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Abstract
Myocardial ischemia is caused by a mismatch between myocardial oxygen consumption and oxygen delivery in coronary 
artery disease (CAD). Stratification and decision-making based on ischemia improves the prognosis in patients with CAD. 
Non-invasive tests used to evaluate myocardial ischemia include stress electrocardiography, echocardiography, single-photon 
emission computed tomography, and magnetic resonance imaging. Invasive fractional flow reserve is considered the reference 
standard for assessment of the hemodynamic significance of CAD. Computed tomography (CT) angiography has emerged 
as a first-line imaging modality for evaluation of CAD, particularly in the population at low to intermediate risk, because 
of its high negative predictive value; however, CT angiography does not provide information on the hemodynamic signifi-
cance of stenosis, which lowers its specificity. Emerging techniques, e.g., CT perfusion and CT-fractional flow reserve, help 
to address this limitation of CT, by determining the hemodynamic significance of coronary artery stenosis. CT perfusion 
involves acquisition during the first pass of contrast medium through the myocardium following pharmacological stress. CT-
fractional flow reserve uses computational fluid dynamics to model coronary flow, pressure, and resistance. In this article, we 
review these two functional CT techniques in the evaluation of myocardial ischemia, including their principles, technology, 
advantages, limitations, pitfalls, and the current evidence.
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Introduction

Coronary artery atherosclerosis progresses asymptomati-
cally in the early stage and leads to luminal stenosis and 
myocardial ischemia [1]. The ischemic cascade illustrates 

the progressive pathological conditions that develop from 
hemodynamically significant stenosis, evolving from sub-
clinical to clinical stages (Fig. 1) [2–4]. Decreased perfusion 
leads to metabolic changes, followed by diastolic and then 
systolic dysfunction, electrocardiographic (ECG) changes, 
and anginal chest pain [3]. Blood flow and contractile func-
tion in myocardial ischemia can be improved by medical 
therapy or revascularization procedures such as percutane-
ous coronary intervention (PCI) or coronary artery bypass 
grafting (CABG). Large multicenter trials have demon-
strated improvement in the prognosis of coronary artery 
disease (CAD) by decision-making according to myocar-
dial ischemia shown on stress testing [5, 6]. Therefore, cur-
rent international guidelines require proof of myocardial 
ischemia before a revascularization procedure [7, 8]. This 
can be achieved by multiple noninvasive and invasive tests, 
each with advantages and disadvantages (Table 1).

Noninvasive tests include exercise ECG, echocardiog-
raphy, nuclear imaging, stress magnetic resonance imag-
ing (MRI), and computed tomography (CT) and evaluate 
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different stages along the ischemic cascade. The choice 
of test to symptomatic patients is determined by the pre-
test probability of CAD and the inspection characteristics 
including invasiveness, cost, and accessibility. Cardiac CT 
is widely used as coronary CT angiography (CTA), allowing 
direct visualization of coronary artery stenosis, and plays 
an important role in the diagnostic management of CAD 
[7]. The other non-invasive tests can evaluate myocardial 
ischemia, but leave some difficulties on the detection of cul-
prit lesion causing ischemia. The invasive fractional flow 
reserve (FFR) can evaluate the lesion-specific ischemia com-
pared to the morphological stenosis assessed by invasive 
coronary angiography (ICA) under the conditions of maxi-
mum hyperemia [9, 10]. The FFR correlates poorly with ste-
nosis on ICA, and many stenoses that are significant on ICA 
(≥ 50% stenosis) do not have a significant low FFR (≤ 0.8) 
[5, 10]. The clinical outcome has been shown to be better 
when revascularization decisions are based on the FFR than 
on visual estimation of the severity on ICA [5, 11–13].

Japan has the most computed tomography (CT) scanners 
among those of the Organization for Economic Co-operation 
and Development (OECD) countries [14]. In Japan, cardiac 
CT is more common than other modalities (MRI, SPECT, 
PET), and the number of examinations is also increasing 
because of the high accessibility and diagnostic performance 
for detecting coronary artery stenosis [15]. Recent CT tech-
nological developments such as high-speed gantry rotation, 
wide-detector, and iterative reconstruction have increased 

the value of coronary CTA. Moreover, they allow us to 
assess myocardial ischemia using stress CTP or CT-derived 
FFR estimation based on computational flow dynamics. In 
this review, we review the clinical usefulness of CT-based 
diagnostic tools in assessing myocardial ischemia from the 
methodology to advantages and clinical limitations.

Coronary CTA in CAD

Coronary CTA has high diagnostic performance for predic-
tion of significant coronary stenosis on ICA (i.e., ≥ 50%) 
with sensitivity of 89%, specificity of 96%, positive pre-
dictive value (PPV) of 78%, and negative predictive value 
(NPV) of 98% on per-segment basis [16]. The high NPV 
makes coronary CTA valuable for excluding CAD in the 
population at low or intermediate risk and acting as a gate-
keeper for ICA. Up to 63% of elective ICA procedures show 
non-obstructive disease despite previous functional tests, 
resulting in suboptimal resource utilization [17]. However, 
CTA is limited in terms of revealing the hemodynamic sig-
nificance of a stenosis, given that there is no correlation 
between the severity of stenosis on CTA and the functional 
consequences. Only 49% of significant coronary stenosis 
on CTA (≥ 50% reduction in diameter) correlates with the 
gold standard of invasive FFR (< 0.75) [18]. Possible causes 
for this poor correlation include visual overestimation of 
luminal stenosis and classification of lesions with heavy 
calcification or motion as “positive” [19]. As a result of the 
poor specificity, patients with ≥ 50% stenosis on CTA are 
recommended to undergo further investigation with a func-
tional test to estimate the hemodynamic significance of the 
stenosis [20].

CT perfusion

Principle of CTP

CTP evaluates the first pass of contrast medium through the 
myocardium at rest and during pharmacological stress. CTP 
emphasizes the differences in perfusion between normal and 
ischemic myocardium (Fig. 2) [21]. Myocardial perfusion 
is a complex process involving the coronary arteries and 
microvasculature. Coronary artery stenosis decreases the 
myocardial blood flow and perfusion pressure whereas the 
microvessels dilate to decrease resistance and maintain rest-
ing myocardial perfusion even at 80% luminal stenosis [22]. 
Autoregulation is limited at rest when the stenosis is severe 
and during stress even in the earlier stages due to higher 
myocardial oxygen consumption in these states [22].

Fig. 1   Illustration showing the progressive pathological conditions 
in the myocardial ischemic cascade. Coronary artery atherosclero-
sis progresses and leads to myocardial hypoperfusion because of 
plaque progression and luminal stenosis. Myocardial hypoperfusion 
is followed by metabolic abnormalities, diastolic dysfunction, systolic 
dysfunction, and ECG abnormalities, culminating in chest pain. The 
right column shows the modalities that can be used to detect abnor-
malities at each step of the cascade. CT computed tomography, CTA​ 
computed tomography angiography, ECG electrocardiogram, SPECT 
single-photon emission computed tomography, PET positron emis-
sion tomography, MRI magnetic resonance imaging
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Stress agents for CTP

Hyperemia is induced by intravenous administration of 
a vasodilator stress agent, such as adenosine, adenosine 
triphosphate (ATP), dipyridamole, or regadenoson. Adeno-
sine binds to the A2A adenosine receptor, leading to cor-
onary vasodilation. It is injected at a rate of 0.14 mg/kg/
min for 6 min and has a rapid onset of action and a short 
half-life of 1–5 s. ATP is metabolized to adenosine and acts 
in the same way as adenosine. It is injected intravenously 
at a rate of 0.16 mg/kg/min for 5 min and has a half-life 
of ≤ 20 s. Both these agents are cleared by cellular mecha-
nisms. Dipyridamole acts indirectly by preventing intracel-
lular reuptake and transport of adenosine by endothelial cells 
and by increasing endogenous adenosine levels. It is injected 
intravenously at a rate of 0.14 mg/kg/min for 4 min, has a 
half-life of 30–45 min, and is cleared by liver. Adenosine, 
ATP, and dipyridamole are non-selective adenosine recep-
tor agonists and cause flushing, headache, lightheadedness, 
and chest discomfort, and these side effects are naturally 

treated due to the very short half-life of adenosine or ATP. 
Regarding dipyridamole, aminophylline (50–250 mg intra-
venously at least 1 min after the tracer injection) is used if 
necessary. Regadenoson is a selective A2A agonist that has 
a lower risk of side effects. It is injected as a bolus of 0.4 mg 
over 10 s and is followed by a saline flush; it has a half-life 
of 33–108 s and is cleared by the kidney [23–25]. Patients 
should be instructed to avoid consuming caffeine-containing 
products for ≥ 24 h prior to the scheduled test to prevent the 
interference with the coronary vasodilatory effects.

Acquisition techniques of CTP

Static CTP imaging

Static CTP refers to the single sampling of perfusion dur-
ing the first pass of iodinated contrast in the myocardium 
(Fig. 3a) [26]. Scan timing is critical for detecting the perfu-
sion abnormality when this technique is used. A bolus-track-
ing or timing-bolus technique can aid accurate calculation 

Table 1   Advantages and disadvantages of different tests used in the evaluation of myocardial ischemia

CT computed tomography, ECG electrocardiogram, FFR fractional flow reserve, MRI magnetic resonance imaging, PET positron emission 
tomography, SPECT single-photon emission computed tomography

Modality Advantages Disadvantages

Electrocardiogram Availability Depends on patient activity and cooperation with the test
Cost-effectiveness Low sensitivity for ischemia
Multipurpose use for ischemia, exercise tolerance, and 

therapeutic effect
Diagnostic difficulty on a per-vessel basis

Echocardiogram High temporal resolution Two-dimensional cross-sectional images
Differential assessment of diastolic and systolic dysfunction Depends on operator experience, image quality, and limited 

acoustic window
Myocardial strain imaging

CT High spatial resolution Radiation exposure
Assessment of coronary artery stenosis and plaque Limited temporal resolution
CT perfusion (ischemia) Intolerance to irregular heartbeat
Late iodine enhancement (infarction) Contrast contamination by preceding protocol
CT-FFR (computational lesion-specific assessment of myo-

cardial ischemia)
Contrast-related complications (kidney, allergy, and chronic 

lung disease)
Nuclear imaging 

(SPECT, PET)
Abundant evidence Less spatial resolution

Tracer selection by purpose No information on coronary anatomy
ECG-gated scan (perfusion and wall motion) Radiation dose
Image fusion Cost and throughput
Myocardial viability

MRI High spatial resolution Contraindications (metallic device, claustrophobia)
High contrast resolution Contrast-related complications (brain deposition, nephrogenic 

systemic fibrosis)
No ionizing radiation exposure Throughput (long examination time)
Differentiation of ischemia and infarction Susceptible to arrhythmia

Invasive FFR Lesion-specific assessment of myocardial ischemia Invasive procedure and risk of complications
Established evidence for decision-making and prognosis Complexity for repeat pharmacological stress
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Fig. 2   Time attenuation curves 
for normal myocardium (blue) 
and ischemic myocardium 
(orange). At the optimal scan 
time (B), stress CT perfusion 
demonstrates a clear distinction 
between a normal and ischemic 
myocardium because of large 
differences in attenuation 
between normal and abnormal 
myocardium. Stress CT perfu-
sion cannot distinguish normal 
from ischemic myocardium if 
the timing is too early (A) or too 
late (C). CT computed tomogra-
phy, HU Hounsfield unit

Fig. 3   Static and dynamic CTP techniques. a Static CTP data are 
acquired during a single phase of first pass of contrast in the myocar-
dium. b Dynamic CTP data are acquired at multiple phases of first 

pass of contrast in the myocardium. Blue box means scan duration. 
CTP computed tomography perfusion, HU Hounsfield unit
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of the scan time. The optimal scan time is approximately 
2–10 s from the time of peak enhancement in the ascend-
ing aorta [27, 28]. Scan timing is affected by many factors, 
including cardiac output, injection rate, and the severity of 
the perfusion abnormality. Therefore, prospective estima-
tion of the optimal scan timing is challenging. In static CTP, 
stress and rest CTP images are acquired with either prospec-
tive ECG triggering or retrospective ECG gating during a 
single breath-hold. Acquisitions with retrospective ECG 
gating provide additional information on wall motion dur-
ing the cardiac cycle. As a result of improved spatial and 
temporal resolution of CT scanner, there is now potential 
to simultaneously evaluate both myocardial and coronary 
artery perfusion by stress static CTP alone using a low effec-
tive radiation dose (2.5 ± 1.1 mSv) [29].

Dynamic CTP imaging

Dynamic CTP imaging refers to the acquisition of multiple 
samples during first pass of iodinated contrast in the myo-
cardium (Fig. 3b). Unlike static CTP, the diagnostic per-
formance of this technique is independent of the optimal 
scan timing and it also allows quantification of myocardial 
perfusion [30]. The prospective ECG-triggered acquisition 
in the systolic phase (40% R–R interval) is advantageous 
because this phase is less affected by motion artifact and 
the hypoenhancement is more visible than in the diastolic 
phase [31]. Motion in the target phase can be reduced by 
motion correction algorithms that analyze per-vessel and 
per-segment motion at the voxel level using information 
from adjacent cardiac phases within a single cardiac cycle 
[32]. High temporal resolution and wide detector coverage 
are desirable to obtain perfusion data for the whole heart. 
Dual-source CT has high temporal resolution (up to 66 ms), 
which allows acquisition of motion-free images, even at high 
heart rates. Coronary CTA derived from dynamic CTP imag-
ing by third-generation dual-source CT is useful for diagno-
sis of coronary artery stenosis [33]. The ECG-triggered axial 
shuttle mode available on dual-source CT allows acquisition 
of a dynamic CTP dataset for the whole heart en bloc using 
rapid movement between two table positions. Although the 
dynamic acquisitions are performed every third or more 
heartbeat, dynamic CTP with dual-source CT has been 
reported to have good diagnostic performance for detecting 
a myocardial perfusion abnormality [34]. Wide-detector CT 
(e.g., 256 or 320 slice detectors, with 8 cm/16 cm z-cover-
age) enables acquisition of data in consecutive heartbeats, 
providing whole-heart perfusion without temporal gaps 
[30, 35]. Dynamic CTP imaging by wide-detector CT can 
accurately quantify myocardial perfusion and is comparable 
to positron emission tomography (PET) with 15O-labelled 
water, which is the gold standard tracer because it uses a 
freely diffusible tracer with a 100% extraction fraction even 

at high blood flow [36]. The radiation dose required for 
dynamic CTP is substantially higher than that for static CTP 
[37]. However, advances in CT scanners, the scan protocol, 
and reconstruction techniques (e.g., low tube voltage, itera-
tive reconstruction) can reduce radiation exposure (< 4 mSv) 
without impairing image quality [38–40].

CTP scan protocols

Stress CTP‑first, rest CTP‑first, or stress CTP‑only

There are two types of CTP protocols, namely stress-first 
and rest-first (Fig. 5). Rest CTP also serves as CTA. A gap 
of at least 10–20 min is allowed between stress and rest CTP 
to reduce the effects of the medication(s) used in the preced-
ing scan [21]. The advantages of stress-first protocol are the 
higher sensitivity for detecting ischemia than rest-first pro-
tocol and optimized CTA at the second acquisition because 
of the ability to administer medications (e.g., β-blockers or 
nitrates) necessary for good image quality without interfer-
ing with assessment of stress perfusion. The advantages of 
rest-first protocol are the higher sensitivity for detecting 
myocardial infarction than stress-first protocol and the abil-
ity to abandon stress CTP if there are no significant lesions 
in the preceding CTA [25]. However, in the rest-first proto-
col, contrast contamination from the rest acquisition may 
hamper the diagnostic performance of the subsequent stress 
CTP. A rest-first protocol is preferable for patients with a low 
to intermediate pre-test probability of CAD while a stress-
first protocol is preferable for those with a high pre-test prob-
ability of CAD, extensive coronary artery calcifications, or 
a known history of CAD/PCI or myocardial infarction [23]. 
Regarding dynamic CTP imaging, a stress-only CTP proto-
col is often adopted because of the limit of radiation expo-
sure. Although a stress-only CTP protocol cannot yield a 
quantification of coronary flow reserve (CFR), the diagnostic 
performance is still high thanks to the routine quantitative 
technique as mentioned in detail later [34, 35, 41].

Optional scan protocol

Dual energy CTP

Dual-energy CT (DECT) refers to acquisition of CT data 
at two different energy levels. DECT allows for charac-
terization of materials with similar attenuation coeffi-
cients but different atomic numbers because the tissues 
show different attenuation properties at different energy 
levels [42]. Commonly used DECT techniques include 
dual-source, rapid kVp switching, and dual-layer detector 
technologies [43]. DECT allows generation of multiple 
additional images, including iodine maps (Fig. 4), and vir-
tual monoenergetic images (VMIs). Iodine maps highlight 
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pixels containing iodine and can discriminate normal, 
ischemic, and infarcted myocardium on stress CTP [44] 
(Fig. 4). Iodine maps have better diagnostic performance 
than conventional images [43] and also provide quanti-
tative information [45]. VMIs mimic images obtained 
at a single energy level and can be generated from 40 to 
200 keV. Low-energy VMIs (i.e., less than 70 keV) show 
higher attenuation of iodine because of approximation 
with its K-edge. Hence, perfusion defects are more con-
spicuous due to the enhanced contrast between normal and 
ischemic myocardium [46]. High-energy VMI is beneficial 
for reducing beam-hardening artifact [47]. Use of VMI is a 
balance between image contrast and these artifacts.

Late iodine enhancement CT

Late iodine enhancement CT (LIE-CT) refers to a delayed 
phase acquisition following CTP/CTA, which is an optional 
phase for assessment of myocardial infarction (Fig. 5). As 
with late gadolinium enhancement MRI (LGE-MRI), iodi-
nated contrast is retained in the extracellular space of scar/
fibrosis [48]. Like LGE-MRI, LIE-CT has the potential for 
accurate estimation of myocardial viability [48, 49]. LIE-CT 
is feasible for the assessment of non-ischemic cardiomyo-
pathy such as cardiac sarcoidosis [50]. A large amount of 
iodine contrast medium is required to clearly visualize LIE. 
In the protocol including both CTA and CTP, the amount 
of contrast is enough for LIE-CT [51, 52], while in the pro-
tocol including CTA alone, additional injection of contrast 
medium might be required for LIE-CT [49, 53]. Previously 
limited by a low contrast-to-noise ratio, LIE-CT has been 
improved by recent technological advances, such as use of 
a low tube voltage and iterative reconstruction with a low 
radiation dose (≤ 2 mSv) [52]. With DECT, low-energy VMI 
and the iodine map also improve the visibility of myocardial 
infarction on LIE-CT [53].

Interpretation of CTP images

Visual assessment is the main evaluation method for static 
CTP. A perfusion defect is seen as an area with attenuation 
that is lower than that of remote myocardium in a subendo-
cardial or transmural distribution. The perfusion defect in 
ischemia could be seen only on the stress CTP images. The 
perfusion defect in infarction could be seen on both stress 
and rest images, but the infarction is sometimes missed in 
the rest images, especially in stress-first protocol. Therefore, 

Fig. 4   A dual-energy CT scan overlaid with iodine in the short-axis 
plane obtained from a static stress myocardial CTP scan showing a 
perfusion defect in the mid anterolateral septum (arrow). CT com-
puted tomography, CTP computed tomography perfusion

Fig. 5   Comprehensive CTP 
protocol. In the stress-first 
protocol, CTP is first acquired 
with pharmacological stress. 
The rest CTP is acquired 
10–20 min later and also serves 
as coronary CTA. Nitroglycerin 
and β-blockers are administered 
during this phase to obtain 
high-quality coronary CTA 
images. LIE-CT scans can be 
obtained 5–10 min following 
the second CTP scan. In the 
rest-first protocol, rest images 
are acquired first and stress 
images are acquired later. CTA​ 
computed tomography angiog-
raphy, CTP computed tomog-
raphy perfusion, LIE-CT late 
iodine enhancement computed 
tomography
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LIE-CT is required to identify the infarction [21]. CTP has 
higher spatial resolution and diagnostic performance for 
detecting a perfusion abnormality than single-photon emis-
sion tomography (SPECT) [54] (Fig. 6, movie in Online 
Resource 1). The ischemia can be scored semi-quantitatively 
at a segmental level, similar to SPECT [55]. The American 
Heart Association recommends that the left ventricle be 
divided into 17 segments for regional analysis of myocardial 
perfusion [56]. The scores of the 17 segments can be added 
to give the summed stress and rest scores, with their differ-
ence being the summed difference score [56].

False positives are seen on CTP due to several types 
of artifact. The most common is beam-hardening artifact, 
which is caused by preferential attenuation of low-energy 
photons in a polychromatic X-ray beam. Beam hardening 
is usually transmural and always occurs in the plane of the 
X-ray beam adjacent to highly attenuating structures. On 

CTP, beam-hardening artifact is caused by dense contrast 
in the left ventricular cavity and descending aorta adjacent 
to the free wall of the left ventricle and is most commonly 
seen in the basal inferior and anterior walls of the left ven-
tricle [21, 55]. These artifacts can be minimized by using 
dedicated beam-hardening correction algorithms or DECT 
[47, 57]. False-positive perfusion defects may also be seen 
due to cardiac or respiratory motion or reconstruction arti-
facts, such as cone beam artifact. Misalignment artifacts can 
produce image stacks acquired during different heartbeats 
[21]. Semi-quantitative perfusion measurements have been 
developed for static CTP and include the transmural per-
fusion ratio (TPR) and myocardial perfusion reserve index 
(MPRI) [58]. The TPR and MPRI are calculated as follows: 
TPR = subendocardial mean attenuation density (AD)/sub-
epicardial mean AD, where MPRI = (AD stress − AD rest)/
AD rest. This semi-quantitative assessment has diagnostic 
performance comparable to that of visual assessment for 
detection of obstructive CAD [59].

Dynamic CTP can be assessed visually in the same way 
as static CTP (movie in Online Resource 2). However, 
dynamic CTP is mainly assessed by a semi-quantitative or 
fully quantitative technique, because the visual interpreta-
tion of CTP image is more difficult than that of MRI due 
to the lower image contrast [60]. Semi-quantitative param-
eters are derived from the myocardial time attenuation curve 
and include upslope, peak enhancement, time to peak, and 
area under the curve. Upslope has been shown to have the 
highest diagnostic performance for detection of a perfusion 
abnormality [61]. Fully quantitative parameters are derived 
from both arterial and myocardial time attenuation curves, 
including myocardial blood flow (MBF), myocardial blood 
volume, and mean transit time. MBF is the most important 
quantitative parameter and is frequently used for assess-
ment of perfusion whereas the usefulness of myocardial 
blood volume and mean transit time is not well studied [62] 
(Fig. 7). Quantitative parameters are useful for assessment 
of balanced ischemia in triple-vessel disease, which is dif-
ficult to assess on SPECT. There are several mathematical 
methods for quantifying myocardial perfusion in dynamic 
CTP, including maximum upslope, a compartment model, 
an extended Toft model, a Patlak plot, a Fermi parametric 
model, and model-independent deconvolution [35, 63, 64]. 
However, the optimal quantification method remains con-
troversial and the cut-off value on dynamic CTP imaging 
is still not standardized. Recently, relative flow reserve has 
been shown to be a better alternative to absolute MBF [40, 
65, 66]. CFR is calculated as a quantitative ratio of stress 
MBF to rest MBF in stress and rest dynamic CTP protocol 
[36]. CFR provides the information of not only epi-coronary 
artery but also microvascular function, and is significantly 
impaired due to obstructive epicardial CAD or coronary 
microvascular dysfunction [67]. Obara et al. reported that 

Fig. 6   Static CTP scans for single-vessel disease in a 68-year-old 
woman with chest pain. She had hypertension and dyslipidemia. a A 
short-axis CTP image following stress shows a subendocardial perfu-
sion defect in the mid anterolateral wall (arrows). b A rest CTP image 
in the same position as a shows no perfusion defect, consistent with 
myocardial ischemia. CTP computed tomography perfusion
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CFR and stress MBF had sufficient sensitivity, PPV, and 
NPV to detect obstructive CAD assessed by invasive coro-
nary angiography both in per-patient and in per-vessel analy-
ses as with 15O-labelled water PET [68, 69]. Nakamori et al. 
reported that CFR had the additive value in addition to the 
stress-rest perfusion MRI for detecting reduced FFR in mul-
tivessel disease [70]. van de Hoef et al. reported that discord-
ance between CFR and FFR originated from the involvement 
of the microvascular function, and the risk for major adverse 
cardiac events associated with FFR/CFR discordance was 
mainly attributable to stenoses with abnormal CFR [71]. 
Although CFR is very useful as diagnostic and prognostic 
predictor, stress and rest dynamic CTP protocol has restric-
tion of use due to the radiation exposure. Therefore, further 
radiation reduction of dynamic CTP is required to use CFR 
in clinical routine.

Iterative reconstruction and other algorithms 
for CTP

Radiation exposure and suboptimal image contrast are 
important concerns in CTP imaging. Iterative reconstruc-
tion algorithms decrease image noise, allowing use of 
low-dose CT techniques (e.g., low tube voltage) with main-
tenance of image quality [72, 73]. There are several itera-
tive reconstruction (IR) algorithms; some are hybrid IR” 
techniques that are combined with filtered back projection 
(FBP) to reduce reconstruction time and some are “fully 
IR” with higher performance [74]. Use of a fully IR tech-
nique improves image quality without altering hemodynamic 
parameters on low-dose dynamic CTP when compared with 
FBP or hybrid IR [39]. Recently, artificial intelligence was 
used to improve CT image reconstruction [75]. These tech-
niques have the potential to optimize the quality of low-dose 
myocardial CTP images with shortening of reconstruction 
times [76, 77].

Advantages of CTP

A major advantage of CTP is that it allows a perfusion defect 
to be visualized directly with high temporal and spatial reso-
lution, as would MRI [78]. CTP is useful for assessment 
of the hemodynamic significance and effective classifica-
tion of coronary lesions, allowing integrated evaluation of 
CAD when combined with CTA (Fig. 8) [30, 79]. Moreo-
ver, myocardial perfusion can be quantified and the effect 
of treatment after revascularization can be evaluated [35, 
80]. CTP can provide functional information even in patients 
with heavy calcifications or stenting, which are limitations 
of CT-FFR [41, 81]. CTP is preferred by patients [82] and 
is more cost-effective than SPECT [83].

Fig. 7   Dynamic CTP scans for single-vessel disease in an 87-year-
old man with chest pain. He had hypertension and a history of smok-
ing. Short-axis (a) and two-chamber (b) grayscale stress dynamic 
CTP images showing a subendocardial perfusion defect in the ante-
rolateral, anterior, and anteroseptal segments (arrows). c A CT-MBF 
color-coded image shows that the MBF in the ischemic myocardium 
is lower than in the remote myocardium. CTP computed tomography 
perfusion, CT-MBF computed tomography derived-myocardial blood 
flow
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Limitations of CTP

CTP is not widely available because it requires a high level 
of expertise and multiple resources, including advanced 
scanners and reconstruction algorithms. Greater radiation 
exposure, use of a higher contrast dose compared with 
CTA alone (static CTP alone 1.9–15.7 mSv, dynamic CTP 

alone 3.8–12.8 mSv, combined CTA and stress CTP proto-
col 3–16 mSv) [37, 84], and side effects of medications are 
also issues. Static CTP is limited in evaluation of patients 
after CABG because of the complexity of myocardial per-
fusion via the native coronary arteries and bypass grafts.

Fig. 8   Dynamic CTP scans 
for triple-vessel disease in an 
84-year-old woman with chest 
pain. a Short-axis view of a 
dynamic CTP (grayscale) shows 
a subendocardial perfusion 
defect in the entire circumfer-
ence of the heart (white arrows). 
b A CT-MBF color-coded 
image shows low CT-MBF 
throughout the heart. SPECT 
during c stress and d at rest 
shows a reversible perfusion 
defect in the lateral wall but no 
marked perfusion defect in the 
other regions. Invasive coronary 
angiography of the e right and 
f left coronary arteries shows 
severe triple-vessel disease. 
In this case, single-photon 
emission tomography did not 
accurately detect the presence of 
triple-vessel disease, known as 
balanced ischemia. CTP com-
puted tomography perfusion, 
CT-MBF computed tomography 
derived-myocardial blood flow, 
SPECT single-photon emission 
computed tomography
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Current evidence of CTP

Multiple studies have established the high diagnostic per-
formance of both static and dynamic CTP for detecting 
hemodynamically significant stenosis [34, 36, 41, 61, 62, 
78, 81, 84–90] (Table 2). Recent meta-analyses indicated 
that dynamic CTP has higher sensitivity but lower speci-
ficity than static CTP (sensitivity, 85% vs 72–80%; speci-
ficity, 90–93% vs 81–83%) [84, 90] (Table 2). Moreover, 
the CORE320 study (n = 381) demonstrated that static CTP 
has incremental diagnostic value over CTA for detection 
of hemodynamically significant coronary lesions, with a 
specificity of 74% vs 51% for CTA, a PPV of 65% vs 53%, 
and an area under the receiver-operating characteristic curve 
(AUC) of 0.87 vs 0.84 [91]. Pontone et al. (n = 147) reported 
similar results in static CTP (a specificity of 95% vs 76% for 
CTA and a PPV of 87% vs 61%) [92]. The CRESCENT-II 
trial indicated that incorporation of dynamic CTP imaging 
as part of a tiered diagnostic approach could improve the 
clinical value and efficiency of cardiac CT in the diagnostic 
work-up of patients with stable CAD and was an effective 
alternative to standard guideline-directed functional testing 
[93]. Both static and dynamic CTP has also been reported 
to have incremental predictive value over clinical risk fac-
tors and CTA in assessment for future major adverse cardiac 
events (MACE) [94, 95]. Dynamic CTP was shown to have 

higher prognostic value for MACE than CTA and CT-FFR, 
independent of clinical risk factors [96].

CT‑fractional flow reserve

Principle of CT‑FFR

CT-FFR calculates the FFR from coronary CTA data at rest 
using computational fluid dynamics to generate a math-
ematical model of coronary flow, pressure, and resistance 
[97]. This modeling relies on the following four important 
principles and assumptions: (1) under resting conditions, 
the total coronary flow is proportional to myocardial mass; 
(2) resting coronary microvascular resistance is inversely 
proportional to the size of the epicardial coronary arteries; 
(3) the dilatory response of the coronary arteries to adeno-
sine during ICA is predictable and can be used to create 
a computational model of the maximal hyperemic state, 
which is generally simulated by reducing the microvascular 
resistance by a factor of 0.21, and although adenosine is not 
required, administration of nitroglycerine is a pre-requisite 
for measurement of CT-FFR; and (4) solving the complex 
three-dimensional Navier–Stokes equation that governs 
fluid dynamics can compute the flow and pressure across 
the coronary vascular bed [98].

Table 2   Diagnostic performance of computed tomography perfusion with invasive fractional flow reserve as the gold standard

AUC​ area under the curve, MBF myocardial blood flow, NLR negative likelihood ratio, NPV negative predictive value, PLR positive likelihood 
ratio, PPV positive predictive value

Study Patients, n Technique Sensitivity 
(%)

Specificity (%) PPV (%) NPV (%) AUC​ MBF cut-off

Bettencourt et al. [78] 101 Static 55 95 78 87 0.75
Yang et al. [86] 75 Static 80 95 92 87 0.87
Yang et al. [87] 72 Static 79 91 86 87 0.88
Ihdayhid et al. [41] 46 Static 54 92 79 77 0.72
Greif et al. [62] 65 Dynamic 95 74 49 98 0.71 0.75 ml/g/min
Huber et al. [61] 32 Dynamic 76 100 100 91 0.86 1.64 ml/g/min
Rossi et al. [88] 80 Dynamic 88 90 77 95 0.95 0.78 ml/g/min
Coenen et al. [34] 43 Dynamic 75 78 78 75 0.78 0.76 ml/g/min
Coenen et al. [81] 74 Dynamic 75 61 63 73 0.78 0.91 ml/g/min

Meta-analysis Vessels, n Protocol Sensitivity (%) Specificity (%) PLR NLR AUC​

Takx et al. [85] 1074 Static 78 86 5.74 0.22 0.91
Lu et al. [89] 697 Dynamic 85 81 4.46 0.21 0.91
Celeng et al. [90] 2118 Overall 81 86 6.28 0.23

Static 72 90
Dynamic 85 81

Hamon et al. [84] 2336 Overall 82 89 7.72 0.21 0.94
Static 80 93 10.77 0.23 0.96
Dynamic 85 83 4.89 0.17 0.94
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Technology of CT‑FFR

Several large-scale multicenter trials have shown the high 
diagnostic performance of CT-FFR by a remote analy-
sis service in selected patients with CAD [98–100]. In 
this technology, the CTA data are transferred through 
a secure network to an off-site location. A patient-spe-
cific three-dimensional model of the coronary arteries 
is created after segmentation of the CTA data. Using the 
above-mentioned mathematical assumptions, a super-
computer performs complex post-processing to solve the 
equations governing fluid dynamics and blood flow [97, 
101]. Simulated hyperemic blood flow and pressure data 
are then generated, and the results are sent back to the 
referring institution within a few hours (Fig. 9). On-site 
vendor-based platforms are also available in some institu-
tions, including a machine learning-based algorithm [102, 
103], four-dimensional CT image tracking (registration) 
and structural and fluid analysis [104, 105], and patient-
specific lumped parameter models [106, 107].

However, the off-site CT-FFR using a remote analysis 
service is recently received with national reimbursement 
approval in Japan, but the available facilities are strictly 
limited by requirements. Meanwhile, the on-site CT-FFR 
is also available only for clinical research.

Interpretation of CT‑FFR

CT-FFR is presented as a color-coded map of continu-
ous CT-FFR values computed along each coronary vessel 
(Fig. 10). These values are both specific for a lesion and for 
the entire coronary tree. CT-FFR results are interpreted in 
conjunction with anatomic CTA findings, including vessel 
size, presence and location of stenosis, suitability for revas-
cularization, and other CT-FFR values. Coronary stenosis 
with a precipitous drop in CT-FFR across the lesion, particu-
larly if < 0.75, is associated with lesion-specific ischemia. A 
CT-FFR value > 0.8 distal to a stenosis is rarely associated 
with ischemia. A CT-FFR value between 0.75 and 0.80 is 
“gray zone” or borderline [101]. It is important to measure 
the CT-FFR immediately distal to a stenotic vessel because 
the CT-FFR value in the most distal vessel segment may 
not necessarily correlate with the functional significance of 
the stenosis. A gradual drop in pressure along the length of 
the vessel without focal stenosis, particularly for borderline 
values, can be a normal phenomenon or due to a small ves-
sel size, inadequate response to a nitrate, diffuse disease, 
or a serial lesion [97, 101]. There are ICA data showing 
that diffuse disease can cause a hemodynamically signifi-
cant drop in the pressure gradient [108] but the CT data 
are inadequate. The referring clinician should interpret the 
findings in view of the anatomy, entire physiological model, 
and symptoms.

Fig. 9   Illustration showing the CT-FFR technique. The CCTA data 
are segmented and a three-dimensional model is generated. This 
model is then processed by a supercomputer using assumptions of 
physiological conditions to solve the Navier–Stokes equation and 

generate a hyperemic model of coronary flow and pressure. CCTA​ 
coronary computed tomography angiography, CT computed tomogra-
phy, FFR fractional flow reserve
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Clinical utility: when to use CT‑FFR?

CT-FFR is most valuable in patients with moderate 
(50–70%) stenosis on CTA. CT-FFR clarifies the hemo-
dynamic significance of stenosis in these patients and aids 
decision-making [109]. If a patient has moderate coronary 
artery stenosis on CTA and the CT-FFR value is > 0.8, ICA 
can be avoided (Fig. 11). However, if the value is < 0.8, 
ICA can be performed with the intention to treat the lesion 
(Fig. 12). If CTA shows a non-obstructive lesion (< 50% 
stenosis), the patient is referred for medical treatment and 
there is no need to perform CT-FFR or ICA. If CTA shows 
severe stenosis, the patient is referred for ICA without the 
need for CT-FFR. In patients with multivessel disease or 

tandem lesions, CT-FFR helps to identify the lesions need-
ing revascularization [110]. However, CT-FFR may under-
estimate the contribution of true stenosis in serial stenoses 
[111]. A noninvasive PCI planning tool has been devised to 
help determine the contribution of true stenosis in serial and 
diffuse CAD [111]. A virtual stent can also be placed and the 
response to revascularization estimated [112].

Current evidence of CT‑FFR

The accuracy of CT-FFR has been validated in several 
studies (Table 3) [81, 98–100, 103, 105–107, 113–122], 
predominantly with off-site technology, which uses inva-
sive FFR as the gold standard. The specificity of CT when 

Fig. 10   Normal CT-FFR report for a 59-year-old man with atypical 
chest pain. The CT-FFR report shows the coronary arteries color-
coded according to their CT-FFR values. In this patient, all the major 

coronary arteries show normal values (> 0.8). CT computed tomogra-
phy, FFR fractional flow reserve
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CT-FFR is used is better than when CTA alone is used 
[82% vs 40% in DISCOVER-FLOW (per-vessel), 54% vs 
42% in DEFACTO (per-patient), and 79% vs 34% in NXT 
(per-patient)] [98–100]. Similar results were seen with on-
site vendor-based and machine learning algorithms [81, 
103, 105–107, 113, 116–119]. One meta-analysis showed 
a pooled specificity of 76% and an odds ratio of 26.2 for 
detecting ischemic lesions on the per-patient basis [121], 
whereas another study showed that CT-FFR had higher 
specificity than CTA (71% vs 39%) but similar sensitivity 
(91%) on the per-patient basis [122]. CT-FFR had diagnostic 

accuracy similar to that of SPECT but had higher sensitiv-
ity for predicting FFR-guided revascularization [114]. With 
good-quality CTA images, CT-FFR was found to have higher 
diagnostic performance than CTA, SPECT, or PET on a per-
vessel basis whereas PET had favorable performance on per-
patient and intention-to-diagnose analysis [115].

The studies for CT-FFR are summarized in Table 4. The 
ability of CT-FFR to evaluate lesion-specific ischemia with 
high specificity makes it an effective gatekeeper for ICA. In 
NXT, 68% of false positives were reclassified as true nega-
tives [100]. PLATFORM, which was a clinical utility trial, 

Fig. 11   a A curved multiplanar reconstruction image of the LAD in 
a 52-year-old man with chest pain showing moderate stenosis of the 
mid LAD (arrow). b CT-FFR in the same patient shows a value of 
0.89 in the mid LAD, which is within normal limits, indicating that 

there is no lesion-specific ischemia. The patient was referred for med-
ical management. Therefore, CT-FFR helped to avoid ICA. CT com-
puted tomography, FFR fractional flow reserve, ICA invasive coro-
nary angiography, LAD left anterior descending artery

Fig. 12   a A curved multiplanar 
reconstruction image of the 
LAD in a 66-year-old woman 
showing a non-calcified plaque 
in the proximal LAD caus-
ing moderate luminal stenosis 
(arrow). b CT-FFR shows a 
value of 0.76 in the proximal 
LAD, which is indicative of 
hemodynamically significant 
stenosis. c The patient was 
referred for ICA, which con-
firmed a significant stenosis 
with a decreased FFR of 0.65. 
CT computed tomography, FFR 
fractional flow reserve, ICA 
invasive coronary angiography, 
LAD left anterior descending 
artery
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showed that use of CT-FFR resulted in cancellation of ICA 
in 61% of patients in whom it had been planned based only 
on CTA findings without any adverse events at the 90-day 
follow-up [123]. By using CT-FFR, the overall incidence 
of non-obstructive disease on ICA decreased to 12% from 
73% (a decrease of 61%) [123]. At the 12-month follow-
up, adverse events were infrequent (only 5 of 581 followed 
cases). In the planned invasive stratum, mean costs were 33% 
lower with CTA and CT-FFR [124]. Data are also emerging 
on the use of CT-FFR in decision-making and outcomes. 
The FFRCT RIPCORD study showed that use of CT-FFR 
resulted in a change in the management plan (medical vs PCI 
vs CABG) in 36% of patients. There was a 30% reduction 
in PCI, an 18% change in the target vessel, and reassign-
ment from optimal medical therapy to PCI in 12% of cases 
[125]. The SYNTAX III Revolution trial showed that CT-
FFR aids decision-making without need for ICA in patients 
with left main or 3-vessel CAD. A decision-making based 
on CTA and CT-FFR showed high agreement with the deci-
sion derived from ICA [126]. This study also showed that 
the addition of CT-FFR to CTA alone changed the treatment 
decision (between PCI and CABG) in 7% of the patients 
and modified selection of vessels for revascularization in 

12% [127]. Using CT-FFR resulted in 12% fewer MACE at 
1 year and 30% lower costs with improved quality of life in 
comparison with ICA and visual guidance [128]. There was 
no MACE at 1 year in patients in whom ICA was deferred 
as a consequence of a negative CT-FFR, indicating that this 
is a safe and feasible test [113, 125]. The 1-year outcomes 
in the ADVANCE FFRCT registry study also indicated a low 
event rate, fewer MACE, and less revascularization in those 
with negative CT-FFR [129].

CT-FFR shows promise in the evaluation of biomechani-
cal forces on atherosclerotic plaques, which play a role in 
their development and progression [130, 131]. CT-FFR can 
also aid in the prediction of acute coronary syndrome with 
potentially superior accuracy (area under the curve, 0.725) 
on CTA [132].

Limitations of CT‑FFR

CT-FFR relies on high-quality CTA images. Therefore, it 
is critical to adhere to a rigorous guideline-driven proto-
col [133] with maximal coronary vasodilation and without 
image noise, motion, or misalignment artifacts [101, 134]. 
Inadequate contrast opacification and calcium blooming can 

Table 3   Diagnostic performance of computed tomography-fractional flow reserve with invasive fractional flow reserve as the gold standard

AUC​ area under the curve, DOR diagnostic odds ratio, FFR fractional flow reserve, NA not available, NLR negative likelihood ratio, NPV nega-
tive predictive value, PLR positive likelihood ratio, PPV positive predictive value

Study System Study type Basis Accuracy (%) Sensi-
tivity 
(%)

Speci-
ficity 
(%)

PPV (%) NPV (%) AUC​

Koo et al. (DISCOVER-
FLOW) [98]

Off-site Prospective multicenter 159 vessels 84 88 82 74 92 0.90

Min et al. [DEFACTO) [99] Off-site Prospective multicenter 407 vessels 69 80 63 56 84 NA
Nørgaard et al. (NXT) [100] Off-site Prospective multicenter 484 vessels 86 84 86 61 95 0.93
Sand et al. (ReASSESS) 

[114]
Off-site Prospective single-center 143 patients 70 91 55 58 90 NA

Driessen et al. [115] Off-site Prospective single-center 505 vessels 87 90 86 65 96 0.94
Coenen et al. [81] On-site Retrospective two-center 142 vessels 70 82 60 65 79 0.78
De Geer et al. [116] On-site Retrospective single-center 23 vessels 78 83 76 56 93 NA
Fujimoto et al. [105] On-site Retrospective two-center 104 vessels 84 91 78 76 92 0.85
Donnelly et al. [106] On-site Prospective two-center 60 vessels 78 91 72 63 93 0.89
Kim et al. [117] Off-site Prospective multicenter 48 vessels 77 85 57 83 62 NA
Renker et al. [113] On-site Retrospective single center 67 vessels 85 85 85 71 93 0.92
Wardziak et al. [118] On-site Retrospective single center 96 vessels 74 76 72 67 80 0.84
van Hamersvelt et al. [107] On-site Retrospective single-center 77 vessels 83 89 78 79 89 0.87
Coenen et al. [103] On-site Retrospective multicenter 525 vessels 78 81 76 70 85 0.84
Kurata A et al. [119] On-site Retrospective multicenter 91 vessels 82 89 75 79 87 0.91

Meta-analysis Total number of 
studies

Vessels DOR Sensitivity 
(%)

Specificity 
(%)

PLR NLR AUC​

Baumann et al. [120] 5 1306 NA 84 75 NA NA 0.90
Wu et al. [121] 7 1377 16.87 84 76 3.51 0.21 0.86
Danad et al. [122] 3 1050 19.15 83 78 4.02 0.22 0.92
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also negatively affect CT-FFR evaluation [135]. However, 
recent studies have shown that the performance of CT-FFR 
in patients with high coronary calcium score is superior to 
that of CTA alone [130, 136]. The rates of rejection on CT-
FFR analysis in the ADVANCE registry and in a large clini-
cal cohort were 2.9% and 8.4%, respectively [137]. CT-FFR 
is currently not suitable for patients with stenting or CABG. 
CT-FFR is also not effective in patients with unstable angina 
and performs modestly in detecting ischemia in non-culprit 
lesions in patients with STEMI, probably because of the 
vessel volume is smaller in these patients than in those with 
stable angina, which confounds the assumption that size 
is related to resistance [138]. As of now, CT-FFR is not 
ideal for use in the emergency setting because of the above-
mentioned inadequate assumptions. A recent study showed 
that although CT-FFR has good accuracy overall (81.0%), it 
has poor accuracy (46.1%) in the borderline CT-FFR range 
(0.7–0.8) [139]. Therefore, the results of CT-FFR should 
be interpreted cautiously in the context of patient-specific 
risk factors. Furthermore, there are data that show CT-FFR 
to be abnormal in up to 16.6% of patients with insignificant 
stenosis (< 50%) and conversely that it can be normal in 50% 
of patients with moderate stenosis [140, 141]. Recent studies 
have cast doubt on the reproducibility of CT-FFR [138]. For 
example, there is not a perfect match between the CT-FFR 
and invasive FFR values [139]. This could be because the 
pressure sensor on invasive FFR is not at the exact location 
where CT-FFR was measured [101] or the dose of nitroglyc-
erin before CTA was inadequate or nitroglycerin was not 
administered at all [101].

Which CT imaging technique is best 
for ischemia?

The choice between CTP and CT-FFR depends on the 
availability of the technology and expertise (Table 5). CTP 
requires a high-end scanner, ideally with single heartbeat 
coverage and dedicated personnel, protocols, and post-
processing. CT-FFR can be obtained from CTA data from 
any scanner, but the images must be of high quality, the 
results are not available immediately, and there is an addi-
tional cost for using off-site CT-FFR technology [142]. On-
site systems are not commercially available as yet. CT-FFR 
is better than CTP for identifying patients with balanced 
ischemia, multi-vessel disease, or serial lesions who will 
benefit from revascularization [98] but is of limited value 
in patients with unstable angina, especially for non-culprit 
lesions in those with a recent STEMI. CTP is better than 
CT-FFR in patients with heavy calcifications or stenting 
[143, 144]. Coenen et al. showed that the diagnostic perfor-
mance of CTP and CT-FFR was comparable for identifying 
functionally significant CAD assessed by invasive FFR [81] 
(Fig. 13). A similar study showed that CT-FFR and CTP 
had comparable performance, with either test improving the 
performance of CTA [87]. A meta-analysis also showed that 
the pooled specificity values for CTP (0.77) and CT-FFR 
(0.72) were higher than that of CTA (0.43) [145]. Other-
wise, Li et al. showed that CTP outperformed CT-FFR for 
identifying lesions causing ischemia assessed by invasive 
coronary angiography and FFR [146]. The PERFECTION 
study showed that both CTA + CT-FFR and CTA + CTP have 

Table 5   Comparison of the various computed tomography techniques used to evaluate myocardial ischemia

CFD computational flow dynamics, CTA​ computed tomography angiography, CT-FFR computed tomography-derived fractional flow reserve, 
CT-MBF computed tomography derived myocardial blood flow, CTP computed tomography perfusion, PCI percutaneous coronary intervention

Advantages Disadvantages

Coronary CTA​ Visualization of coronary artery stenosis and plaque morphol-
ogy

Unassessable segments (artifact, calcification)

Widely available in clinical practice Low PPV for detecting myocardial ischemia
CT-FFR CTA anatomy- and CFD-based functional assessment Depends on image quality of coronary CTA​

No scan additional to coronary CTA​ Appropriate patient selection (image-related, patient-related 
factors influencing CT-FFR calculation)

High diagnostic performance Remote service (time-consuming)
Effective modification to coronary CTA based decision-making On-site analysis (requiring a learning period, objectivity)

Less information on the stenosis-related territory
CTP High spatial resolution Radiation exposure and contrast dose additional to coronary 

CTA​
Real-time stress myocardial perfusion imaging Risk of side effects from the vasodilator agent
Visualization of myocardial ischemia (area and transmural 

extent)
Long examination time (30–60 min)

Quantification (CT-MBF using dynamic CTP)
Incremental value to coronary CTA​
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better diagnostic performance than CTA alone [92]. Inte-
grated CTP and CT-FFR has better performance than either 
of these techniques used alone [81].

Conclusion

Coronary CTA can exclude CAD with a high degree of cer-
tainty but has limited ability to evaluate the hemodynamic 
significance of stenosis because of its poor specificity. 
Emerging technologies such as CT-perfusion and CT-FFR 
can provide information on the hemodynamic significance of 
stenosis, which expands the capabilities of CT. These tech-
niques make CT valuable for risk stratification and decision-
making in patients with myocardial ischemia.
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