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Abstract
Purpose To evaluate the diagnostic performance of deep learning using the Residual Networks 50 (ResNet50) neural net-
work constructed from different segmentations for distinguishing malignant and benign non-mass enhancement (NME) on 
breast magnetic resonance imaging (MRI) and conduct a comparison with radiologists with various levels of experience.
Materials and methods A total of 84 consecutive patients with 86 lesions (51 malignant, 35 benign) presenting NME on 
breast MRI were analyzed. Three radiologists with different levels of experience evaluated all examinations, based on the 
Breast Imaging-Reporting and Data System (BI-RADS) lexicon and categorization. For the deep learning method, one 
expert radiologist performed lesion annotation manually using the early phase of dynamic contrast-enhanced (DCE) MRI. 
Two segmentation methods were applied: a precise segmentation was carefully set to include only the enhancing area, and 
a rough segmentation covered the whole enhancing region, including the intervenient non-enhancing area. ResNet50 was 
implemented using the DCE MRI input. The diagnostic performance of the radiologists’ readings and deep learning were 
then compared using receiver operating curve analysis.
Results The ResNet50 model from precise segmentation achieved diagnostic accuracy equivalent [area under the curve 
(AUC) = 0.91, 95% confidence interval (CI) 0.90, 0.93] to that of a highly experienced radiologist (AUC = 0.89, 95% CI 0.81, 
0.96; p = 0.45). Even the model from rough segmentation showed diagnostic performance equivalent to a board-certified 
radiologist (AUC = 0.80, 95% CI 0.78, 0.82 vs. AUC = 0.79, 95% CI 0.70, 0.89, respectively). Both ResNet50 models from the 
precise and rough segmentation exceeded the diagnostic accuracy of a radiology resident (AUC = 0.64, 95% CI 0.52, 0.76).
Conclusion These findings suggest that the deep learning model from ResNet50 has the potential to ensure accuracy in the 
diagnosis of NME on breast MRI.
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Introduction

Dynamic contrast-enhanced (DCE) breast magnetic reso-
nance imaging (MRI) is a widely used imaging modality for 
breast cancer screening in high-risk patients, the diagnosis of 
breast lesions, and breast cancer staging [1, 2]. The Ameri-
can College of Radiology (ACR) Breast Imaging-Report-
ing and Data System (BI-RADS) [3] is an internationally 

accepted quality assurance system designed to standardize 
the reporting and diagnosis of breast MRI. According to 
BI-RADS, contrast-enhanced breast lesions on MRI are first 
classified into three lesion types: focus, mass, and non-mass 
enhancement (NME).

NME on breast MRI includes a wide range of histologic 
appearances with some overlap in imaging findings between 
malignant and benign lesions [4]. Although radiologists 
make a diagnosis based on BI-RADS MRI, both the inter-
reader concordance rate in interpretations of NME and the 
diagnostic performance to distinguish between benign and 
malignant lesions have been reported to be lower than those 
of masses, even by well-experienced breast radiologists 
[4–10]. Balzer et al. [7] reported that the primary cause for 
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false-positive breast MRI findings resulting in unnecessary 
biopsies may be due to NME.

In recent years, multiple investigators have developed 
machine-learning methods for the quantitative characteri-
zation of breast lesions on clinical images [11], and deep 
learning using a convolutional neural network (CNN) has 
been shown to be a feasible method for diagnosis without 
the need to use predefined feature extraction algorithms. 
Residual Networks (ResNet) is a commonly selected CNN 
for the analysis of magnetic resonance (MR) images that 
has been shown to be capable of diagnosing breast mass 
lesions with high accuracy [12, 13]. Although the diagnosis 
of NME using deep learning is more challenging than that 
of masses, Zhou et al. [14] reported that ResNet50 showed 
better diagnostic performance than the radiomics method for 
differentiating malignant and benign NME on breast MRI.

Therefore, to clarify whether deep learning is a suffi-
cient and clinically effective diagnostic aid, especially for 
residents or general radiologists, the present study aimed to 
evaluate the diagnostic performance of deep learning meth-
ods for distinguishing malignant from benign NME on breast 
MRI compared with the readings of radiologists with various 
levels of experience.

Materials and methods

Patients

The institutional review board approved this retrospective 
study and waived the need for written informed consent. 
Data were collected by reviewing the MRI reports in the 
electronic medical records at our university hospital between 
March 2010 and March 2013. The inclusion criteria were: 
patients initially interpreted as having NME over BI-RADS 
category 3 on the breast MRI report, histopathologically 
confirmed malignant NME via biopsy or surgery, or benign 
NME via biopsy or long-term follow-up (at least 3 years). 
Initial MRI reports were created by three board-certified 
radiologists with at least 2 years of experience in breast 
MRI. A total of 104 consecutive patients with 106 lesions 
presenting NME were identified. The exclusion criteria 
were patients receiving any prior treatment (n = 11), vac-
uum-assisted biopsy before the MRI examination (n = 6), or 
insufficient image quality (n = 3). Two patients had bilateral 
NME. Finally, 84 women with 86 lesions presenting NME 
were included in the retrospective analysis.

MRI protocol

All breast MRI examinations were performed using a 1.5-T 
MRI system (Gyroscan Intera; Philips Medical Systems, 
Best, The Netherlands) with both breasts placed into the 

dedicated breast-holder and a four-channel phased-array 
coil. Before intravenous administration of contrast material, 
bilateral transverse fat-suppressed T2-weighted (FS-T2W) 
fast-spin echo images were obtained with the following 
parameters: repetition time (TR), 6000 ms; echo time (TE), 
100 ms; field of view (FOV), 320 mm; matrix, 320 × 288; 
slice thickness, 3.5 mm; 40 sections; parallel imaging factor, 
1.4; fat suppression on spectral adiabatic inversion recov-
ery (SPAIR); and time of MRI data acquisition, 2.5 min. 
Next, axial diffusion-weighted echo-planar images (DWI) 
were obtained with the following parameters: b values of 0 
and 1000 s/mm2; TR, 5600 ms; TE, 67 ms; FOV, 350 mm; 
matrix, 112 × 112 mm; slice thickness, 5 mm; 28 sections; 
parallel imaging factor, 2; and total imaging time, 3.0 min.

DCE MRI was performed using enhanced T1 high-
resolution isotropic volume excitation (eTHRIVE) before 
and twice after bolus injection of gadolinium-based con-
trast agents (0.2 mL/kg at a rate of 2 mL/s), followed by a 
20-mL saline flush using an automatic injector. The center 
of k space for both the early and delayed contrast phases 
was acquired at 90 and 300 s after contrast agent injection, 
respectively. The DCE MRI parameters were as follows: 
TR/TE, 4.6/2.2 ms; flip angle, 15°; FOV, 320 mm; matrix, 
304 × 304 mm; interpolated slice thickness, 1.0 mm; 150 
sections; parallel imaging factor, 1.8; fat suppression on 
SPAIR; and total imaging time of each phase, 56 s.

BI‑RADS reading session by radiologists

All MR images from the 84 patients were independently 
reviewed by one highly experienced radiologist (Reader 1; 
a board-certified radiologist with 15 years of experience in 
breast MRI), one general radiologist (Reader 2; a board-
certified radiologist with 9 years of experience in general 
radiology and 6  years of training in general radiology, 
including breast MRI, with approximately 200 breast MRI 
experiences), and one radiology resident (Reader 3; 5 years 
of experience in radiology and 4 years of training in gen-
eral radiology, including breast MRI, with approximately 
50 breast MRI experiences). Each radiologist reviewed 
all breast MR images, including FS-T2W, DWI, and DCE 
MRI, as in the standard clinical breast MRI reading flow. 
All readers were informed only about the lesion location 
(affected side of and area where the lesion existed in the 
breast) and patient’s age and blinded to the mammography 
and ultrasound findings, initial interpretation of NME, and 
final diagnosis.

They assessed the degree of background parenchymal 
enhancement (BPE) (minimal, mild, moderate, or marked). 
The distribution (focal, linear, segmental, regional, mul-
tiple regions, or diffuse) and internal enhancement pat-
tern (homogeneous, heterogeneous, clumped, or clustered 
ring) of each NME were also evaluated using BI-RADS 



1096 Japanese Journal of Radiology (2023) 41:1094–1103

1 3

MRI lexicons. Thereafter, the readers provided a final 
BI-RADS category assessment. For the decision regard-
ing the BI-RADS category, BI-RADS 4 was divided into 
three subcategories adopted for BI-RADS mammography 
and ultrasound, and then all lesions presenting NME were 
classified into the following six categories: 2 (0% prob-
ability of malignancy), 3 (> 0%, ≤ 2%), 4A (> 2%, ≤ 10%), 
4B (> 10%, ≤ 50%), 4C (> 50%, < 95%), and 5 (≥ 95%). 
The readers assessed the likelihood of malignancy for 
each NME and determined a final category based on 
the probability of malignancy defined by BI-RADS [3]. 
The presence of previously reported findings suggestive 
of malignant NME (e.g., segmental or linear distribu-
tion, heterogeneous, clumped, or clustered ring internal 
enhancement, wash-out kinetics, low apparent diffusion 
coefficient on DWI) led to a higher category assignment 
for each reader [15–18].

Deep learning analysis

NME segmentation

One breast expert radiologist (Reader 1) performed the 
NME segmentation, using the early phase (90 s) of DCE 
MRI on MRIcron (https:// www. nitrc. org/ proje cts/ mricr on). 
The lesion segmentation was done by Reader 1 prior to the 
BI-RADS reading session, and a sufficient period of at least 
6 months was allowed between the reading session and NME 
segmentation. Three-dimensional regions of interest (ROIs) 
were manually drawn to cover the whole enhancing lesion 
in multiple sections. Two ROI patterns for each NME were 
set: ROI-1, a precise pattern that was carefully set to include 
only the enhancing area, and ROI-2, a rough pattern that 
covered the whole enhancing region, including the interveni-
ent non-enhancing area (e.g., fat or normal fibroglandular 
tissues) (Figs. 1 and 2).

Fig. 1  A 49-year-old patient 
with ductal carcinoma in situ. 
a Axial early-phase dynamic 
contrast-enhanced MRI demon-
strates non-mass enhancement 
in the right breast. Reader 1 
(highly experienced radiolo-
gist) assessed the lesion with 
segmental distribution and 
clustered ring internal enhance-
ment, and finally decided on 
BI-RADS category 5. Two pat-
terns of the ROI were set by one 
radiologist: b ROI-1, precise 
segmentation, which contains 
only the enhancing lesion, and 
c ROI-2, rough segmentation 
that covers the whole enhancing 
region, including the inter-
venient non-enhancing area. 
The input bounding boxes for 
ResNet50 were generated with 
the entire lesion d for all slices

https://www.nitrc.org/projects/mricron
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Deep learning method

Deep learning was applied to differentiate the benign or 
malignant lesions automatically using pretrained ResNet50 
architecture (Fig. 3) [19]. The software code was provided 
by MathWorks® (ResNet50) in the Deep Learning Toolbox. 
An Intel® Core™ i9-10900 K CPU (3.70 GHz) processor 
with 5 GB of NVIDIA GeForce RTX 3090 GPU graphics 
memory and 24 GB of physical memory running the educa-
tion version of 64-bit Microsoft Windows 10 Home was used 
as the main experimental platform.

The inference model was created by DCE MRI, and the 
two-dimensional (2D) cropped images of pre-contrast, early, 
and delayed phases were used as inputs. For each case, a 
bounding box containing the entire lesion and covering the 
projected boundary was generated. This was done by pro-
jecting the segmented tumor ROIs from all slices together. 
The same box was used for all slices in one case. The input 
bounding boxes of the benign and malignant cases are 

shown in Figs. 1d and 2d. The bounding box was resized 
to 224 × 224 pixels as input into the networks. All tumor 
slices on all DCE MRI (6054 cropped images) were used 
as independent inputs, and the data set was not augmented. 
The loss function was cross-entropy. The training was imple-
mented using the Adam optimizer fixed to 0.001 [13]. The 
diagnostic model was trained with a random selection of 
70% of the data set. Tenfold cross-validation was performed 
to create the trained model. The classification performance 
was evaluated using 30% of the test data set. According to 
the probability of malignancy predicted in each slice, the 
results from all slices were combined to derive the receiver 
operating characteristic (ROC) curve.

Statistical analysis

All statistical analyses were performed using JMP Statis-
tics version 14.0.0 (SAS Japan, Tokyo, Japan, https:// www. 

Fig. 2  A 39-year-old patient 
with benign fibrocystic change. 
a Axial early-phase dynamic 
contrast-enhanced MRI demon-
strates non-mass enhancement 
in the right breast. Reader 1 
(highly experienced radiologist) 
assessed the lesion with focal 
distribution and clumped inter-
nal enhancement, and finally 
decided on BI-RADS category 
4B. Two patterns of the ROI 
were set by one radiologist: b 
ROI-1, precise segmentation 
that contains only the enhancing 
lesion, and c ROI-2, rough seg-
mentation that covers the whole 
enhancing region, including 
the intervenient non-enhancing 
area. The input bounding boxes 
for ResNet50 were generated 
with the entire lesion d for all 
slices

https://www.jmp.com
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jmp. com) and R software (version 4.0.3; available as a free 
download from http:// www. rproj ect. org).

The inter-reader reliability of the NME descriptions was 
examined by calculating the kappa coefficient, and those of 
the degree of BPE and the BI-RADS categorization were 
examined using the weighted kappa coefficient. A kappa 
statistic of < 0.4 was defined as poor agreement, that of 
0.40–0.59 as moderate, that of 0.60–0.79 as good, and that 
of ≥ 0.80 as excellent.

The diagnostic performance for each reader and deep 
learning method was examined using ROC analysis and the 
area under the curve (AUC). The change in AUC was tested 
by DeLong’s test. All p values < 0.05 were considered sta-
tistically significant.

Results

Population characteristics

Among 84 women with 86 lesions presenting NME in this 
study, 51 had 51 malignant (mean age, 54 ± 12 years, range, 
24–80 years) and 33 had 35 benign lesions (mean age, 
49 ± 12, range, 21–74 years). The histopathological charac-
teristics of the breast lesions are shown in Table 1.

Radiologists’ assessments according to BI‑RADS MRI 
descriptors

Table 2 shows the results of the BI-RADS interpretations 
from each reader. Compared with the highly experienced 
radiologist (Reader 1), the less experienced radiologists 
(Readers 2 and 3) tended to interpret weak BPE. Regard-
ing the NME descriptions, all of the following findings 
were correlated with the prevalence of cancer for all 

readers: segmental distribution (71.4%–84.6%) and clumped 
(66.7%–91.7%) or clustered ring internal enhancement 
(70.6%–93.3%).

The prevalence of breast cancer by BI-RADS category 
for each reader is shown in Table 3. Reader 1 assigned four 
breast cancers to category 4A (cancer prevalence, 25%), 
which was above the BI-RADS-defined prevalence range 
of cancer for category 4A (> 2%, ≤ 10%). The cancer preva-
lence of Reader 1 in categories other than 4A was almost 
within the BI-RADS-defined rate.

In the BI-RADS categorizations of the two less experi-
enced radiologists, Reader 2 tended to assign lower catego-
ries for each NME (cancer prevalence of category 2, 26.1%; 
category 3, 40.0%), while Reader 3 tended to assign higher 
categories.

Table 4 shows the inter-observer variability between the 
three radiologists. The BPE assessment between Readers 
1 and 2 (κ = 0.41) and Readers 2 and 3 (κ = 0.42) showed 
moderate agreement. The agreement rate was particularly 

Fig. 3  The ResNet50 architecture features a 3 × 3 convolutional 
(conv) layer, a max pooling layer, and 16 blocks of residual connec-
tions. Each block consists of three consecutive layers: a 1 × 1 conv 
layer, a 3 × 3 conv layer, and another 1 × 1 conv layer. The output 

from the start of the block is fed into the end of it through the residual 
connection. Finally, the output from the last residual block is con-
nected to a fully-connected (fc) layer which uses a sigmoid activation 
to produce the final prediction

Table 1  Histopathological characteristics of the 86 NME lesions

NME non-mass enhancement

Malignant 51 (59.3%)
 Ductal carcinoma in situ 29
 Invasive ductal carcinoma 19
 Mucinous carcinoma 3

Benign 35 (40.7%)
 Fibrocystic change 17
 Fibrosis 3
 Fibroadenoma 1
 Papilloma 3
 Inflammation 1
 Follow-up (over 3 years) 10

https://www.jmp.com
http://www.rproject.org
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low for the NME distribution and internal enhancement 
characteristics of each reader, and the final BI-RADS 
assessment also showed poor agreement (κ < 0.40).

Diagnostic performance of deep learning methods

The diagnostic performance of deep learning constructed 
from two sets of ROIs (i.e., ROI-1 and -2) is shown in 
Table 5. When the models created from the training data 
set were applied to the test data set, the sensitivity, spec-
ificity, and accuracy were all better for ROI-1 than for 
ROI-2.

Table 2  Interpretation of BPE 
and NME descriptors by each 
reader

*Numbers in parentheses are percentages
BPE background parenchymal enhancement, NME non-mass enhancement

Reader 1 Reader 2 Reader 3

No. of lesions Prevalence 
of cancer

No. of lesions Prevalence 
of cancer

No. of lesions Preva-
lence of 
cancer

BPE* (N = 84 patients)
 Minimal 47 (56) – 68 (81) – 70 (83) –
 Mild 18 (21) – 11 (13) – 10 (12) –
 Moderate 13 (15) – 4 (5) – 3 (4) –
 Marked 6 (7) – 2 (2) – 1 (1) –

NME distribution (N = 86 lesions)
 Focal 37 40.5% 28 42.9% 20 35.0%
 Linear 5 20.0% 11 63.6% 7 57.1%
 Segmental 38 78.9% 26 84.6% 35 71.4%
 Regional 0 – 9 44.4% 14 78.6%
 Multiple regions 6 83.3% 3 100.0% 9 33.3%
 Diffuse 0 – 9 33.3% 1 100.0%

NME internal enhancement (N = 86)
 Homogeneous 6 33.3% 18 33.3% 5 0.0%
 Heterogeneous 55 49.1% 41 48.8% 43 58.1%
 Clumped 19 89.5% 12 91.7% 21 66.7%
 Clustered ring 6 83.3% 15 93.3% 17 70.6%

Table 3  BI-RADS category 
and cancer prevalence for each 
reader

BI-RADS Breast Imaging-Reporting and Data System

Category Reader 1 Reader 2 Reader 3

No.of lesions Prevalence of 
cancer

No. of lesions Prevalence of 
cancer

No. of lesions Preva-
lence of 
cancer

    2 0 – 23 26.1% 1 0.0%
    3 9 0.0% 15 40.0% 1 0.0%
    4A 16 25.0% 7 57.1% 14 28.6%
    4B 16 37.5% 12 75.0% 24 66.7%
    4C 19 89.5% 11 81.8% 23 65.2%
    5 26 92.3% 18 94.4% 23 69.6%

Table 4  Inter-reader agreement for BPE, NME descriptors, and cat-
egory assessments

BPE background parenchymal enhancement, NME non-mass 
enhancement, BI-RADS Breast Imaging-Reporting and Data System
*Weighted kappa coefficient

Reader 1 vs. 2 Reader 1 vs. 3 Reader 2 vs. 3

BPE* 0.41 0.24 0.42 
NME distribution 0.38 0.26 0.26 
NME internal 

enhancement
0.25 0.24 0.15 

NME BI-RADS cat-
egory*

0.34 0.32 0.18 
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ROC analysis of the performance of deep learning 
vs. the radiologists

The evaluation using ROC analysis revealed that the 
performance of ResNet50 for ROI-1 [AUC, 0.91 (95% 
confidence interval (CI) 0.90, 0.93)] in the test data set 
was equivalent to that of the highly experienced radiolo-
gist [AUC, 0.89 (95% CI 0.81, 0.96), p = 0.45] (Fig. 4), 
whereas the performance of deep learning for ROI-2 
[0.80, (95% CI 0.78, 0.82)] was significantly inferior to 
both (ROI-1, p < 0.01 and highly experienced radiologist, 
p = 0.04, respectively).

The AUC of deep learning for ROI-2 was similar to 
that of the general radiologist [0.79 (95% CI 0.70, 0.89), 
p = 0.88]. The AUC of the radiology resident [0.64 (95% 
CI 0.52, 0.76)] was significantly lower than that of both 
deep learning approaches (ROI-1, p < 0.01, and ROI-2, 
p = 0.01, respectively).

Discussion

The present study confirmed the variability in the interpre-
tation and diagnosis of NME on breast MRI owing to the 
radiologists’ experience. Deep learning methods have the 
potential to improve the accuracy of NME diagnosis and 
provide superior performance compared with readings from 
non-expert radiologists.

For masses, the BI-RADS MRI interpretation is known 
to be effective for predicting malignancy and shows good 
reproducibility for the final category assignment [6, 7, 10, 
20]. However, for NME, the BI-RADS descriptors fail to 
diagnose correctly and several morphologic and kinetic 
features show an overlap of diagnostic information [6, 7, 
20]. In the present study, the agreement rates between the 
three radiologists who had different levels of experience in 
general and breast radiology were poor for all BI-RADS 
MRI descriptors of NME (κ = 0.15–0.39). Previous reports 

Table 5  Sensitivity, specificity, 
and accuracy using models 
constructed by ResNet50 deep 
learning

ResNet50 Residual Networks 50, ROI region of interest, CV cross-validation, AUC  area under the curve

Training data set (70%) 10-fold CV Test data set (30%)  AUC 

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

ROI-1 94% 83% 91% 95% 87% 95% 0.91
ROI-2 88% 72% 83% 89% 71% 89% 0.80 

Fig. 4  a ROC curves of BI-RADS in each reader and the deep learn-
ing in the test data set using ResNet50 ROI-1 and ROI-2. b Graph 
shows the AUC of the deep learning methods compared with vari-
ous experienced radiologists. Error bars represent 95% confidence 
intervals. ResNet50 constructed from ROI-1 (precise segmentation) 

showed the highest diagnostic accuracy, following the highly expe-
rienced radiologist (Reader 1). ResNet50 constructed from ROI-2 
(rough segmentation) showed diagnostic performance equivalent to 
the general radiologist (Reader 2), and both ResNet50 models had 
significantly higher diagnostic accuracy than the resident (Reader 3)
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have shown that there is significant variability among radi-
ologists in choosing the optimal BI-RADS lesion descrip-
tion, especially when reporting non-mass lesions [8, 9]. The 
reported agreement rates were 0.25–0.27 in the distribution 
and 0.25–0.34 in the internal enhancement pattern [8, 9], 
which is consistent with the present study.

Tozaki et al. [8] also reported that the inter-reader agree-
ment rate was poor for BI-RADS descriptors, but high for 
the BI-RADS category between the two raters who were 
experienced in interpreting breast MRI. However, in the pre-
sent study, the agreement rates for the BI-RADS category 
and descriptors between the three radiologists with various 
levels of experience were also poor (κ = 0.18–0.34). As dem-
onstrated in a previous study, the diagnostic performance of 
BI-RADS MRI reading was affected by reader experience [9, 
10]; less experienced readers showed the poorest diagnostic 
outcomes in the interpretation of NME assessments [10], 
which is consistent with our results. In addition, subcatego-
rization of BI-RADS category 4 lesions has not yet been 
adopted in MRI because of a lack of data on the accuracy 
of subdivision. Several studies have investigated category 4 
subdivisions in MRI, but further validation is still needed for 
their feasibility [15, 18, 21]. This uncertainty in BI-RADS 4 
subcategorization may have been one of the reasons for the 
poor inter-reader agreement in the present study.

Deep learning techniques are being introduced into the 
field of diagnostic imaging to resolve such differences in 
interpretation according to the experience of the radiologist 
[11]. In this study, for the purpose of assessing differences 
in deep learning performance by ROI setting, we constructed 
models using two ROI setting patterns for the same breast 
lesion, and then compared their performance to distinguish 
benign from malignant NME. As a result, the model from 
manual rough ROI-2 (AUC = 0.80), which contained sub-
stantial normal fibroglandular tissue or fat, showed sig-
nificantly worse performance compared with manual pre-
cise ROI-1 (AUC = 0.91, p < 0.01), which contained only 
enhanced lesions. The peritumoral microenvironment of 
breast cancer is known to play an important role in tumor 
growth and invasion [22, 23], and peritumor tissue has been 
reported to provide helpful information for the diagnosis and 
prediction of prognosis on breast MRI [24, 25]. Zhou et al. 
[13] reported that deep learning methods with ROIs that 
included small amounts of peritumor tissue showed higher 
diagnostic accuracy than did ROIs using tumor alone for the 
diagnosis of mass lesions on MRI. They also reported that 
too much normal tissue reduced diagnostic performance, 
which is consistent with our results.

For machine learning-based diagnosis, precise lesion 
segmentation is a major issue because manual annotation 
by radiologists is both labor-intensive and time-consuming. 
Therefore, the technique cannot be applied to large data 
sets. In this study, even the model from rough segmentation 

ROI-2 showed equivalent diagnostic performance to the 
general radiologist (AUC = 0.79) and outperformed the 
radiology resident (AUC = 0.64, p = 0.01). These results 
may have important clinical implications for low-resource 
regions, where there are few radiologists specializing in 
breast imaging, because even this deep learning model from 
rough segmentation can be useful as a diagnostic aid for 
general radiologists.

In recent years, automated segmentation of breast mass 
regions on MRI has been investigated by deep learning 
[26–28]. By contrast, automatic lesion annotation of NME 
is very challenging because in NME, the tumorous tissues 
and stroma are mixed, and it frequently has more indistinct 
borders from BPE compared with masses. Therefore, a 
reliable automatic NME segmentation method has not yet 
been established. Further efforts toward the development 
of machine-learning techniques may improve the accuracy 
of NME identification and segmentation in the near future.

Wang et al. [29] reported that the diagnostic performance 
of deep learning in NME using maximum intensity pro-
jection (MIP) of early post-contrast subtracted breast MR 
images was lower than the clinical decisions made by senior 
radiologists based on the full diagnostic MRI protocol. In 
the present study, we constructed a deep learning model for 
breast NME using three-phase DCE MRI data as input, and 
found that the performance from precise ROI-1 was equiva-
lent to that of highly experienced radiologists using a full 
diagnostic MRI protocol. These findings suggest that the 
performance of deep learning for NME could be improved 
by including the internal enhancement characteristics of 
DCE MRI, which are lost in 2D MIP images. Therefore, 
even the constructed diagnostic model using only DCE MRI 
data might achieve diagnostic performance equivalent to 
clinical decisions by highly experienced radiologists. Future 
studies are expected to improve the diagnostic accuracy of 
deep learning by inputting multiparametric MRI data.

This study had several limitations. First, the data set was 
comparatively small for the proper execution of deep learn-
ing. This mainly owes to the fact that there are far fewer 
numbers of NME compared with mass lesions. Thus, assem-
bling a large NME data set with pathological confirmation, 
especially for benign cases, is difficult in real-life clinical 
settings. Second, this was a single-center study. The MR 
images were acquired using a single machine and a single 
protocol. Therefore, the study population does not include 
data from multiple vendors or images from different institu-
tions. Accordingly, in the future, an external independent 
test data set is needed to evaluate the performance of the 
developed models. Lastly, manual lesion segmentation was 
performed by a single expert. Such radiologist-driven ROI 
approaches raise the concern of an inter-rater bias.

In conclusion, in the present study, we assembled a 
breast MRI NME data set, for which three radiologists with 
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different levels of experience in breast imaging performed 
assessments of the morphological distribution and internal 
enhancement patterns based on BI-RADS MRI. The results 
showed poor agreement between raters. As expected, the less 
experienced radiologist showed the worst diagnostic perfor-
mance. Deep learning methods were implemented to investi-
gate their potential to diagnose NME, and high accuracy was 
achieved compared with the non-expert radiologists. Our 
deep learning model for diagnosing NME on breast MRI 
could therefore be a diagnostic aid for general radiologists.
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