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Abstract
Purpose  The purpose of this study was to evaluate whether deep learning reconstruction (DLR) improves the image quality 
of intracranial magnetic resonance angiography (MRA) at 1.5 T.
Materials and methods  In this retrospective study, MRA images of 40 patients (21 males and 19 females; mean age, 
65.8 ± 13.2 years) were reconstructed with and without the DLR technique (DLR image and non-DLR image, respectively). 
Quantitative image analysis was performed by placing regions of interest on the basilar artery and cerebrospinal fluid in 
the prepontine cistern. We calculated the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) for analyses of the 
basilar artery. Two experienced radiologists evaluated the depiction of structures (the right internal carotid artery, right 
ophthalmic artery, basilar artery, and right superior cerebellar artery), artifacts, subjective noise and overall image quality 
in a qualitative image analysis. Scores were compared in the quantitative and qualitative image analyses between the DLR 
and non-DLR images using Wilcoxon signed-rank tests.
Results  The SNR and CNR for the basilar artery were significantly higher for the DLR images than for the non-DLR images 
(p < 0.001). Qualitative image analysis scores (p < 0.003 and p < 0.005 for readers 1 and 2, respectively), excluding those for 
artifacts (p = 0.072–0.565), were also significantly higher for the DLR images than for the non-DLR images.
Conclusion  DLR enables the production of higher quality 1.5 T intracranial MRA images with improved visualization of 
arteries.
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Introduction

Defects in intracranial vessels cause several neurological 
diseases. Strokes are common and affect one in four people 
[1, 2]. They are the second-leading cause of death and the 
third-leading cause of disability in adults worldwide [1]. 
Most strokes are ischemic strokes [2]. According to the Stop 
Stroke Study-Trial of ORG 10,172 in Acute Stroke Treat-
ment (SSS-TOAST), cases of acute ischemic stroke can be 
classified into the following predetermined etiologic catego-
ries: large artery atherosclerosis, small-artery occlusion, car-
dioaortic embolism, undetermined causes and other causes. 
Optimal use of the SSS-TOAST classification relies on 
imaging of the vessels and brain [3]. Subarachnoid hemor-
rhage accounts for 5–10% of all strokes in the United States 
[4]. Many subarachnoid hemorrhages without any preceding 
trauma are caused by the rupture of an intracranial aneu-
rysm [5]. Magnetic resonance angiography (MRA) allows 
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the evaluation of acute ischemic stroke with SSS-TOAST 
classification [3] and detection of intracranial aneurysms [6].

Time-of-flight MRA (hereafter, time-of-flight MRA 
is referred to as MRA unless otherwise specified) is the 
most common MRA imaging technique. MRA images are 
obtained using magnetic resonance imaging (MRI) units 
with static magnetic fields of 1.5 T, 3 T, etc. MRA images 
obtained with MRI units with higher static magnetic fields 
are associated with some advantages. These images have 
higher spatial resolution and less image noise, allowing 
clearer depictions of large and small intracranial arteries [7, 
8]. However, these MRI units are associated with higher 
costs and are less accessible. It is also safer to perform MRI 
examinations using lower static magnetic fields for patients 
with metal implants. MRI units with a magnetic field of 
1.5 T are widely available. However, as indicated above, 
MRA images obtained from the 1.5 T MRI units are associ-
ated with lower spatial resolution and greater image noise.

Recently, deep learning has gained increasing attention in 
the field of radiology [9–11]. Recent studies have revealed 
that deep learning image analysis allows lesion detection, 
staging and differential diagnosis with MRI [12–14] and 
computed tomography [15, 16]. However, the potential of 
deep learning is not limited to these tasks. In recent years, 
the application of deep learning to image processing has 
also been investigated [17]. Deep learning reconstruction 
(DLR), a new image reconstruction algorithm based on deep 
learning [18], is an example of this application that is now 
available from MRI vendors. This algorithm enables the 
reduction of image noise [18–20], which is one disadvan-
tage of 1.5 T MRA.

This study aimed to evaluate whether DLR improves the 
quality of intracranial MRA images obtained using a 1.5 T 
MRI unit.

Methods

This retrospective study was approved by our institutional 
review board (20-Nr-056). The requirement for written 
informed consent was waived.

Patients

All the consecutive patients who underwent brain MRI 
examinations at a single institution between October 2020 
and February 2021 [40 patients; 21 men and 19 women; 
mean age ± standard deviation (SD), 65.8 ± 13.2 years] were 
included in this study. Indications for brain MRI examina-
tion included the following: dizziness (n = 9), brain infarc-
tion (n = 8), cerebral aneurysm (n = 6), screening before car-
diac surgery (n = 4), headache (n = 4), trigeminal neuralgia 
(n = 2), and others (n = 7).

MRA imaging

Three-dimensional time-of-flight MRA imaging was per-
formed using a 1.5 T MRI unit (Vantage Orian; Canon 
Medical Systems). The imaging parameters for obtaining 
the MRA images were as follows: repetition time, 21 ms; 
echo time, 6.8 ms; flip angle, 20 degrees; number of aver-
ages, 1; field of view, 200 × 200 mm; acquisition matrix, 
384 × 208; pixel bandwidth, 122 Hz; pixel size, 0.2604 mm; 
slice thickness, 1.1 mm; slice interval, 0.55 mm; parallel 
reduction factor, 3; and receive coil, Atlas Head Neck (16 
channel). MRA source images were reconstructed with and 
without the DLR technique (Advanced Intelligent Clear IQ 
Engine; Canon Medical Systems) (DLR images and non-
DLR images, respectively) [18].

All the MRA source images were anonymized and 
exported from the picture archiving and communication 
system in Digital Imaging and Communications in Medi-
cine format. Maximum intensity projection (MIP) images 
with coronal and axial views were generated using ImageJ 
software (https://​imagej.​nih.​gov/​ij/) from the source MRA 
images.

Quantitative analyses

Quantitative analyses were performed using the source MRA 
images on ImageJ software. A radiologist (11 years of imag-
ing experience) drew round regions of interest (ROIs) on 
the basilar artery and cerebrospinal fluid of the prepontine 
cistern (diameters of approximately 1.5 mm for all). The 
peripheral parts of the basilar artery were not included in 
the ROIs to avoid partial volume effects. The ROIs were 
copied and pasted to ensure that their location and size were 
identical on the DLR and non-DLR images. We recorded the 
average signal intensities associated with the basilar artery 
(SIBA) and cerebrospinal fluid (SICSF). The SD of the signal 
intensity for cerebrospinal fluid (SDCSF) was also recorded. 
The signal-to-noise ratio (SNR) and contrast-to-noise ratio 
(CNR) for the basilar artery (SNRBA and CNRBA, respec-
tively) were calculated using the following formulae:

The radiologist also drew a line ROI with the length of 
around 10 mm passing the center of the basilar artery and 
obtained plot profile of SI along the line ROI. The ROIs 
were copied and pasted to ensure that their location and size 
were identical on the DLR and non-DLR images. From the 
plot profile of SI, full width at half maximum (FWHM) of 
the basilar artery was calculated.

SNR
BA

= SI
BA
/SD

CSF

CNR
BA

= (SI
BA

− SI
CSF

)∕SD
CSF

https://imagej.nih.gov/ij/
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Qualitative analyses

Qualitative analyses were performed mainly using the 
source MRA images. Axial and coronal MIP images could 
be referenced to make the evaluation easier. The radiolo-
gist randomized all 80 image sets (40 patients with two 
image sets each). Two additional experienced radiologists 
(readers 1 and 2 with imaging experience of 18 and 7 years, 
respectively) performed the qualitative analyses. They were 
blinded to whether each image set was DLR or non-DLR. 
They independently evaluated single image set at a time. 
They evaluated the image sets in terms of the following: 
depiction of structures (supraclinoid segment of the right 
internal carotid artery, right ophthalmic artery, basilar artery 
and right superior cerebellar artery) (5 = sharp depiction, 
4 = minimal blurriness or heterogeneity, 3 = identifiable 
for most parts with some parts unidentifiable or blurred, 
2 = identifiable for only some parts and with most parts 
unidentifiable or blurred, and 1 = unidentifiable), subjec-
tive image noise (5 = minimal noise, 4 = less than standard 
noise, 3 = standard noise, 2 = more than standard noise, and 
1 = unacceptable noise), artifacts (e.g., laminar-flow related 
and magnetic susceptibility) in the right internal carotid 
artery (3 = no artifacts, 2 = minimal artifacts, and 1 = unac-
ceptable number of artifacts) and overall image quality 
(5 = excellent, 4 = better than standard, 3 = standard, 2 = less 
than standard, and 1 = unacceptable).

Statistical analyses

We used EZR, a graphical interface of R, for most of the 
statistical analyses [21]. Additional analyses were performed 
based on kappa analysis in Python and scikit-learn (https://​
scikit-​learn.​org/​stable/). The normality of the data distribu-
tions for the quantitative analyses was assessed using the 
Shapiro–Wilk test. Because all data did not follow normal 
distributions (p < 0.022), Wilcoxon’s signed rank tests were 
performed for the quantitative analysis. Wilcoxon signed-
rank tests were also performed to compare the qualitative 
scores. A p value of < 0.05 was considered to indicate statis-
tically significant differences. Cohen’s weighted kappa anal-
ysis (with quadratic weight) was performed to evaluate the 
interobserver agreement. The following values were used to 
indicate agreement: 0–0.20, poor; 0.21–0.40, fair; 0.41–0.60, 
moderate; 0.61–0.80, good; and 0.81–1.00, excellent.

Results

Quantitative analyses

For the basilar artery, the mean SNRBA for the DLR images 
was 46.2 ± 23.7, and it was significantly higher than that 
for the non-DLR images (SNRBA = 28.5 ± 13.2) (p < 0.001). 
The CNRBA for the DLR images (42.1 ± 22.3) was also 
significantly higher than that for the non-DLR images 
(CNRBA = 25.7 ± 12.5) (p < 0.001). The SNRBA and CNRBA 
for the DLR images were 1.64 ± 0.38 and 1.66 ± 0.39, 
respectively, times higher than those for the non-DLR 
images.

The mean SIBA in DLR and non-DLR images were 
13,590 ± 781 and 13,515 ± 795, respectively. The mean 
SICSF in DLR and non-DLR images were 1248 ± 431 and 
1401 ± 487, respectively. The difference of SICSF between 
DLR and non-DLR images (153 ± 131) was significantly 
larger than that of SIBA between DLR and non-DLR images 
(74 ± 77) (p = 0.001).

The FWHM of the basilar artery in DLR and non-DLR 
images were 3.23 ± 0.67 mm and 3.25 ± 0.66 mm, respec-
tively, and there was a significant difference between them 
(p = 0.006).

Qualitative analyses

According to both readers, the depiction of large arteries 
(internal carotid artery and basilar artery) (p < 0.001 and 
p < 0.005 for readers 1 and 2, respectively), depiction of 
small arteries (right ophthalmic artery and right superior 
cerebellar artery) (p < 0.003 and p < 0.003 for readers 1 
and 2, respectively) (Figs. 1, 2), and subjective image noise 
(p < 0.001 for both readers) in the DLR images was signifi-
cantly better than those in the non-DLR images (Table 1; 
Fig. 3). The overall image quality (p < 0.001 for both read-
ers) of the DLR images was also better (Table 1; Fig. 3). 
However, there was no significant difference in terms of 
artifacts between the DLR and non-DLR images (p = 0.565 
and 0.072 for readers 1 and 2, respectively).

In the analyses using Cohen’s weighted kappa, the inter-
observer agreement was fair to good for assessments of 
the depiction of structures (kappa value = 0.24–0.63), fair 
for assessments of artifacts (kappa value = 0.23), good for 
assessments of noise (kappa value = 0.78) and good for 
assessments of overall image quality (kappa value = 0.71).

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
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Fig. 1   Depiction of the right 
ophthalmic artery (white arrows 
in a–d) in a 77-year-old man in 
MRA source (a, b) and MIP (c, 
d) images. In this patient, the 
depiction of the right ophthal-
mic artery in the DLR image 
(a, c) and non-DLR image (b, 
d) was rated as 5/4 and 4/2 by 
readers 1 and 2, respectively

Fig. 2   Depiction of the right 
superior cerebellar artery (white 
arrows in a–d) in a 61-year-
old man in MRA source (a, b) 
and MIP (c, d) images. In this 
patient, the depiction of the 
right superior cerebellar artery 
in the DLR image (a and c)/
non-DLR image (b, d) was 
rated as 5/4 and 4/3 by readers 1 
and 2, respectively
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Discussion

DLR, which is available from MRI vendors, can reduce 
image noise. In this study, this technique successfully 
reduced image noise and provided clearer depictions of large 
and small intracranial arteries in MRA images obtained with 
a 1.5 T MRI unit.

MRI units with a magnetic field of 1.5 T are more readily 
accessible than 3 T units. However, MRA images obtained 
with 1.5 T units are associated with lower SNRs. This 
reduced SNR can lead to inferior depictions of small ves-
sels [7, 8], remnants of coiled aneurysms [22], moyamoya 
vessels in patients with moyamoya disease [23] and feeders 
and drainers in arteriovenous malformation [24] in 1.5 T 
MRA images compared with 3 T MRA images. DLR is a 
promising technique that can improve the SNR regardless 
of the organs subjected to MRI [18]. This technique has the 
potential to reduce the existing deficiencies of 1.5 T MRA 
images. In this study, considering that evaluations of both 
large and small arteries are required for SSS-TOAST clas-
sification [3], we evaluated the depiction of large arteries 
(internal carotid artery and basilar artery) and small arteries 
(ophthalmic artery and superior cerebellar artery) of both 
the anterior and posterior circulations in 1.5 T MRA images. 
We achieved significantly clearer depictions of both large 
and small arteries using the DLR technique.

The use of DLR reduced the noise in the MRA images. 
There currently exist several techniques to reduce noise in 
MRI images, including increasing the number of acquisi-
tions. However, this technique results in increased imaging 
time. Besides, the improvement in SNR is theoretically pro-
portional to the square root of the number of acquisitions. 
Thus, to obtain twofold higher quality images in terms of 
the SNR, the imaging time would have to increase fourfold. 
Another way to reduce image noise in MRI is to increase 
the static magnetic field. However, as mentioned above, 

MRI units with higher static magnetic fields are less acces-
sible. DLR provided higher quality intracranial MRA images 
with a higher SNR without compromising imaging time or 
accessibility. In the architecture of DLR technique, discrete 
cosine transform convolution is adopted to divide the data 
into a zero-frequency component path and a path, which is 
composed of 22 feature conversion layers, with 48 high-
frequency components for reducing image noise [18]. This 
enables denoising while maintaining the contrast of images. 
It has been reported that the SNR of MRA images from 3 T 
imaging was 1.8–2.3-fold that of 1.5 T images [7, 8, 25–27]. 
Our study shows that using DLR to improve the SNR was 
close to the use of 3 T MRI units.

The FWHM of the basilar artery in DLR images was 
significantly shorter than that in non-DLR images. In this 
study, the difference of SICSF between DLR and non-DLR 
images was significantly larger than that of SIBA between 
DLR and non-DLR images. This might have lowered SI of 
pixels at the boundary of the basilar artery which had SI of 
half the maximal SI of them, resulting in the shorter FWHM 
in DLR images.

There are some limitations to this study. First, we did 
not evaluate the detectability of diseases because such 
evaluations would require the inclusion of an adequate 
number of patients with each neurovascular disease. How-
ever, because it is evident that the depiction of arteries in 
the brain was significantly improved through the use of 
the DLR algorithm, it is worth conducting further investi-
gations. Second, we did not compare the quality of 1.5 T 
MRA images with that of 3 T MRA images because the 
subjects would have to undergo both 1.5 T and 3 T MRI 
examinations with a minimal interval. A comparison of 
previous reports showed that using DLR to improve SNR 
was close to the use of 3 T MRI units [7, 8, 25–27]. How-
ever, to confirm this, direct comparisons will be needed in 
future studies. In addition, the depiction of arteries and the 

Table 1   Results of subjective image analyses

The number of patients for each score is shown. For interobserver agreement, kappa values are shown
*p < 0.05

Reader 1 Reader 2 Interob-
server 
agreementDLR Non-DLR P value DLR Non-DLR P value

Depiction of structures (5/4/3/2/1)
 Internal carotid artery 29/11/0/0/0 2/38/0/0/0 < 0.001* 7/30/3/0/0 0/33/7/0/0 0.005* 0.24
 Ophthalmic artery 11/15/8/3/3 3/17/14/3/3 0.003* 0/19/14/5/2 0/6/19/13/2 0.003* 0.63
 Basilar artery 29/11/0/0/0 8/32/0/0/0 < 0.001* 20/20/0/0/0 1/38/1/0/0 < 0.001* 0.56
 Superior cerebellar artery 7/28/5/0/0 0/31/8/1/0 0.002* 0/34/6/0/0 0/19/16/5/0 < 0.001* 0.56

Presence of artifacts (3/2/1) 34/6/0 36/4/0 0.565 36/4/0 40/0/0 0.072 0.23
Subjective noise (5/4/3/2/1) 3/37/0/0/0 0/2/38/0/0 < 0.001* 0/36/4/0/0 0/3/37/0/0 < 0.001* 0.78
Overall image quality (5/4/3/2/1) 2/38/0/0/0 0/2/37/1/0 < 0.001* 1/34/5/0/0 0/3/37/0/0 < 0.001* 0.71
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Fig. 3   Results of subjective image analyses. The number of patients 
for each score in depiction of the internal carotid artery (a), ophthal-
mic artery (b), basilar artery (c), and superior cerebellar artery (d), 

artifacts (e), subjective noise (f), and overall image quality (g) is 
shown as bar graphs
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diagnostic performance in terms of detecting cerebrovas-
cular disease should also be compared between 3 T MRA 
images and 1.5 T MRA images processed using DLR in 
future studies. Finally, the interobserver agreement was 
fair for some evaluation items (depiction of internal carotid 
artery and artifacts). Relatively large diameter of internal 
carotid artery might have caused various depictions at the 
center and peripheral part. Presence of several types of 
artifacts might have been associated with the relatively 
lower interobserver agreement for the artifacts. However, 
the results by both readers regarding whether there is sig-
nificant difference or not between the DLR and non-DLR 
images were consistent for all the evaluation items.

In conclusion, DLR produced MRA images of higher 
quality, with less image noise and clearer depictions of arter-
ies. Our study warrants future investigations to evaluate the 
effect of the DLR algorithm on the diagnosis of neurovas-
cular diseases using MRA images.
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