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Abstract
An effective extension to the particle swarm optimizer scheme has been developed to visualize and modelize robustly 
magnetic data acquired across vertical or dipping faults. This method can be applied to magnetic data sets that support vari-
ous investigations, including mining, fault hazards assessment, and hydrocarbon exploration. The inversion algorithm is 
established depending on the second horizontal derivative technique and the particle swarm optimizer algorithm and was 
utilized for multi-source models. Herein, the inversion method is applied to three synthetic models (a dipping fault model 
contaminated without and with different Gaussian noises levels, a dipping fault model affected by regional anomaly, and a 
multi-source model) and three real datasets from India, Australia, and Egypt, respectively. The output models confirm the 
inversion approach’s accuracy, applicability, and efficacy. Also, the results obtained from the suggested approach have been 
correlated with those from other methods published in the literature.

Keywords Faults · Modeling · Magnetic anomalies · Interpretation

Introduction

Magnetic surveying is a crucial subsurface imaging tool. 
The tool is routinely used to image subsurface geological 
structures (An and Di 2016; Araffa and Bedair 2021; Ugbor 
et al. 2021; Essa et al. 2022), and in support of hydrocar-
bon exploration (Saunders et al. 1991; Abubakar et al. 2015; 
Ivakhnenkoa et al. 2015; Innocent et al. 2019; Abdullahi and 
Kumar 2020), mineral exploration and mining (Mandal et al. 
2015; Ghanati el al. 2017; Akinlalu et al. 2018; Biswas 2018; 
Essa and Elhussein 2019; Melo et al. 2020; Mehanee et al. 
2021; Essa and Diab 2022a), geothermal energy (Abraham 

et al. 2014; Shirani et al. 2020; Hosseini et al. 2021), archeo-
logical studies (Scollar et al. 1986; Tsokas and Papazachos 
1992; Gerard-Little et al. 2012; Linford et al. 2019), the 
detection of sinkholes (Balkaya et al. 2012), and other envi-
ronmental and engineering investigations (Reynolds 2011; 
Niederleithinger et al. 2012; Liu et al. 2021).

Magnetic inversion is a significant geophysical approach 
that provides beneficial insights into the subsurface in many 
kinds of fields. It entails analyzing magnetic field data for 
the purpose of figuring out fault parameters, identifying geo-
logical structures, and outlining subsurface features. Mag-
netic inversion improves in gaining an understanding of fault 
systems, their geometries, and orientations in geology and 
tectonics. Researchers can acquire insights into the behavior 
and potential seismic risks connected with faults by precisely 
predicting fault characteristics such as dip angles, depths, and 
slip rates. This data is critical for determining the stability of 
geological formations, forecasting earthquakes, and planning 
infrastructure development in seismically active areas.

Multiple inversion methods were developed to model 
magnetic data. Each method employs a slightly different 
approach. The methods include the graphical technique, 
which is based upon a few distinct locations on the magnetic 
anomaly profile (Gay 1963; Subrahmanyam and Prakasa Rao 
2009), the characteristic curve technique (Hutchison 1958; 
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Grant and Martin 1966; Abdelrahman and Essa 2005), the 
least-square approach (Abdelrahman et al. 2007; Tlas and 
Asfahani 2011), the Euler deconvolution technique (Li 2003; 
Dewangan et al. 2007), the Werner deconvolution approach 
(Stagg et al. 1989; Hansen 2005; Usman et al. 2014), the 
gradient technique (Abdelrahman et  al. 2003; Essa and 
Elhussein 2017), the analytical-signal technique (Nabighian 
1972; Salem 2005; Aydin 2008), the tilt angle approach 
(Miller and Singh 1994; Essa et al. 2018; Pham et al. 2019; 
Elhussein and Shokry 2020), and the Fourier-transform tech-
nique (Gudmundsson 1966; Gupta 1988; Olurin et al. 2017). 
The disadvantages of these listed approaches are that they 
are sensitive to noise and dependent on prior information.

More recently, new artificial intelligence-based methods 
have been developed to model magnetic data. These methods 
are based on approaches including particle swarm optimizer 
(Liu et al. 2017; Essa and Elhussein 2020; Pace et al. 2021; 
Essa et al. 2023), the genetic algorithm technique (Cur-
renti et al. 2007; Montesinos et al. 2016; Kaftan 2017), the 
simulated annealing approach (Biswas 2016, 2018; Biswas 
and Acharya 2016), the neural network approach (Hajian 
et al. 2012; Deng et al. 2022), Bat algorithm (Essa and Diab 
2022b), the ant colony technique (Kushwaha et al. 2018), 
and the barnacle mating (Ai et al. 2022).

This work develops a method for modeling magnetic data 
acquired across faults. The approach employed is as follows. 
Initially, the second horizontal derivative helps confiscate 
the influence of regional background. The particle swarm 
optimizer scheme is then exploited to derivative anomalies 
to gauge the different fault structure parameters (amplitude 
coefficient ( A

c
 ), fault angle (θ), effective magnetization vec-

tor dip angle (α), depths to the upper side of the fault ( h1 ) 
and the lower side of the fault ( h2 ), and the fault origin ( w
)). Three synthetic models and three real field cases were 
examined from India, Australia, and Egypt to verify this 
method’s efficacy.

There are numerous merits when utilizing PSO for deter-
mining fault parameters. For starters, PSO is a global search 
algorithm, which implies it can identify the objective func-
tion’s global minimum regardless of whether the objective 

function contains several local minima. Second, PSO is sim-
ple to establish and requires few parameters. Third, PSO is 
being noticed to be useful in a range of applications, includ-
ing the estimation of fault parameters. PSO can be sluggish 
to converge, especially when dealing with complex issues. 
Using horizontal derivatives of magnetic data to boost PSO 
convergence is one method. Horizontal derivatives can be 
utilized to lessen the effect of the regional magnetic field, 
allowing PSO to identify the global minimum more easily.

The paper is divided into four sections. The methodol-
ogy and the corresponding algorithm are first detailed. The 
second section illustrates the utilization of three synthetic 
models. The third section illustrates the use of three real 
data. Finally, the paper ends with conclusions.

The methodology

Ideally, magnetic field data acquired across a feature of 
interest is comprised of the regional magnetic field (back-
ground) and the superposed residual anomaly (target 
anomaly) (Pawlowski 1994; Essa 2021). The following 
formula can give this magnetic field:

Equation (1) shows the total measured magnetic field 
represented by M

(
x
i

)
 , Mres

(
x
i

)
 is a residual anomaly, Z

(
x
i

)
 

is a regional magnetic field (background), and x
i
 is the 

observation data point.
In this study, the residual anomalies are generated by 

a vertical or dipping fault. The particle swarm optimizer 
technique examined residual anomalies, detached from 
the total magnetic anomaly utilizing the second horizontal 
derivative approach.

Forward modeling of fault structure and a second 
horizontal derivative scheme

The magnetic anomaly measured across arbitrarily dipping 
magnetized fault at any point ( x

i
 ) is given by (Murthy et al. 

2001; Ekinci et al. 2019). (Fig. 1):

where P is the data numbers; Ac is the amplitude coefficient 
(nT) and is given by:
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J signifies the effective magnetization intensity (nT); 
and � is the strike of the 2-D fault structure measured east 
or west from the magnetic north (0° ≤ �  ≤ 90°). � is the 
direction of measurements (which equals zero in the case 
of the horizontal component, �∕2 in the vertical compo-
nent, and I (inclination angle) in the case of the total field). 
�  is  the fault  angle (degree).  �′ is  given by: 
�
� = � − tan−1(sin(�) ⋅ cot(�)) . � is the effective magnetiza-

tion vector dip angle (degree). w is the fault origin (km). 
h2 denotes the depth to the lower side of the fault (km). h1 
represents the depth to the upper side of the fault (km); �2 
is given by: �2 =

�

2
+ tan−1

(
(xi−w)+(h2−h1)cot�

h2

)
 , and �1 is 

given by:

�1 =

⎧⎪⎨⎪⎩

�

2
+ tan−1

�
xi−w

h1

�
, in case h1 ≠ 0

�

2

�
1 +

xi−w�xi−w�
�
, in case h1 = 0, x

i
≠ 0

�

2
, in case h1 = 0, x

i
= 0.

.

For vertical faults ( � = 90o ), the magnetic anomaly 
(Eq. 2) can be given by the following formula:

To remove the regional backgroundZ
(
x
i

)
 , the second 

horizontal derivative operator was applied to Eq. 1; for three 
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,
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observation points along the magnetic profile (xi – 2s, xi, 
xi + 2s), the second horizontal derivative ( M

xx

(
x
i
, s
)
 ) can be 

given by (Essa and Elhussein 2017):

where s = 1, 2, 3, …, N separation units are graticule spac-
ings, and xi is the observation data point.

Inversion approach

The proposed method is based on the particle swarm opti-
mizer scheme. This algorithm was recognized primarily by 
Eberhart and Kennedy (1995). The particle swarm optimizer 
scheme is applied nowadays to different geophysical applica-
tions (Srivastava and Agarwal 2010; Xiong and Zhang 2015; 
Ekinci et al. 2019; Essa and Géraud 2020; Essa et al. 2021; 
Elhussein 2021). The particle swarm optimizer approach is 
stochastic. In this application, the approach can be explained 
metaphorically by considering a group of birds searching for 
food. Models can represent the birds; for each model, there 
is a velocity vector and a location vector collectively repre-
senting the parameter’s value. The inversion is initiated by 

giving random models for the swarm utilizing the possible 
ranges of the different variables. The velocity and position 
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M
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− 2M

(
x
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)
+M

(
x
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)
4s2

,

Fig. 1  A sketch diagram 
displays the dipping fault’s geo-
metric structure and parameters
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of the different models are iteratively updated using the fol-
lowing formulas:

Equation (6) shows Xk

i
 and Vk

i
 that represent the place 

and velocity of the particle i, respectively, at iteration k; 
rand1 and rand2 represent two randomized numbers in the 
range [0,1]; c1 and c2 are cognitive and social coefficients 
that are usually equal to 2 represented by Eq. (5) (Singh and 
Biswas 2016; Essa and Elhussein 2018; Pace et al. 2021); c3 
is the inertial coefficient that controls the model’s velocity 
and takes on a value of less than one; and Kbest is the best 
location which got by an individual model, while Lbest is the 
best global location reached by any model in the swarm. 
Afterward, the best solution (Kbest) and the global best solu-
tion (Lbest) are stored in memory. The model’s velocity and 
position are updated during an iterative process that ends 
when the convergence occurs (Venter and Sobieski 2002). 
The convergence is reached by optimizing the following 
objective function (Ψobj):

P are the data points numbers, MO
resi

 are the observed 
magnetic anomaly, and Mc

resi
 are the calculated magnetic 

anomaly at the different data points  xi.
The fault structure parameters ( A

c
 , � , � , h1 , h2 , and w ) are 

inverted by minimizing (Eq. 7) for the several graticule spac-
ings (s values) applied in the separation of residual anomaly 
through applying the second horizontal derivative (Eq. 4); 
the solution of the different parameters is reached by tak-
ing the average value (Ѡ) of the inverted parameters for 
numerous s values. The RMS error (root mean square) is 
deliberated by using the following equation:

Figure 2 shows the flowchart, which explains the esti-
mation of the different parameters using the employed 
approach.

Synthetic models

Three theoretical models were generated to assess and verify 
the method’s applicability, accuracy, and efficacy.
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Model I: Simple dipping fault magnetic anomaly 
without and with noise

A 120 km magnetic anomaly profile was generated without 
noise by dipping fault using A

c
 = 300 nT, � = 70°, � = 40°, 

h1 = 4 km, h2 = 10 km, and w = 60 km (Fig. 3a). The profile 
was filtered by applying the second horizontal derivative 

Fig. 2  Flowchart showing the complete steps for predicting the fault’s 
parameters using the proposed approach
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Fig. 3  a A synthetic noise-free 
magnetic anomaly produced 
by dipping fault model with A

c
 

= 300 nT, � = 70°, � = 40°, h
1
 

= 4 km, h
2
 = 10 km, w = 60 

km, and profile length = 120 
km. The model structure and 
the predicted anomaly are also 
displayed. b Second horizon-
tal derivative anomalies are 
calculated from the anomaly in 
Fig. 3a

a

b
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Fig. 4  a The magnetic anomaly 
mentioned in Fig. 3a is tainted 
with a 15% Gaussian noise 
and the predicted anomaly. b 
Second horizontal derivative 
anomalies are calculated from 
the noisy magnetic anomaly in 
Fig. 4a

a

b
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Fig. 5  a The magnetic anomaly 
in Fig. 3a is contaminated with 
a 20% Gaussian noise and the 
predicted anomaly. b Second 
horizontal derivative anomalies 
are calculated from the noisy 
magnetic anomaly in Fig. 5a

a

b
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Fig. 6  a A composite magnetic 
anomaly of dipping fault ( A

c
 = 

450 nT, � = 100°, � = 50°, h
1
 = 

5 km, h
2
 = 16 km, w = 75 km, 

and profile length 120 km) and 
first-order regional anomaly 
(2xi – 15). The model structure 
and the predicted anomaly 
are also displayed. b Second 
horizontal derivative anomalies 
are calculated from the anomaly 
in Fig. 6a

a

b
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Fig. 7  a The magnetic anomaly 
mentioned in Fig. 6a is con-
taminated with a 20% Gauss-
ian noise and the predicted 
anomaly. b Second horizontal 
derivative anomalies are calcu-
lated from the noisy magnetic 
anomaly in Fig. 7a

a

b
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Fig. 8  a A composite magnetic 
anomaly of dipping fault ( A

c
 = 

350 nT, � = 50°, � = 70°, h
1
 = 

7 km, h
2
 = 17 km, w = 50 km, 

and profile length 140 km) and 
another dipping fault model 
( A

c
 = 250 nT, � = 75°, � = 

70°, h
1
 = 2 km, h

2
 = 7 km, w = 

100 km, and profile length 140 
km). The model structure and 
the predicted anomaly are also 
displayed. b Second horizon-
tal derivative anomalies are 
calculated from the anomaly in 
Fig. 8a

a

b
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Fig. 9  a The magnetic anomaly 
in Fig. 8a is contaminated with 
a 20% Gaussian noise and the 
predicted anomaly. b Second 
horizontal derivative anomalies 
are calculated from the noisy 
magnetic anomaly in Fig. 9a

a

a
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technique utilizing different graticule spacings (s = 2, 3, 4, 
5, 6, 7, 8, and 9 km) (Fig. 3b). For estimating the different 
fault parameters, the particle swarm optimizer scheme was 
engaged to the calculated derivative anomalies using vari-
ous ranges for the different parameters (Table 1). Table 1 
explains the accuracy of the offered methodology through 
the errors (RMS) of valued parameters ( A

c
 , � , � , h1 , h2 , 

and w ) which are 0%, and the RMS is 0 nT. The judgment 
between the predicted and the pure (noise-free) anomaly is 
revealed in Fig. 3a.

The efficacy of this approach in the presence of noise was 
assessed using the previous model infected with different 
Gaussian noise levels (15% and 20%).

Firstly, for a 15% noise anomaly (Fig. 4a), the noisy mag-
netic profile was subject to the second horizontal deriva-
tive technique, applying the same previous graticule spac-
ings (Fig. 4b); the parameters were predicted by applying 
the particle swarm optimizer scheme (Table 1). Table 1 
shows the predicted parameters ( A

c
 = 303.88 ± 10.40 nT, � 

= 69.36 ± 2.20°, � = 40.34 ± 2°, h1 = 3.94 ± 0.23 km, h2 = 
10.06 ± 0.38 km, and w = 60.19 ± 0.35 km), where the errors 
of A

c
 , � , � , h1 , h2 , and w are 1.29%, 0.91%, 0.85%, 1.5%, 

0.6%, and 0.32%, respectively, while the RMS error is 8.91 
nT. Figure 4a reveals the judgment among the predicted and 
noisy anomalies.

Secondly, for a 20% noise anomaly (Fig. 5a), the second 
horizontal derivative filter was exploited to the noisy anom-
aly profile with the previous graticule spacings (Fig. 5b). 
The particle swarm optimizer approach was employed for 
the derivative anomalies to predict the dipping fault param-
eters in case of a 20% noisy anomaly (Table 1). Table 1 pre-
sents the expected parameters ( A

c
 = 309.82 ± 13.57 nT, � 

= 70.78 ± 3.94°, � = 41.6 ± 2.3°, h1 = 3.74 ± 0.19 km, h2 = 
10.33 ± 0.15 km, and w = 59.87 ± 0.68 km), where the errors 
of A

c
 , � , � , h1 , h2 , and w are 3.27%, 1.11%, 4%, 6.5%, 3.3%, 

and 0.22%, respectively, while the RMS error is 21.71 nT. 

b

Fig. 10  a Geologic map of the Bihar area, India (modified after 
Prasad 1961); red rectangle indicates the study area (not to scale). b 
Observed and predicted magnetic anomaly profile for the East–West 
striking fault, Southwest of Dehri, Bihar zone, India. c Second hori-
zontal derivative anomalies deliberated from the observed anomaly in 
Fig. 10b. d Convergence rate

▸
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Figure 5a clarifies the contrast between the predicted and 
noisy anomalies.

Model II: Effect of regional background

A 120 km composite magnetic anomaly profile was pro-
duced. The profile was generated by a dipping fault ( A

c
 = 

450 nT, � = 100°, � = 50°, h1 = 5 km, h2 = 16 km, and w 

= 75 km) superposed on a first-order regional background 
(2xi – 15) (Fig. 6a).

The profile was filtered by applying the second horizon-
tal derivative technique utilizing different graticule spacings 
(s = 2, 3, 4, 5, 6, 7, 8, and 9 km) (Fig. 6b). For appraising 
the different fault structure parameters, the global particle 
swarm optimizer was engaged with the calculated deriva-
tive anomalies applying various ranges for the parameters 
(Table 2). Table 2 indicates the predicted parameters ( A

c
 , 

� , � , h1 , h2 , and w ) where the errors of A
c
 , � , � , h1 , h2 , and 

w are 0%, and the RMS is 0 nT. The mismatch among the 
predicted and pure (noise-free) composite anomalies is men-
tioned in Fig. 6a.

The aforementioned model was tainted with 20% 
Gaussian noise (Fig. 7a). The second horizontal deriva-
tive scheme was utilized to this noisy data (Fig. 7b), and 
the parameters were predicted by applying the particle 
swarm optimizer procedure (Table 2). Table 2 indicates 
the predicted parameters ( A

c
 = 460.52 ± 6.27 nT, � = 

102.46 ± 2.44°, � = 49.85 ± 2.35°, h1 = 4.83 ± 0.33 km, h2 
= 16.11 ± 0.38 km, and w = 74.74 ± 0.44 km), where the 
errors of A

c
 , � , � , h1 , h2 , and w are 2.34%, 2.46%, 0.3%, 

3.4%, 0.69%, and 0.35%, respectively, while the RMS error 
is 21.04 nT. Figure 7a indicates the misfit among the pre-
dicted and noisy anomaly.

Model III: Multi‑source

A composite magnetic profile of 140 km was produced. This 
profile was comprised of anomalies generated by two dip-
ping faults ( A

c
 = 350 nT, � = 50°, � = 70°, h1 = 7 km, h2 = 

17 km, and w = 50 km) and ( A
c
 = 250 nT, � = 75°, � = 70°, 

h1 = 2 km, h2 = 7 km, and w = 100 km) (Fig. 8a).
The composite anomaly profile was filtered by apply-

ing a second horizontal derivative technique utilizing dif-
ferent graticule spacings (s = 2, 3, 4, 5, 6, 7, 8, and 9 km) 
(Fig. 8b). The different fault parameters were predicted by a 
particle swarm optimizer scheme, which was applied to the 
calculated derivative anomalies utilizing various ranges for 
various parameters (Table 3). Table 3 reveals the predicted 
parameters: A

c
 = 354.48 ± 3.48 nT, � = 50.47 ± 0.94°, � = 

70.56 ± 0.89°, h1 = 7.04 ± 0.14 km, h2 = 16.96 ± 0.19 km, 
and w = 49.69 ± 0.79 km and the errors of A

c
 , � , � , h1 , h2 , 

and w are 1.28%, 0.94%, 0.8%, 0.57%, 0.24%, and 0.62%, 
respectively, for the first fault, A

c
 = 252.60 ± 4.08 nT, � = 

75.13 ± 1.03°, � = 69.60 ± 0.80°, h1 = 2.00 ± 0.11 km, h2 = 
7.01 ± 0.16 km, and w = 99.59 ± 0.58 km and the errors of 
A
c
 , � , � , h1 , h2 , and w are 1.04%, 0.17%, 0.57%, 0%, 0.14%, 
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and 0.46%, correspondingly, for the second fault and the 
RMS error of the multi-source model is 10.56 nT. The judg-
ment between the predicted and pure (noise-free) composite 
anomalies is mentioned in Fig. 8a.

The former model was tainted with 20% Gaussian noise 
to assess the method’s efficacy (Fig. 9a). The noisy mag-
netic profile was exposed to the second horizontal derivative 
technique employing similar graticule spacings (Fig. 9b). 
The different parameters for the two faults in the case of a 
noisy data were predicted by employing the particle swarm 
optimizer approach for derivative anomalies (Table 3). 
Table 3 indicates the predicted parameters in case of a 
noisy data: A

c
 = 359.24 ± 4.60 nT, � = 50.95 ± 2.44°, � = 

71.45 ± 2.73°, h1 = 7.1 ± 0.31 km, h2 = 17.16 ± 0.28 km, 
and w = 49.93 ± 0.98 km and the errors of A

c
 , � , � , h1 , h2 , 

and w are 2.64%, 1.9%, 2.07%, 1.43%, 0.94%, and 0.14%, 
respectively, for the first fault. A

c
 = 260.05 ± 3.45 nT, � = 

75.57 ± 1.49°, � = 71.21 ± 1.96°, h1 = 1.9 ± 0.19 km, h2 = 
7.11 ± 0.27 km, and w = 99.77 ± 0.83 km and the errors of 
A
c
 , � , � , h1 , h2 , and w are 4.02%, 0.76%, 1.73%, 5%, 1.57%, 

and 0.26%, respectively, for the second fault and the RMS 
error of the multi-source noisy composite anomaly is 18.49 
nT. The mismatch among the predicted and noisy composite 
anomalies is indicated in Fig. 9a.

Real datasets investigation

The efficacy and robustness of the proposed approach when 
employed with actual data from India, Australia, and Egypt 
were examined below as follows:

Magnetic anomaly from Dehri, Bihar Area, India

The geology of the Bihar area, India, is composed of differ-
ent units which are (from recent to Archean) (Karan 1953; 
Prasad 1961); Quaternary alluvium deposits, which include 
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Table 5  A comparison between numerical solutions resulted from 
different methods for the magnetic anomaly profile of Dehri, Bihar 
area, India

Parameters Methods Present method

Rama Rao et al. 
(1987) method

Radhakrishna 
Murthy et al. (2001) 
method

A
c
(nT) – – 150.98 ± 3.93

�(degree) – 90 90.71 ± 1.14
�(degree) – −97 −98.24 ± 3.22
h
1
(km) 7.7 7.12 7.23 ± 0.22

h
2
(km) 32.9 32.1 32.30 ± 0.28

w (km) – 33 34.04 ± 0.13
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Fig. 11  a Observed and 
predicted magnetic anomaly 
profile for the north–south 
striking fault, Western edge of 
Perth basin, Australia. b Second 
horizontal derivative anomalies 
deliberated from the observed 
anomaly in Fig. 11a. c Conver-
gence rate

a

b
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various grades of clay, silt, sand, and gravel; Laterite, which 
is rich in aluminum and iron; a Tertiary unit, which includes 
sandstones and claystones; the Mesozoic layered volcanic 
unit named the Rajmahal Traps; the Paleozoic Vindhyans 
Supergroup which is comprised of limestone, sandstone, and 
shale; the Archaean lavas and basic igneous intrusive rocks; 
the Archean schists which include an iron ore series; and the 
gneiss basement complex (Prasad 1961) (Fig. 10a).

The magnetic anomaly profile data were acquired south-
west of Dehri, Bihar zone, India. This anomaly was gener-
ated by an east–west striking fault (Rama Rao et al. 1987; 
Murthy et al. 2001). The magnetic profile length equal to 
50 km was digitized at 0.64 km (Fig. 10b). The second 
horizontal derivative technique processed the profile using 
different graticule spacings (s = 1.28, 1.92, 2.56, 3.2, 3.84, 
4.48, 5.12, and 5.76 km) (Fig. 10c). To estimate the dif-
ferent fault parameters ( A

c
 , � , � , h1 , h2 , and w ), the parti-

cle swarm optimizer algorithm was engaged to derivative 
anomalies using various ranges (Table 4), the predicted 

parameters are: A
c
 = 150.98 ± 3.93 nT, � = 90.71 ± 1.14°, 

� = − 98.24 ± 3.22°, h1 = 7.23 ± 0.22 km, h2 = 32.30 ± 0.28 
km, and w = 34.04 ± 0.13, and the RMS error is 7.47 nT. 
The comparison among observed and predicted anomalies 
is displayed in Fig. 10a. Moreover, the convergence rate is 
indicated in Fig. 10d. Table 5 shows the correlation between 
the parameters estimated by the suggested process and those 
estimated by other methods published in the literature.

Magnetic anomaly from Perth Basin, Australia

Perth Basin was initiated by the intercontinental rift on the 
eastern side of Gondwana and advanced, through the sepa-
ration of Greater India from Australia, into an inactive edge 
alongside southwestern Australia (Harris 1994; Ali and 
Aitchison 2014; Olierook et al. 2015). The basin is subdi-
vided into at least fifteen sub-basins, filled with sedimen-
tary layers ranging in age from the Permian to the Recent. 
The sediment rocks are mainly fluviatile and trivial marine 

Fig. 11  (continued)
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intrusions (Olierook et al. 2015). The basin’s eastern edge is 
noticeably designed by a Darling Fault, which isolates it from 
the Precambrian rock bearing Yilgarn Craton; the northern 
and southern edges are bordered by the Northampton block 
and the Leeuwin block, respectively. Both blocks are Precam-
brian in age (Qureshi and Nalaye 1978; Olierook et al. 2015).

A magnetic anomaly profile was acquired across the 
western edge of Perth Basin. This residual anomaly is gen-
erated by a deeper north–south striking fault (Qureshi and 
Nalaye 1978; Murthy et al. 2001; Ekinci et al. 2019). The 
magnetic profile length was 41 km and digitized at 0.25 km 
(Fig. 11a). The profile was filtered using the second horizon-
tal derivative technique using different graticule spacings 
(s = 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, and 2.25 km) (Fig. 11b). 
To estimate the different fault parameters ( A

c
 , � , � , h1 , h2 , 

and w ), the particle swarm optimizer scheme was engaged 
with derivative anomalies utilizing various ranges (Table 6). 
The predicted parameters are: A

c
 = 82.33 ± 3.43 nT, � = 

127.94 ± 2.39°, � = − 17.03 ± 1.53°, h1 = 5.63 ± 0.36 km, 
h2 = 14.1 ± 0.25 km, and w = 16.64 ± 0.08, and the RMS 
error is 2.10 nT. Furthermore, the convergence rate is repre-
sented in Fig. 11c. The close relationship between observed 
and predicted anomalies is displayed in Fig. 11a. Table 7 
shows the correlation between the parameters estimated by 
this method and those estimated by other published methods, 
and the depths to the top and the bottom of this fault are 
estimated by Qureshi and Nalaye (1978) using master curves 
and analytical methods. (Murthy et al. 2001) by using a 
damped least-square inversion method estimated the depths 
to the top and the bottom of this fault, the fault angle, and 
the effective magnetization vector dip angle. (Ekinci et al. 
2019) estimated the depths to the top and the bottom of this 
fault, the fault angle, and the effective magnetization vector 
dip angle.

Magnetic anomaly from the Central Eastern Desert, 
Egypt

Figure 12a shows the study area “Central Eastern Desert,” 
which is in the middle part of Eastern Desert, Egypt, and 
characterized by a dominant NW–SE sinistral shear zone of 
the Najd Fault System that represents one of the larger Neo-
proterozoic shear zones on the Earth (Stern 1985). The area 
is characterized by dome structures, which are fabricated 
from medium to high grade gneisses–migmatites (core) and 
the upper part of volcanogenic metagraywackes, metamud-
stones, and ophiolitic (Pan-African Nappe complex) (Fowler 
et al. 2007; Hamimi et al. 2019).

Figure 12b shows a profile A–Á for the land magnetic 
data acquired across the study area and was digitized with 
intervals of 0.5 km (taken from Rabeh 2009; Fig. 12). This 
magnetic profile was filtered applying the second horizon-
tal derivative technique using different graticule spacings 
(s = 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, and 4.5 km) (Fig. 12c). 
The fault parameters ( A

c
 , � , � , h1 , h2 , and w ) were calculated 

by applying particle swarm optimization algorithm to the 
calculated gradient anomalies (Table 8). Table 8 shows the 
predicted parameters, which are A

c
 = −9.84 ± 0.62 nT, � = 

42.92 ± 1.14°, � = 30.85 ± 0.62°, h1 = 0.78 ± 0.02 km, h2 = 
1.76 ± 0.03 km, and w = 35.64 ± 0.02, and the RMS error 
is 0.43 nT. Moreover, the convergence rate is exposed in 
Fig. 12d. The match among observed and predicted anoma-
lies is displayed in Fig. 12b. These results show a satisfac-
tory correlation with the geologic cross section after said 
(1990), the 2.5D magnetic model along the aeromagnetic 
profile (Rabeh 2009; Fig. 12).

From the above three field examples, we can conclude 
that the method can be used effectively for different types 
of faults as in the first field example (Dehri, Bihar Area, 
India), and the fault is vertical ( � = 90.71 ± 1.14°), while 

Table 7  A comparison between 
numerical solutions resulted 
from different methods for the 
magnetic anomaly profile of 
Perth Basin, Australia

Parameters Methods

Qureshi & Nalaye 
(1978) method

Radhakrishna Murthy 
et al. (2001) method

Ekinci et al. (2019) method Present method

DE method PSO method

A
c
(nT) – – – – 82.33 ± 3.43

�(degree) – 97 141.13 142.10 127.94 ± 2.39
�(degree) –  − 20  − 14.93  − 14.04  − 17.03 ± 1.53
h
1
(km) 6.3–6.85 6.21 5.10 5.34 5.63 ± 0.36

h
2
(km) 15.55–16.5 15.07 13.76 13.32 14.1 ± 0.25

w (km) – 18.5 17.16 17.13 16.64 ± 0.08



1840 Acta Geophysica (2024) 72:1819–1845

1 3

Fig. 12  a Geological map of 
the central Eastern Desert, 
Egypt (modified after Conoco 
and Egyptian General Petro-
leum Corporation 1987; Rabeh 
2009), showing the location of 
the magnetic profile, A–Á. b 
The observed and the predicted 
magnetic anomaly profile f 
A–Á, Central Eastern Desert, 
Egypt. c Second horizontal 
derivative anomalies deliberated 
from the observed anomaly in 
Fig. 12a. d Convergence rate

a

b
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Fig. 12  (continued)
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the faults in the second (Perth Basin, Australia) and the third 
(Central Eastern Desert, Egypt) field examples are dipping 
as � = 127.94 ± 2.39° and � = 42.92 ± 1.14° for the second 
and third field example, respectively. The third field example 
represents the shallowest fault as the depth is 0.78 ± 0.02 km, 
while in the second field example, the depth is 5.63 ± 0.36 
km, and in the first one the depth is 7.23 ± 0.22 km; also, the 
length of the fault in the third field example is the shortest 
which is about 0.98 km, while in the second field example, 
the length is about 8.47 km, and in the first one which rep-
resents the longest is about 25.07 km.

Conclusions

An extended combination of applying the particle swarm 
optimizer and second horizontal derivative schemes to inter-
pret and investigate the magnetic data generated by dipping 
and vertical faults was presented. This method can be effec-
tively applied to geophysical exploration data (e.g., min-
ing), and fault characterization data. Besides, it can estimate 
the multiple fault parameters (amplitude coefficient ( A

c
 ), 

fault angle ( � ), effective magnetization vector dip angle ( � ), 
depth to the upper side of the fault ( h1 ), depth to the lower 
side of the fault ( h2 ), and the fault origin ( w)). Moreover, it 
completely removes the regional magnetic background. The 
suggested approach’s applicability and efficacy were verified 
utilizing six different data sets, three synthetic and three real 
examples (from India, Australia, and Egypt, respectively). 
The models generated for the actual data sets correlated well 
with the faults described in published literature.
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