough 
that dDLR did not further improve diagnostic accuracy 
in this study. However, the results of diagnosis by visual 
assessment suggest advantages of dDLR. Further tuning of 
dDLR would be expected not only to reduce scan time of 
NM-MRI without degrading image quality, but to provide 
clinical merits in diagnosing PD.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11604- 023- 01452-9.
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