Skip to main content

Advertisement

Log in

Application of radiomics in precision prediction of diagnosis and treatment of gastric cancer

  • Review
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Gastric cancer is one of the most common malignant tumors. Although some progress has been made in chemotherapy and surgery, it is still one of the highest mortalities in the world. Therefore, early detection, diagnosis and treatment are very important to improve the prognosis of patients. In recent years, with the proposal of the concept of radiomics, it has been gradually applied to histopathological grading, differential diagnosis, therapeutic efficacy and prognosis evaluation of gastric cancer, whose advantage is to comprehensively quantify the tumor phenotype using a large number of quantitative image features, so as to predict and diagnose the lesion area of gastric cancer early. The purpose of this review is to evaluate the research status and progress of radiomics in gastric cancer, and reviewed the workflow and clinical application of radiomics. The 27 original studies on the application of radiomics in gastric cancer were included from web of science database search results from 2017 to 2021, the number of patients included ranged from 30 to 1680, and the models used were based on the combination of radiomics signature and clinical factors. Most of these studies showed positive results, the median radiomics quality score (RQS) for all studies was 36.1%, and the development prospect and challenges of radiomics development were prospected. In general, radiomics has great potential in improving the early prediction and diagnosis of gastric cancer, and provides an unprecedented opportunity for clinical practice to improve the decision support of gastric cancer treatment at a low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. MuCulloch P. Special issue: gastric cancer. Surg Oncol. 2000;9(1):1–3.

    Article  Google Scholar 

  2. Hirschowitz BI. Editorial: early gastric cancer. Gastrointest Endosc. 1976;23(1):45–6.

    Article  CAS  PubMed  Google Scholar 

  3. Strong VE. Progress in gastric cancer. Updates Surg. 2018;70(2):157–9.

    Article  PubMed  Google Scholar 

  4. Buzzoni R, Bajetta E, Di Bartolomeo M, Miceli R, Beretta E, Ferrario E, Mariani L. Pathological features as predictors of recurrence after radical resection of gastric cancer. Br J Surg. 2006;93(2):205–9.

    Article  CAS  PubMed  Google Scholar 

  5. Jiang WB, Mao QJ, Wu XL, Yu WH, Chen DW. Laparoscopic radical resection of gastric cancer and metachronous colon cancer-a case report. Transl Cancer Res. 2020;9(3):2053–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kim T, Chung H, Yu W, Kim GC, Choi J. Localization of gastric cancer by CT gastrography: a prospective study. Hepato-Gastroenterol. 2009;56(94–95):1580–4.

    Google Scholar 

  7. Prinz F, Probst A, Ebigbo A, Messmann H. Endoscopic diagnosis and therapy of gastric cancer. Onkologe. 2020;26(10):935–44.

    Article  Google Scholar 

  8. Wang T, Gao TT, Guo H, Wang YB, Zhou XB, Tian J, Huang LY, Zhang M. Preoperative prediction of parametrial invasion in early-stage cervical cancer with MRI-based radiomics nomogram. Eur Radiol. 2020;30(6):3585–93.

    Article  PubMed  Google Scholar 

  9. Xu XP, Zhang X, Tian Q, Wang HJ, Cui LB, Li SR, Tang X, Li BJ, Dolz J, Ben Ayed I, Liang ZR, Yuan J, Du P, Lu HB, Liu Y. Quantitative identification of nonmuscle-invasive and muscle-invasive bladder carcinomas: a multiparametric MRI radiomics analysis. J Magn Reson Imaging. 2019;49(5):1489–98.

    Article  PubMed  Google Scholar 

  10. Meng YM, Sun J, Qu N, Zhang GR, Yu T, Piao HZ. Application of radiomics for personalized treatment of cancer patients. Cancer Manag Res. 2019;11:10851–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho R, van Stiphout RGPM, Granton P, Zegers CML, Gillies R, Boellard R, Dekker A, Aerts HJWL. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–6.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li YS, Liu Y, Zhang MK, Zhang GL, Wang ZL, Luo JW. Radiomics with attribute bagging for breast tumor classification using multimodal ultrasound images. J Ultras Med. 2020;39(2):361–71.

    Article  Google Scholar 

  13. Salvatore C, Castiglioni I, Cerasa A. Radiomics approach in the neurodegenerative brain. Aging Clin Exp Res. 2021;33(6):1709–11.

    Article  PubMed  Google Scholar 

  14. Xiao G, Rong WC, Hu YC, Shi ZQ, Yang Y, Ren JL, Cui GB. MRI radiomics analysis for predicting the pathologic classification and TNM staging of thymic epithelial tumors: a pilot study. Am J Roentgenol. 2020;214(2):328–40.

    Article  Google Scholar 

  15. Ma YQ, Wen Y, Liang H, Zhong JG, Pang PP. Magnetic resonance imaging-radiomics evaluation of response to chemotherapy for synchronous liver metastasis of colorectal cancer. World J Gastroenterol. 2021;27(38):6465–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Harding-Theobald E, Louissaint J, Maraj B, Cuaresma E, Townsend W, Mendiratta-Lala M, Singal AG, Su GCL, Lok AS, Parikh ND. Systematic review: radiomics for the diagnosis and prognosis of hepatocellular carcinoma. Aliment Pharm Ther. 2021;54(7):890–901.

    Article  Google Scholar 

  17. Scrivener M, de Jong EEC, van Timmeren JE, Pieters T, Ghaye B, Geets X. Radiomics applied to lung cancer: a review. Transl Cancer Res. 2016;5(4):398–409.

    Article  Google Scholar 

  18. Fiz F, Vigano L, Gennaro N, Costa G, La Bella L, Boichuk A, Cavinato L, Sollini M, Politi LS, Chiti A, Torzilli G. Radiomics of liver metastases: a systematic review. Cancers. 2020;12(10):2881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Valdora F, Houssami N, Rossi F, Calabrese M, Tagliafico AS. Rapid review: radiomics and breast cancer. Breast Cancer Res Treat. 2018;169(2):217–29.

    Article  PubMed  Google Scholar 

  20. Wang HX, Zhou Y, Li L, Hou WX, Ma XL, Tian R. Current status and quality of radiomics studies in lymphoma: a systematic review. Eur Radiol. 2020;30(11):6228–40.

    Article  PubMed  Google Scholar 

  21. Murray JM, Kaissis G, Braren R, Kleesiek J. A primer on radiomics. Radiologe. 2020;60(1):32–41.

    Article  PubMed  Google Scholar 

  22. Demircioglu A. Radiomics-AI-based image analysis. Pathologe. 2019;40:S271–6.

    Google Scholar 

  23. Waugh SA, Lerski RA, Bidaut L, Thompson AM. The influence of field strength and different clinical breast MRI protocols on the outcome of texture analysis using foam phantoms. Med Phys. 2011;38(9):5058–66.

    Article  PubMed  Google Scholar 

  24. Navon E, Miller O, Averbuch A. Color image segmentation based on adaptive local thresholds. Image Vision Comput. 2005;23(1):69–85.

    Article  Google Scholar 

  25. Onneberger RO, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. Miccai. 2015. https://doi.org/10.1007/978-3-319-24574-4_28.

    Article  Google Scholar 

  26. Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective. J R Stat Soc B. 2011;73:273–82.

    Article  Google Scholar 

  27. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, Larue RTHM, Even AJG, Jochems A, van Wijk Y, Woodruff H, van Soest J, Lustberg T, Roelofs E, van Elmpt W, Dekker A, Mottaghy FM, Wildberger JE, Walsh S. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749–62.

    Article  PubMed  Google Scholar 

  28. Sun ZQ, Hu SD, Li J, Wang T, Duan SF, Wang J. Radiomics study for differentiating gastric cancer from gastric stromal tumor based on contrast-enhanced CT images. J X-Ray Sci Technol. 2019;27(6):1021–31.

    Google Scholar 

  29. Sun ZQ, Jin LF, Zhang S, Duan SF, Xing W, Hu SD. Preoperative prediction for Lauren type of gastric cancer: a radiomics nomogram analysis based on CT images and clinical features. J X-Ray Sci Technol. 2021;29(4):675–86.

    CAS  Google Scholar 

  30. Wang XX, Ding Y, Wang SW, Dong D, Li HL, Chen J, Hu H, Lu C, Tian J, Shan XH. Intratumoral and peritumoral radiomics analysis for preoperative Lauren classification in gastric cancer. Cancer Imaging. 2020;20(1):83.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ma ZL, Fang MJ, Huang YQ, He L, Chen X, Liang CS, Huang XM, Cheng ZX, Dong D, Liang CH, Xie JJ, Tian J, Liu ZY. CT-based radiomics signature for differentiating borrmann type IV gastric cancer from primary gastric lymphoma. Eur J Radiol. 2017;91:142–7.

    Article  PubMed  Google Scholar 

  32. Wang Y, Liu W, Yu Y, Liu JJ, Xue HD, Qi YF, Lei J, Yu JC, Jin ZY. CT radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer. Eur Radiol. 2020;30(2):976–86.

    Article  PubMed  Google Scholar 

  33. Gao XJ, Ma TT, Cui JL, Zhang YW, Wang LW, Li H, Ye ZX. A radiomics-based model for prediction of lymph node metastasis in gastric cancer. Eur J Radiol. 2020;129: 109069.

    Article  PubMed  Google Scholar 

  34. Gao XJ, Ma TT, Cui JL, Zhang YW, Wang LW, Li H, Ye ZX. A CT-based radiomics model for prediction of lymph node metastasis in early stage gastric cancer. Acad Radiol. 2021;28(6):E155–64.

    Article  PubMed  Google Scholar 

  35. Feng QX, Liu C, Qi L, Sun SW, Song Y, Yang G, Zhang YD, Liu XS. An intelligent clinical decision support system for preoperative prediction of lymph node metastasis in gastric cancer. J Am Coll Radiol. 2019;16(7):952–60.

    Article  PubMed  Google Scholar 

  36. Jiang YM, Wang W, Chen CL, Zhang XD, Zha XF, Lv WB, Xie JJ, Huang WC, Sun ZP, Hu YF, Yu J, Li TJ, Zhou ZW, Xu YF, Li GX. Radiomics signature on computed tomography imaging: association with lymph node metastasis in patients with gastric cancer. Front Oncol. 2019;9:340.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li J, Dong D, Fang MJ, Wang R, Tian J, Li HL, Gao JB. Dual-energy CT-based deep learning radiomics can improve lymph node metastasis risk prediction for gastric cancer. Eur Radiol. 2020;30(4):2324–33.

    Article  PubMed  Google Scholar 

  38. Yang J, Wu QY, Xu L, Wang ZJ, Su KF, Liu RQ, Yen EA, Liu SL, Qin JL, Rong Y, Liu Y, Niu TY. Integrating tumor and nodal radiomics to predict lymph node metastasis in gastric cancer. Radiother Oncol. 2020;150:89–96.

    Article  PubMed  Google Scholar 

  39. Wang XX, Li C, Fang MJ, Zhang LW, Zhong LZ, Dong D, Tian J, Shan XH. Integrating No. 3 lymph nodes and primary tumor radiomics to predict lymph node metastasis in T1–2 gastric cancer. BMC Med Imaging. 2021;21(1):58.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang LL, Gong J, Huang XM, Lin GF, Zheng B, Chen JM, Xie JA, Lin RL, Duan Q, Lin WW. CT-based radiomics nomogram for preoperative prediction of No. 10 lymph nodes metastasis in advanced proximal gastric cancer. EJSO. 2021;47(6):1458–65.

    Article  PubMed  Google Scholar 

  41. Chen WJ, Wang SW, Dong D, Gao XN, Zhou KF, Li JY, Lv B, Li HL, Wu XJ, Fang MJ, Tian J, Xu MS. Evaluation of lymph node metastasis in advanced gastric cancer using magnetic resonance imaging-based radiomics. Front Oncol. 2019;9:1265.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Huang WC, Zhou KN, Jiang YM, Chen CL, Yuan QY, Han Z, Xie JJ, Yu ST, Sun ZP, Hu YF, Yu J, Liu H, Xiao RX, Xu YK, Zhou ZW, Li GX. Radiomics nomogram for prediction of peritoneal metastasis in patients with gastric cancer. Front Oncol. 2020;10:1416.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mirniaharikandehei S, Heidari M, Danala G, Lakshmivarahan S, Zheng B. Applying a random projection algorithm to optimize machine learning model for predicting peritoneal metastasis in gastric cancer patients using CT images. Comput Method Prog Bio. 2021;200: 105937.

    Article  Google Scholar 

  44. Dong D, Tang L, Li ZY, Fang MJ, Gao JB, Shan XH, Ying XJ, Sun YS, Fu J, Wang XX, Li LM, Li ZH, Zhang DF, Zhang Y, Li ZM, Shan F, Bu ZD, Tian J, Ji JF. Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer. Ann Oncol. 2019;30:431–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li YX, Cheng ZX, Gevaert O, He L, Huang YQ, Chen X, Huang XM, Wu XM, Zhang W, Dong MY, Huang J, Huang YC, Xia T, Liang CH, Liu ZY. A CT-based radiomics nomogram for prediction of human epidermal growth factor receptor 2 status in patients with gastric cancer. Chinese J Cancer Res. 2020;32(1):62–71.

    Article  Google Scholar 

  46. Wang Y, Yu Y, Han W, Zhang YJ, Jiang L, Xue HD, Lei J, Jin ZY, Yu JC. CT radiomics for distinction of human epidermal growth factor receptor 2 negative gastric cancer. Acad Radiol. 2021;28(3):e86–92.

    Article  PubMed  Google Scholar 

  47. Wang W, Peng Y, Feng XY, Zhao Y, Seeruttun SR, Zhang J, Cheng ZX, Li Y, Liu ZY, Zhou ZW. Development and validation of a computed tomography-based radiomics signature to predict response to neoadjuvant chemotherapy for locally advanced gastric cancer. Jama Netw Open. 2021;4(8): e2121143.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Li ZH, Zhang DF, Dai YG, Dong J, Wu L, Li YJ, Cheng ZX, Ding YY, Liu ZY. Computed tomography-based radiomics for prediction of neoadjuvant chemotherapy outcomes in locally advanced gastric cancer: a pilot study. Chinese J Cancer Res. 2018;30(4):406–14.

    Article  Google Scholar 

  49. Xu QM, Sun ZY, Li XL, Ye C, Zhou CS, Zhang LJ, Lu GM. Advanced gastric cancer: CT radiomics prediction and early detection of downstaging with neoadjuvant chemotherapy. Eur Radiol. 2021;31(11):8765–74.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mazzei MA, Di Giacomo L, Bagnacci G, Bagnacci G, Nardone V, Gentili F, Lucii G, Tini P, Marrelli D, Morgagni P, Mura G, Baiocchi GL, Pittiani F, Volterrani L, Roviello F. Delta-radiomics and response to neoadjuvant treatment in locally advanced gastric cancer-a multicenter study of GIRCG (Italian Research Group for Gastric Cancer). Quant Imag Med Surg. 2021;11(6):2376–87.

    Article  Google Scholar 

  51. Chen Y, Yuan F, Wang LY, Li E, Xu ZH, Wels M, Yao WW, Zhang H. Evaluation of dual-energy CT derived radiomics signatures in predicting outcomes in patients with advanced gastric cancer after neoadjuvant chemotherapy. Eur J Surg Oncol. 2022;48(2):339–47.

    Article  PubMed  Google Scholar 

  52. Jiang YM, Chen CL, Xie JJ, Wang W, Zha XF, Lv WB, Chen H, Hu YF, Li TJ, Yu J, Zhou ZW, Xu YK, Li GX. Radiomics signature of computed tomography imaging for prediction of survival and chemotherapeutic benefits in gastric cancer. EBioMedicine. 2018;36:171–82.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jiang YM, Yuan QY, Lv WB, Xi SJ, Huang WC, Sun ZP, Chen H, Zhao LY, Liu W, Hu YF, Lu LJ, Ma JH, Li TJ, Yu J, Wang QS, Li GX. Radiomic signature of F-18 fluorodeoxyglucose PET/CT for prediction of gastric cancer survival and chemotherapeutic benefits. Theranostics. 2018;8(21):5915–28.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Li JM, Zhang C, Wei J, Zheng PM, Zhang H, Xie Y, Bai JW, Zhu ZL, Zhou KN, Liang XK, Xie YQ, Qin T. Intratumoral and peritumoral radiomics of contrast-enhanced CT for prediction of disease-free survival and chemotherapy response in stage II/III gastric cancer. Front Oncol. 2020;10: 552270.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hambarde P, Talbar S, Mahajan A, Chavan S, Thakur M, Sable N. Prostate lesion segmentation in MR images using radiomics based deeply supervised U-Net. Biocybern Biomed Eng. 2020;40(4):1421–35.

    Article  Google Scholar 

  56. Luo HG, Zhuang QY, Wang YY, Abudumijiti A, Shi KY, Rominger A, Chen H, Yang Z, Tran V, Wu GQ, Li ZJ, Fan Z, Qi ZX, Guo YX, Yu JH, Shi ZF. A novel image signature-based radiomics method to achieve precise diagnosis and prognostic stratification of gliomas. Lab Invest. 2021;101(4):450–62.

    Article  PubMed  Google Scholar 

  57. Jin JB, Zhu HY, Teng YY, Ai Y, Xie CY, Jin XC. The accuracy and radiomics feature effects of multiple U-net-based automatic segmentation models for transvaginal ultrasound images of cervical cancer. J Digit Imaging. 2022;35(4):983–92.

    Article  PubMed  Google Scholar 

  58. Comelli A, Coronnello C, Dahiya N, Benfante V, Palmucci S, Basile A, Vancheri C, Russo G, Yezzi A, Stefano A. Lung segmentation on high-resolution computerized tomography images using deep learning: a preliminary step for radiomics studies. J Imaging. 2021;6(11):125.

    Article  Google Scholar 

  59. Jin JB, Zhu HY, Zhang JD, Ai Y, Zhang J, Teng YY, Xie CY, Jin XC. Multiple U-net-based automatic segmentations and radiomics feature stability on ultrasound images for patients with ovarian cancer. Front Oncol. 2021;10: 614201.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nardone V, Reginelli A, Grassi R, Boldrini L, Vacca G, D’Ippolito E, Annunziata S, Farchione A, Belfiore MP, Desideri I, Cappabianca S. Delta radiomics: a systematic review. Radiol Med. 2021;126(12):1571–83.

    Article  PubMed  Google Scholar 

  61. Tan JW, Wang L, Chen Y, Xi WQ, Ji J, Wang LY, Xu X, Zou LK, Feng JX, Zhang J, Zhang H. Predicting chemotherapeutic response for far-advanced gastric cancer by radiomics with deep learning semi-automatic segmentation. J Cancer. 2020;11(24):7224–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the National Natural Science Foundation of China under Grant Nos. 11727813, 32001074, 32171173, the Open Funding Project of National Key Laboratory of Human Factors Engineering: SYFD061908K, the Natural Science Basic Research Plan in Ningxia Province of China (Program No.2021AAC03319), and the Key Research and Development Program in Ningxia Province of China (NO. 2022BEG03080).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenhua Zhan or Yonghua Zhan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies involving human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, G., Zeng, Y., Chen, D. et al. Application of radiomics in precision prediction of diagnosis and treatment of gastric cancer. Jpn J Radiol 41, 245–257 (2023). https://doi.org/10.1007/s11604-022-01352-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-022-01352-4

Keywords

Navigation