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Abstract
Positron emission tomography (PET) with F-18 fluorodeoxyglucose (FDG) has been commonly used in many oncological 
areas. High-resolution PET permits a three-dimensional analysis of FDG distributions on various lesions in vivo, which can 
be applied for tissue characterization, risk analysis, and treatment monitoring after chemoradiotherapy and immunotherapy. 
Metabolic changes can be assessed using the tumor absolute FDG uptake as standardized uptake value (SUV) and meta-
bolic tumor volume (MTV). In addition, tumor heterogeneity assessment can potentially estimate tumor aggressiveness and 
resistance to chemoradiotherapy. Attempts have been made to quantify intratumoral heterogeneity using radiomics. Recent 
reports have indicated the clinical feasibility of a dynamic FDG PET-computed tomography (CT) in pilot cohort studies of 
oncological cases. Dynamic imaging permits the assessment of temporal changes in FDG uptake after administration, which 
is particularly useful for differentiating pathological from physiological uptakes with high diagnostic accuracy. In addition, 
several new parameters have been introduced for the in vivo quantitative analysis of FDG metabolic processes. Thus, a 
four-dimensional FDG PET-CT is available for precise tissue characterization of various lesions. This review introduces 
various new techniques for the quantitative analysis of FDG distribution and glucose metabolism using a four-dimensional 
FDG analysis with PET-CT. This elegant study reveals the important role of tissue characterization and treatment strategies 
in oncology.
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Introduction

Various imaging modalities have played important roles in 
the diagnosis, staging, and therapeutic monitoring of can-
cer. Positron emission tomography (PET) has recently been 
applied in several oncological areas. Compared to several 
other noninvasive imaging modalities, PET is characteristi-
cally unique for the in vivo quantitative assessment of tumor 
characteristics [1, 2]. The accumulation of F-18 fluorode-
oxyglucose (FDG) may reflect tumor characteristics based 
on its metabolic activity, including the membrane glucose 
transporter protein and hexokinase enzyme. High imaging 
contrast enhances the detection of these characteristics in 
many types of cancer [3–5].

Quantitative assessment of FDG uptake can often be used 
for treatment monitoring after chemotherapy or chemora-
diotherapy [6–8]. Numerous studies have considered bio-
chemical changes assessed using FDG-PET as a sensitive 
marker compared with morphological changes estimated 
using computed tomography (CT) or magnetic resonance 
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imaging (MRI). In addition, patients with a complete meta-
bolic response after therapy may show better disease-free 
survival and overall survival than those with any other 
responses [9–21]. Precise assessment of treatment response 
is required, mainly because of the rapid progress in new 
treatments for various cancers.

Whole-body PET imaging allows the accurate staging 
and restaging of various cancers before and after treatment, 
in combination with CT or MRI. Such three-dimensional 
(3-D) analysis of FDG distribution using a high-resolution 
PET system and appropriate software enables the provision 
of important quantitative parameters for tissue characteriza-
tion and treatment strategy. On the other hand, FDG uptake 
is present in many physiological conditions. Therefore, it is 
often difficult to differentiate pathological from physiologi-
cal FDG uptake in routine static PET studies [22–28].

With the recent advances in technology, serial dynamic 
imaging after FDG administration has become possible 
[29–31]. Such dynamic imaging provides temporal param-
eters for quantitative analysis of temporal changes in FDG 
accumulation. Such new imaging methods permit a 3-D 
spatial analysis of FDG distribution with high-resolution 
PET imaging, and temporal analysis of FDG uptake changes 
after administration. Thus, a four-dimensional (4-D) analysis 
of FDG distribution is now possible and may provide new 
and valuable information regarding tissue characterization, 

malignant and benign lesion differentiation, and physiologi-
cal tracer accumulation [32, 33] (Fig. 1).

This review introduces various new techniques for the 
quantitative analysis of FDG distribution and glucose metab-
olism with a 4-D FDG analysis using PET-CT. This elegant 
study highlights the important role of tissue characterization 
and treatment strategies in oncology.

Quantitative parameters

FDG uptake concentration

High-resolution and sensitive PET systems provide several 
quantitative parameters for FDG distribution and glucose 
metabolism in oncology. Standardized uptake value (SUV) 
is one of the most commonly used PET parameters for esti-
mating FDG uptake. The SUV represents the radioactivity 
concentration in the lesion at a single time point. The SUV 
is simply the ratio of the activity concentration in the target 
tissue or lesion to the activity concentration in the whole 
body. The SUV can be calculated using the following for-
mula: SUV = [tissue tracer activity concentration [Bq/mL]]/ 
([injected dose [Bq]]/[body weight [g]]) [6–8]. When the 
injected tracer was homogeneously distributed throughout 
the body, the SUV was defined to be 1.

Fig. 1  Serial whole-body 
FDG-PET images (3 min each) 
approximately 60 min after 
FDG administration in a patient 
with lung cancer with pulmo-
nary metastatic lung cancers. 
High and persistent uptake in 
the lung cancer and liver metas-
tasis was noted, whereas some 
uptake motion changes were 
observed in the ureter and small 
intestine
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Metabolic changes are often assessed using the SUV 
value of the tumor. The SUV accounts for the differential 
partitioning of injected activity within the body. When 
the same PET camera and scan acquisition parameters 
are used, reasonable reproducibility of the SUV values 
can be achieved [34–36]. This SUV is commonly used in 
clinical oncological studies.

The maximal SUV (SUVmax) of a lesion is independ-
ent of the size of the region of interest (ROI). SUVmax is 
most commonly used in clinical practice because it is sim-
ple, reproducible, and readily available using widely used 
software [5, 34]. SUVmax and not SUVmean was used 
owing to metabolic heterogeneity or irregular tumor bor-
ders. However, the SUVmax is sensitive to image noise 
and motion. In addition, its value depends on the image 
quality of the PET/CT system. Notably, the state-of-art 
PET-CT scanners with high spatial resolution usually pro-
duce images with a high SUVmax. Such system-depend-
ent values may cause difficulties in directly comparing 
various PET scanners’ results.

The peak SUV (SUVpeak) was introduced to overcome 
the shortcomings of SUVmax as a hybrid of the mean 
value of radiotracer uptake within the ROI surrounding 
the highest-intensity voxel (generally  1cm3 ROI surround-
ing the voxel with the highest activity). The SUVpeak is 
less susceptible to noise and scanner differences in spa-
tial resolution. In addition, an index called SUL has been 
proposed [34], representing the standardized uptake value 
using the lean body mass index.

Accordingly, changes in SUVmax within the disease 
sites were used in one of the first iterations of the PET 
response criteria [37]. More recently, further refinements 
in the response criteria have been proposed. In particular, 
the PERCIST framework [34] has been widely adopted by 
the nuclear medicine community. Based on the same theo-
retical constructs as SUV measurement, variations in the 
analytical method have led to related parameters. These 
include SUL, representing SUV corrected for lean body 
mass rather than actual patient weight, and SUVpeak, 
which is the average of the most intense voxels within a 
relatively small volume of interest (VOI) [34]. SUVpeak 
was proposed within the PERCIST criteria and aimed to 
overcome the potential impact of isolated intense voxels 
on the results [38].

The patient’s total weight is usually used to normalize 
the SUV. However, in obese people, SUV is overestimated 
in lesions and normal tissues because FDG is distributed 
mainly in non-fatty tissues, whereas the percentage of 
adipose tissue is high in obese people, with minimal FDG 
accumulation in the fat. The use of SUL rather than SUV 
normalization by total weight is recommended for obese 
patients.

Volumetric measurement

PET/CT provides an opportunity to evaluate disease burden. 
The SUVmax metrics indicate the radioactivity concentra-
tion of a very small region within the tumor and, therefore, 
do not consider the tumor volume. At this point, PET differs 
from CT or MRI, where the tumor size is usually measured 
using a major axis. Indices for estimating tumor size have 
been established for PET. Among the various volumetric 
parameters of FDG PET, metabolic tumor volume (MTV) 
and total lesion glycolysis (TLG) are commonly used [39]. 
MTV represents the volume of the tumor with active FDG 
uptake (which is usually above a certain threshold, such as 
SUV ≥ 2.5 or SUV ≥ 40% SUVmax). TLG is calculated by 
multiplying the SUVmean of the total tumor by its MTV. 
Thus, TLG is the sum of the SUV within a lesion. These 
volumetric parameters have been used as prognostic indica-
tors for various tumors, as described below.

Heterogeneity measurement

Many malignant tumors tend to be naturally heterogeneous. 
Several mechanisms have been used to explain the hetero-
geneous nature of malignant tumors. First, tumors tend to 
develop from genetic mutations more frequently than normal 
cells, leading to heterogeneous biological behavior. Second, 
tumors grow rapidly, and develop a hypoxic region, result-
ing in elevated glucose consumption (Warburg effects) or 
severely decreased metabolism (necrosis). Third, tumor cells 
coexist with microenvironment cells, such as tumor-asso-
ciated macrophages (TAM), cancer-associated fibroblasts 
(CAF), and myeloid-derived suppressor cells (MDSC). The 
variability of tumor proportions and activities may cause 
metabolic heterogeneity in cancer tissues as a whole. Gener-
ally, tumor heterogeneity may be associated with aggressive-
ness, growth speed, and metastatic potential, all of which are 
important for clinical management.

Tumor heterogeneity can be described qualitatively as 
‘homogeneous’ or ‘heterogeneous’ (sometimes, ‘inhomo-
geneous’). In radiology reports of FDG PET-CT, radiolo-
gists and nuclear medicine physicians often evaluate tumors 
using qualitative categories; however, such expressions are 
subjective and poorly reproducible. Especially, the criteria 
to distinguish ‘homogeneous’ from ‘heterogeneous’ are 
unclear. In addition, it is difficult to describe the degree of 
tumor heterogeneity.

In this context, radiomics has recently been introduced 
as a technique that uses a mathematical model to quan-
tify heterogeneity by extracting numerical features from 
radiological images [40]. Individual features only repre-
sent image characteristics and are not immediately clini-
cally useful. However, by combining several features and 
machine learning techniques, such as random forest and 
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support vector machine, some clinical information, such 
as tumor malignancy, treatment response, and survival, 
could be predicted.

The simplest radiometric method encloses the tumor 
and a region of interest (ROI) or volume of interest (VOI) 
if it is 3-D, creates a histogram of voxel values (usually, 
SUV) within the ROI/VOI, and calculates the mean, stand-
ard deviation, energy, entropy, kurtosis, and skewness. This 
is typically called a first-order statistic. This may represent 
tumor heterogeneity to some extent; however, this method 
does not consider spatial relationships. In other words, this 
method does not distinguish adjacent from distant voxels. 
Therefore, when researchers apply radiomics or texture anal-
ysis to their data, they usually employ higher-order statistics 
that can incorporate the spatial distribution of the voxels. To 
calculate higher-order features, it is necessary to calculate 
a matrix (that is, an intermediate product) that represents 
heterogeneity, such as the gray-level co-occurrence matrix 
(GLCM), gray-level size-zone matrix (GLSZM), gray-level 
run-length matrix (GLRLM), or neighborhood gray-tone 
difference matrix (NGTDM). Each matrix generates several 
features. The imaging biomarker standardization initiative 
(IBSI) described 174 radiomic features with clear definitions 
[41]. It may be difficult for beginners in this field to under-
stand this large number of features simultaneously. Thus, 
here in this article, we would like to focus on the ‘entropy 
calculated from GLCM’ (EntropyGLCM), which is not 
only easy to understand but also clinically useful in esopha-
geal and lung cancers [42]. In addition, EntropyGLCM is 

relatively robust and less sensitive to variability in tumor 
boundary determination [42].

Figure 2 illustrates a case in which EntropyGLCM was 
calculated from an FDG PET image of a patient with a neck 
lesion of diffuse large B-cell lymphoma (Fig. 2a, arrow). 
The first step was to determine the tumor area. If the tumor 
boundary is determined manually, the reduced reproduc-
ibility of VOI reduces the reliability of the texture features. 
Thus, it is better to segment the tumor automatically. In this 
case, we delineated the tumor using an SUV of ≥ 3. The 
red area represents the segmented tumor region (Fig. 2d). 
All voxels within the region were extracted (Fig. 2e). It is 
important to record the (x, y, z) coordinates with the SUVs 
to preserve the locations of the voxels. In this example, 7206 
voxels were extracted from the VOI.

The SUV is a continuous value and is often discretized for 
texture analysis. A common method is to discretize the SUV 
with a fixed number of bins between the SUVmin and SUV-
max (in this example, SUVmin = 3.00, SUVmax = 22.45, 
and 64 bins). An alternative method is to fix the SUVmin 
and SUVmax at 0 and 20, respectively.

The GLCM was calculated from the discretized voxel list, 
which can be regarded as a correlation plot between adja-
cent voxels. Note that in the 3D space, there are 13 defini-
tions of connected voxel directions whose distance is less 
than 2 voxels (that is, 1, 

√

2 or 
√

3 ); therefore, it is common 
to compute the GLCM in 13 different ways. For simplifi-
cation, we focused on voxels adjacent to each other in the 
x-axis direction, such as (75, 65, 360), and (76, 65, 360). The 

Fig. 2  An example of the texture analysis procedure. a Maximum 
intensity projection of FDG-PET of a male patient in his 50  s with 
diffuse large B-cell lymphoma. A huge tumor in the right neck was 
shown (arrow). b A transaxial slice showing the tumor with SUV 
window 0 to 6 indicates that the entire tumor metabolizes homoge-
nously; however c the same slice with SUV windows 0 to 15 depicts 
the intra-tumoral heterogeneity of metabolism. d The tumor was 

segmented using SUV≧3 as the criteria. e A total of 7206 voxels 
were extracted from the segmented region. Not only SUV but also 
the (x,y,z) coordinate are important for the following calculation. f 
After 64-degree discretization, the GLCM (64 × 64) was calculated. 
g EntropyGLCM was calculated from the GLCM. The value was 6.60 
in this case
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GLCM is shown as a scatter diagram (Fig. 2f). Note that if 
all voxel pairs have the same value, the scatter diagram will 
be the line of identity (y = x).

Finally, the EntropyGLCM was calculated using the fol-
lowing formula:

where C(i,j) is the GLCM probability value. As it is a ‘prob-
ability’ value, C (i, j) is normalized as follows:

Similar to the general definition, entropy is the negative 
of the inner product of the probability and log of the prob-
ability values. Entropy can be calculated using either a histo-
gram or GLCM; therefore, it is important to note which one 
it represents. Different feature names, such as EntropyHist 
and EntropyGLCM, are commonly used for this purpose.

There are two popular free software tools for radiomics 
or texture feature calculation: LIFEx [43] and PyRadiomics 
[44]. LIFEx is an integrated environment with a graphical 
user interface (GUI). PyRadiomics is a python library pack-
age. If a GUI is needed for PyRadiomics, 3D Slicer can work 
together.

Among several problems in radiomics, robustness, and 
replicability seem to be the largest [45]. Recently, ComBat 
harmonization was proposed to solve this problem [46, 47].

EntropyGLCM = −
∑

i

∑

j

C(i, j) ⋅ log (C(i, j))

∑

i

∑

j

C(i, j) = 1

Temporal measurement

While most of the FDG parameters are derived through static 
PET imaging, there are a few trials that assessed temporal 
changes in FDG distribution using dynamic PET studies. 
For instance, dual-time-point PET imaging, which obtains 
both early standard and delayed PET images, has been used 
to differentiate benign from malignant lesions [31–33]. In 
addition to these studies that used visual assessment, the 
retention index (percentage difference in SUV between early 
and delayed images) was calculated [48].

There are new strategies for the generation of parametric 
images (pixel-by-pixel analysis) based on graphical analysis, 
such as the Patlak method [49, 50]. The graphical analy-
sis is simple, and robust, and enables the direct estimation 
of the primary kinetic macro-components of tracer uptake 
across multiple fields of view. Serial dynamic whole-body 
PET imaging is considered a suitable method for assessing 
temporal changes in tracer uptake. More recently, several 
reports have indicated the clinical feasibility of dynamic 
FDG PET-CT in a pilot cohort of oncological cases [51–53].

The Patlak model can be applied when the tracer reaches 
a steady state between blood and tissue. This model esti-
mates the Patlak slope (Ki), which is the rate of irreversible 
uptake, and the Patlak intercept, which is the apparent distri-
bution volume (DV), of the nonmetabolized tracer (Fig. 3). 
Accordingly, the metabolic rate of FDG was estimated as 
follows: Metabolic rate of FDG (MRFDG) = Ki × blood glu-
cose [49, 50].

A preliminary study indicated that multi-pass whole-
body PET Ki parametric imaging that utilizes robust Pat-
lak graphical analysis may achieve equivalent or poten-
tially, superior lesion detectability than standard-of-care 

Fig. 3  Patlak analysis concept. 
Ki image and DV image can be 
obtained from this analysis
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SUV imaging with reduced false-positive rates in routine 
oncology applications [52]. Ki parametric imaging seems 
to be particularly valuable for differentiating abnormal 
lesion uptake with a gradual increase in FDG uptake 
from physiological uptake areas and a gradual decrease 
in uptakes, such as in the liver and blood vessels. Ki may 
reflect count changes; therefore, it has the potential to 
enhance the detection of abnormal FDG uptake lesions 
in high background areas [53, 54].

A key issue in the kinetic analysis is obtaining a suit-
able input function for graphical analysis. Arterial or 
arterialized venous blood sampling is commonly per-
formed, particularly for brain studies; however, this 
method is apparently invasive [55–58]. An image-based 
input function can be obtained using serial dynamic PET 
imaging, which covers large arterial blood regions such 
as the left ventricle and aorta [59]. Such a precise FDG 
kinetic analysis seems rather complicated and remains 
under investigation. Recently, a standardized input func-
tion has been proposed as a surrogate that may facilitate 
such parametric studies compared to the actual measure-
ment of the input function on rapid dynamic imaging in 
cardiac areas [60–63]. Serial dynamic FDG-PET imaging 
using either actual early dynamic imaging or a standard-
ized input function may hold new promise for quantita-
tive analysis of glucose metabolism for pre-vise tissue 
characterization in a variety of fields, including oncology.

Table 1 summarizes the advantages and disadvantages 
of each quantitative parameter on 3-D and 4-D PET analy-
ses. While the SUV parameter is commonly used, the 3D 
PET analysis permits the estimation of the number of 
volumetric and distribution parameters. New and valu-
able information regarding metabolic parameters is pro-
vided by 4-D analysis. However, such parameters require 
dynamic acquisition; thus, some difficulties remain in 
routine clinical settings.

Clinical applications

These quantitative parameters have several clinical applica-
tions in clinical oncology. The 3-D quantitative analysis of 
FDG distribution provides important information for treat-
ment strategies in oncology.

Risk analysis

Quantitative analyses of FDG uptake have been performed 
for prognostic studies in patients with lung cancer. The SUV 
has been used for assessing either the likelihood of malig-
nancy or aggressiveness in lung masses and as a result, the 
prognosis of known lung cancer has been assessed in many 
studies [9–17]. For instance, an earlier meta-analysis of 13 
such studies evaluated the use of SUV for prognostic stratifi-
cation of non-small cell lung cancers (NSCLCs) [9]. Several 
recent reports have suggested SUV analytical values for pre-
dicting patient outcomes in lung cancer [10–17]. A similar 
quantitative analysis of FDG uptake has also been applied 
in prognostic studies of other cancers [18–21].

Similar to SUV evaluation, volumetric analysis has been 
used as a prognostic biomarker. Despite the lack of a stand-
ardized method for its determination and its significant vari-
ability with different thresholds, MTV has a great potential 
for risk analysis in lung cancer [64, 65]. Moreover, tumor 
heterogeneity may have the potential for predicting tumor 
outcomes [66–68]. Heterogenic tumors may contain hypoxic 
cells that are resistant to chemoradiotherapy [69, 70]. Sev-
eral PET radiopharmaceuticals are used to identify tumor 
hypoxia [71–74]. However, FDG, the most commonly used 
PET radiopharmaceutical, can potentially detect the pres-
ence of hypoxia based on heterogeneity distribution.

Radiomics, such as texture analysis, has the potential 
for semiquantitative analysis of spatial FDG distribution. 
The heterogeneity of FDG distribution has been used for 
risk analysis in various cancers [39, 75–77]. Recent reports 

Table 1  Various quantitative FDG parameters on 3-D and 4-D PET analysis

SUV standardized uptake value, MTV metabolic tumor volume, TLG total lesion glycolysis

Parameters Estimation Clinical advantages Disadvantages

SUV Uptake concentration (max, peak, or mean) Well established Only pixel uptake
MTV Uptake volume Prognostic value Depend on threshold
TLG Uptake volume × mean uptake Prognostic value Depend on threshold
Heterogeneity Radiomic analysis (texture analysis etc.) Treatment resistance Sensitive to scanner 

performance and analysis 
method

Ki Uptake slope (Patlak plot) Metabolic parameter Difficult to estimate
Dynamic acquisition

DV Distribution volume (Patlak plot) ? Difficult to estimate
Dynamic acquisition



837Japanese Journal of Radiology (2023) 41:831–842 

1 3

indicated that the heterogeneity of FDG uptake plays a key 
role in assessing lesion resistance against various treatments; 
therefore, the prognostic index uses various radiomics, 
including texture analysis [39]. Tumor heterogeneity is asso-
ciated with tumor aggressiveness. Most tumors may have 
necrotic and hypoxic areas, which may indicate resistance to 
chemo-radiotherapy. Several recent reports considered such 
tumor heterogeneity assessed using FDG-PET as a prog-
nostic marker in patients treated with chemoradiotherapy 
[78–82]. There is no gold standard method for estimating 
tumor heterogeneity using PET. In addition, suitable chemo-
radiotherapy has not yet been established for heterogeneous 
tumors. More clinical studies are needed to establish suitable 
image analysis and clinical management in these patients.

Treatment response

As FDG uptake is more sensitive to changes induced by 
treatments rather than morphological analysis, changes in 
SUV are considered fundamental components of molecular 
imaging response criteria. Accordingly, SUV measurements 
are commonly applied in multicenter trials in oncological 
treatment studies [34, 37].

The assessment of treatment response using FDG PET-
CT plays an important role in optimizing subsequent treat-
ment strategies and predicting patient outcomes. Qualitative 
evaluation remains the most commonly used approach in 
clinical practice and quantitative assessment of FDG uptake 
has been applied for treatment monitoring in most malig-
nancies. Recent reports and review articles evaluated the 
prognostic values of changes in FDG uptake (SUV change) 
in various cancers [19, 83–89]. In a recent study involving 
nine PET/CT scanners across six institutions, quantitative 
SUV analysis demonstrated the ability of FDG PET-CT to 
predict 12-month overall survival from immune checkpoint 
inhibitor therapy using the EORTC, PERCIST, and imPER-
CIST criteria [90, 91].

Diffuse large B-cell lymphoma (DLBCL) and Hodgkin 
lymphoma have been the most extensively studied cancers 
for risk stratification and outcomes using FDG PET/CT. 
Interim PET performed after two or four cycles of chemo-
therapy has been proposed as a tool for adapting therapy in 
patients with good responses [92, 93]. In addition, therapy 
modification or a more aggressive therapy may be required 
in patients with progressive disease. High-risk patients are 
not accurately identified by the current prognostic scoring 
systems [87]. Qualitative PET analysis using the Deauville 
criteria, as previously described, has been used for the accu-
rate analysis of treatment effects and outcomes [94, 95]. The 
prognostic role of quantitative PET parameters, particularly 
MTV, has been demonstrated in many lymphoma subtypes, 
including DLBCL [95–98]. Patients with a high disease 

burden, estimated using the MTV, are at a higher risk of 
treatment failure and a shorter survival rate.

Use of temporal change

The assessment of temporal changes in FDG uptake using 
dynamic imaging has several clinical advantages over static 
imaging. Serial assessment of changes in FDG uptake, even 
within a short period, is useful for distinguishing pathologi-
cal from physiological uptake, especially in the abdominal 
regions [32, 33, 99]. In the dynamic image evaluation, physi-
ologically changed uptake was frequently found in the gas-
trointestinal regions and ureters. On the other hand, most 
benign and malignant lesions showed no visual change in 
serial images, suggesting the need for a high diagnostic value 
for differentiating physiological FDG uptake from pathologi-
cal FDG uptake based on the presence of uptake changes on 
serial dynamic imaging. These dynamic PET studies may 
minimize the need for delayed PET imaging [33].

In addition, most malignant lesions may show a gradual 
increase in FDG uptake, indicating high glucose (or FDG) 
metabolism, as compared to minimal change or decrease 
in benign lesions and physiological uptake areas. Recent 
reports indicated that the target-to-background ratio of Ki in 
the Patlak analysis was higher than the commonly used SUV 
values, indicating a higher contrast on the parametric PET 
images than on the static images [53, 54, 99–101] (Fig. 4). 
Some of these preliminary studies did not show significant 
differences in the contrast between malignant and benign 
lesions. However, Ki, a marker of FDG metabolism, seems 
to be more suitable for predicting tumor cellular function 
and aggressiveness than SUV, a static FDG uptake marker 
in lung and breast cancer [97–105]. As many PET centers 
have had the chance to apply their up-to-date technology for 
parametric FDG analysis, these preliminary results will be 
confirmed in many oncology areas.

PET has significant advantages in the quantitative analy-
sis of tracer activity distributions. In particular, 4-D PET 
analysis provides new metabolic parameters. A more precise 
assessment of the clinical values of such parametric imaging 
is expected in oncology with more patient-based studies in 
the future.

Future perspectives

In addition to the introduction of elegant data analyses, 
instrumental developments have been conducted.

PET-CT systems equipped with silicon photomulti-
plier–based detectors (digital PET) have been introduced. 
This new system has improved detection capabilities that 
might contribute to enhanced diagnostic performance and 
reduce the activity administration or scan duration. In 
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addition, quantitative capability has been improved signifi-
cantly owing to a higher spatial resolution and lesser scatter 
noise [106–108]. Such high performance of the PET system 
permits short and serial dynamic imaging with high-quality 
images. Thus, a better quantitative 4-D analysis of FDG 
PET/CT may be available in clinical oncology [54].

Such digital PET with their magnetic-susceptibility toler-
ance makes them ideal devices for use in PET-MR systems 
[109, 110]. There are many advantages of the combined 
analysis of PET and MRI in the clinical oncology field, 
which have been fully presented elsewhere [111, 112].

Conclusion

FDG PET-CT can provide valuable clinical information 
regarding tumor metabolism and aggressiveness in various 
types of cancers. Various quantitative approaches have been 
introduced for image-based precision medicine, including 
tracer concentration, volume, and heterogeneity analysis 
using 3-D FDG distribution. Recent progress in PET imag-
ing permits the temporal assessment of FDG uptake. Thus, a 
4-D analysis of FDG PET-CT is available for the precise tis-
sue characterization of various lesions. Such elegant studies 
will provide new and valuable information for tissue charac-
terization and treatment strategies in oncology.
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