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Abstract
The performance of conceptual catchment runoff models may highly depend on the specific choice of calibration methods 
made by the user. Particle Swarm Optimization (PSO) and Differential Evolution (DE) are two well-known families of Evo-
lutionary Algorithms that are widely used for calibration of hydrological and environmental models. In the present paper, 
five DE and five PSO optimization algorithms are compared regarding calibration of two conceptual models, namely the 
Swedish HBV model (Hydrologiska Byrans Vattenavdelning model) and the French GR4J model (modèle du Génie Rural 
à 4 paramètres Journalier) of the Kamienna catchment runoff. This catchment is located in the middle part of Poland. The 
main goal of the study was to find out whether DE or PSO algorithms would be better suited for calibration of conceptual 
rainfall-runoff models. In general, four out of five DE algorithms perform better than four out of five PSO methods, at least 
for the calibration data. However, one DE algorithm constantly performs very poorly, while one PSO algorithm is among 
the best optimizers. Large differences are observed between results obtained for calibration and validation data sets. Differ-
ences between optimization algorithms are lower for the GR4J than for the HBV model, probably because GR4J has fewer 
parameters to optimize than HBV.
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Introduction

Metaheuristics are widely used for the optimization in 
hydrology (Jahandideh-Tehrani et al. 2020; Maier et al. 
2014), especially for conceptual catchment runoff models. 
Among various kinds of metaheuristics, Particle Swarm 
Optimization (PSO) (Kennedy and Eberhart 1995) and Dif-
ferential Evolution (DE) (Storn and Price 1997) are two 
landmark examples of Swarm Intelligence and Evolutionary 
Algorithms (Boussaid et al. 2013). Both were proposed in 
the mid-1990’s and gained widespread popularity in hydro-
logical applications (Jahandideh-Tehrani et al. 2020; Okkan 
and Kirdemir. 2020b; Maier et al. 2014; Kisi et al. 2010; Xu 
et al. 2022). DE turned out also a stepping point for devel-
opment of Markov Chain Monte Carlo-based differential 

evolution adaptive Metropolis (DREAM) approach (Vrugt 
et al. 2009). Both DE and PSO algorithms are popular and 
widely considered to be effective, so that they have been 
frequently hybridized together into a single algorithm 
(Xin et al. 2012; Parouha and Verma 2022). Such PSO-DE 
hybrids were used in water-related applications like opti-
mal localization of hydrocarbon reservoir wells (Nwankwor 
et al. 2013), design of water distribution system in big cit-
ies (Sedki and Ouazar 2012), design of hydraulic structures 
(Singh and Duggal 2015) or suspended sediment load esti-
mation (Mohammadi et al. 2021).

Because the performance of various optimization meth-
ods may be highly uneven for particular application, one 
may find numerous large-scale comparisons among opti-
mization algorithms in literature (Kazikova et al. 2021; 
Tharwat and Schenck 2021; Ezugwu et al. 2020; Price et al. 
2019; Bujok et al. 2019; Piotrowski et al. 2017a), including 
some guidelines how to organize such comparisons (Swan 
et al. 2022; LaTorre et al. 2021). One may also find many 
comparison studies in which various kinds of metaheuris-
tics are applied for different types of catchment runoff 
models. Among papers published during last few years, 
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Jahandideh-Tehrani et al. (2021) compared PSO against 
Genetic Algorithm, Adnan et al. (2021) tested PSO against 
Grey Wolf optimizer, Tikhamarine et al. (2020) compared 
PSO against Harris-Hawks optimizer, Okkan and Kirdemir 
(2020a) proposed a hybrid PSO algorithm and compared 
it against five metaheuristics: the basic PSO, the basic DE, 
Genetic Algorithm, Invasive Weed Algorithm, and Artifi-
cial Bee Colony method, Hong et al. (2018) compared DE 
against Genetic Algorithm, Piotrowski et al. (2017b) com-
pared large field of 26 diversified metaheuristics, and Tigkas 
et al. (2016) compared Shuffled Complex Evolution, Genetic 
Algorithm and Evolutionary Annealing. Good reviews of 
older studies may be found in Meier et al. (2019) and Reddy 
and Kumar (2020).

There are, however, two main problems with the applica-
tion of DE and PSO algorithms in hydrology. First, despite 
the popularity of both PSO and DE in water-related stud-
ies, there is no paper that directly compares various variants 
from PSO and DE families of methods for catchment runoff 
modelling. Second, plenty of DE and PSO algorithms have 
appeared in recent decade (Das et al. 2016; Bonyadi and 
Michalewicz 2017; Bilal et al. 2020; Shami et al. 2022), and 
many of them perform much better than the basic DE and 
PSO versions (e.g. Tanabe and Fukunaga 2014; Piotrowski 
et al. 2017a; Bujok et al. 2019). However, in many hydro-
logical applications only the simplest, over 20-year-old ver-
sions of either DE or PSO are used. As a result, one cannot 
find out which kind of algorithms are de facto more efficient 
in solving hydrological problems, especially in calibration 
of rainfall-runoff models.

In the present paper, we aim at detailed and thorough 
comparison of DE versus PSO algorithms applied for cali-
bration of rainfall-runoff models. One may as well find 
plenty of other Evolutionary Algorithms applied to this task 
(Cantoni et al. 2022; Okkan and Kirdemir 2020a, b; Kumar 
et al. 2019; Dakhlaoui et al. 2012; Gan and Biftu 1996), 
but the present study is restricted to the comparison solely 
between DE and PSO variants. Instead of using historical 
versions of DE and PSO, we test relatively recently proposed 
variants that may currently be considered the state of the art. 
For comparison purposes, we have selected five DE and five 
PSO variants that were proposed between 2012 and 2022. 
These ten algorithms are applied for calibration of two con-
ceptual rainfall-runoff models, namely HBV (Hydrologiska 
Byrans Vattenavdelning model; Bergström 1976; Lindström 
1997) and GR4J (modèle du Génie Rural à 4 paramètres 
Journalier; Perrin et al. 2003). The research is performed 
on the Kamienna catchment that is located in the central 
part of Poland. We mainly focus on the relative performance 
of DE and PSO algorithms in calibration of hydrological 
models, as we wish to find out which family of methods 
perform better for this task. Direct comparisons between 

two hydrological models is considered to be of secondary 
importance in this paper.

Methodology and materials

Rainfall‑runoff models

We consider two lumped conceptual catchment runoff mod-
els that are built of interconnected reservoirs with math-
ematical transfer functions used to describe the transfer of 
water between reservoirs and into the river.

HBV

The HBV model with a snow routine, proposed by Berg-
ström and Forsman (1973), has been used in dozens of coun-
tries around the world. In the majority of these applications, 
the modified versions of the original HBV model have been 
used (Bergström 1976; Bergström and Lindström 2015). A 
block diagram of a particular version of the HBV model 
applied in this paper is shown in Fig. 1. A detailed descrip-
tion of the HBV model components for the version adopted 
in this paper is given in Piotrowski et al. (2017b).

The input variables of the model are: daily precipitation, 
average daily air temperature and daily potential evapotran-
spiration (PET). Precipitation can take the form of rain, 

Fig. 1   Structure, conceptual storages and parameters of the HBV 
model
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snow, or a mixture of snow and rain, which is described 
using the threshold temperature (TT) and the temperature 
interval (TTI). At temperatures lower than the lower limit 
(TT-0.5 TTI) only snow occurs, and at temperatures higher 
than the upper limit (TT + 0.5 TTI) only rain falls. In the 
interval between these limits, precipitation is a mixture of 
rain and snow, decreasing linearly from 100% snow in the 
lower limit to 0% in the upper limit.

The HBV model used has five state variables represent-
ing storage of snow, melt water, soil moisture, fast runoff, 
and baseflow. The HBV model has 13 parameters defined in 
Table 1, the values of which are determined using selected 
optimization procedures. The parameters are grouped into 
four categories: (1) snow process parameters (TT, TTI, 
CFMAX, CFR and WHC), (2) soil moisture parameters (FC, 
LP, β), (3) rapid runoff process parameters (KF, α), and (4) 
slow runoff (baseflow) parameters (PERC, KS) (Fig. 1).

GR4J

The original GR4J conceptual model is a daily lumped four-
parameter catchment runoff model that takes into account 
changes in soil moisture and can be used for temperatures 
greater than zero (Perrin et al. 2003). Since our study is 
concerned with the catchment located in Polish climatic 
conditions, where snow plays an important role, the origi-
nal model is extended by adding a snow module (Fig. 2). 
However, the original name GR4J is retained in this paper. 
This extended version has seven parameters, three of which 
(TT, TTI, CFMAX) relate to the snow routine. All GR4J 
parameters are listed in Table 2 with a brief description. 
A detailed description of the GR4J model can be found in 
Perrin et al. (2003).

The input variables to the GR4J model are the same as the 
HBV model. Similarly to the HBV model, precipitation may 
take the form of rainfall, snowfall or a mixture of snowfall 

Table 1   Parameters of the HBV 
model

Parameter Description

TT Threshold temperature
TTI Temperature interval
CFMAX The degree-day factor
CFR The refreezing factor
WHC The water holding capacity of snow
FC Field capacity
LP Factor limiting potential evapotranspiration
β Nonlinearity parameter is related to the conceptual storage representing soil moisture
CFLUX The capillary transport between the fast runoff reservoir and the soil moisture reservoir
KF Parameter of the fast runoff reservoir
α Another parameter of the fast runoff reservoir
PERC Percolation—the transport between the fast and slow run-off reservoirs
KS Parameter of the slow runoff reservoir

Fig. 2   Structure, conceptual storages and parameters of the GR4J 
model

Table 2   Parameters of the GR4J model

Parameter Description

×1 Maximum capacity of the production store
×2 Groundwater exchange coefficient
×3 One-day-ahead maximum capacity of the routing store
×4 Time base of unit hydrograph UH1
TT Threshold temperature
TTI Temperature interval
CFMAX The degree-day factor
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and rainfall. Snowmelt is assumed to be directly proportional 
to the temperature and is computed by means of the degree-
day method.

Optimization algorithms

This paper focuses on direct comparison between two fami-
lies of optimization algorithms: Particle Swarm Optimiza-
tion (PSO) and Differential Evolution (DE), for conceptual 
rainfall-runoff model calibration. After a quarter century of 
research, hundreds of DE and PSO variants could be found 
in the literature (Das et al. 2016; Bonyadi and Michalewicz 
2017). Various variants of DE and PSO may highly differ 
from each other and are often much more complicated than 
the basic versions of these algorithms. In this study, we 
assess modern DE and PSO variants, not their historical, 
simple versions. Five DE and five PSO relatively recently 
proposed variants were selected for calibration of the HBV 
and GR4J models. In the brief introduction below, we define 
only the classical simple variants, outline the main differ-
ences between DE and PSO, and give a brief guide to more 
advanced DE and PSO algorithms. For the detailed descrip-
tion of the DE and PSO variants being compared, readers are 
referred to the source papers.

Differential evolution and its variants

The classical Differential Evolution algorithm (Storn and 
Price 1997) defines a movement of population of NP indi-
viduals (solutions vectors) in D-dimensional decision space, 
where D is the number of parameters to be optimized, in a 
search for the global optimum. In generation g = 0, NP indi-
viduals: �i,g =

{

x1
i,g
,… , xD

i,g

}

 , i = 1,…,NP are initialized at 
random according to the uniform distribution:

Here, randj
i
 (0,1) is a random value within (0,1) interval 

that is generated separately for each j-th element of i-th indi-
vidual. Lj and Uj are lower and upper bounds that define the 

subset 
D
∏

j=1

�

Lj,Uj
�

 of the search space RD. After initialization 

of the population of solutions, in each g every individual 
makes a move across the search space following the three 
operations: mutation, crossover and selection. In the basic 
DE, the mutation is defined as:

and is followed by the crossover.

(1)x
j

i,0
= Lj + rand

j

i
(0, 1) ⋅

(

Uj − Lj
)

; j = 1,… ,D; i = 1,… , NP .

(2)�i,g = �r1,g + F ⋅

(

�r2,g − �r3,g

)

,

In Eq.  (2) r1, r2 and r3 are three different 
(r1 ≠ r2 ≠ r3 ≠ i) integers that are randomly chosen from 
the range [1, NP]. In Eq. (3) jrand,i is another integer, ran-
domly selected within [1, D]. Note that there are three 
control parameters of the basic DE variant, NP, CR and F, 
which, in the basic DE, need to be defined by the user.

As much as the search space is often bounded (i.e. the 
values of model parameters to be calibrated are restricted 
within some range), some verification is needed after cross-
over to check whether the new solution ui,g is within the 
bounds (Kononova et al. 2021). If ui,g turns out to be out-
side the bounds, it has to be forced to stay within the search 
domain (e.g. by using some of the methods discussed in 
Helwig et al. (2013) and Kadavy et al. (2022)). After that 
the objective function is called for the solution ui,g that is 
within the bounds and one obtains its goodness of fit f(ui,g) 
that represents the quality of the solution ui,g. Finally, selec-
tion operation is performed to choose only the better among 
xi,g and ui,g to enter the next generation.

After repeating the above procedures for each individual 
in the population, the NP individuals proceed to the g + 1 
generation. The algorithm repeats the same steps in the 
subsequent generations until some stopping conditions are 
reached. In the present study, the maximum number of func-
tion calls set to 20,000 is defined as the stopping condition.

The majority of modern DE variants are much more com-
plicated than the basic version from 1997, defined above 
(e.g. see Mohamed et al. 2021). A detailed review of DE 
variants may be found in Das et al. (2016), Al-Dabbagh 
et  al. (2018) or Opara and Arabas (2018). The modern 
variants often adaptively modify the control parameters 
F and CR (Brest et al. 2006; Tanabe and Fukunaga 2014; 
Zuo et al. 2021; Ghosh et al. 2022), use variable popula-
tion size NP (Tanabe and Fukunaga 2014; Piotrowski 2017; 
Polakova et al. 2019), implement multiple search (Qin et al. 
2009; Wu et al. 2018; Yi et al. 2022) or crossover strate-
gies (Zaharie 2009; Islam et al. 2012; Wang et al. 2022), 
introduce new procedures or use operators proposed for 
other metaheuristics (Piotrowski 2018; Caraffini and Neri 
2019; Cai et al. 2020). DE is also sometimes hybridized 
with other metaheuristics (Gong et al. 2010; Xin et al. 2012; 
Awad et al. 2017). In the present study, we compare five 
advanced DE variants which are defined in Table 3. The 
detailed description of these algorithms may be found in the 
source papers. The control parameters of algorithms are the 

(3)u
j

i,g
=

{

v
j

i,g
if rand

j

i
(0, 1) ≤ CR or j = jrand,i

x
j

i,g
otherwise

(4)�i,g+1 =

{

�i,g if f
(

�i,g

)

≤ f
(

�i,g

)

�i,g otherwise
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same as suggested in the source papers, but we provide an 
information on the population size used in Table 3.

Particle swarm optimization variants

Particle Swarm Optimization (Kennedy and Eberhart 1995) 
is a very popular stochastic population-based algorithm, 
inspired by the behavior of the swarm of animals. In PSO, 
the solutions (called particles) move across the D-dimen-
sional search space all the time, but remember the best loca-
tion they have visited so far. As in DE, initial positions xi,0 
of NP PSO particles (i = 1,…, NP) are usually generated 
randomly within the bounds of the search space (Eq. (1)). 
However, in PSO each particle has an associated velocity 
vector. Depending on the specific PSO variant, the initial 
velocities vi,0 of each particle are either set to 0 or are gen-
erated from some pre-specified interval, which frequently 
depend on the differences between upper and lower bounds 
of the search space. The fitness value f(xi,0) is evaluated for 
each newly generated particle. Then in each generation g the 
particles are moving through the search space according to 
the following equation:

where j = 1,…,D, pbesti,g and gbestg are the best posi-
tions visited during the search by i-th particle and the best 
position visited by any particle in the swarm, respectively. 
rand1i,g

j(0,1) and rand2i,g
j(0,1) are two random numbers gen-

erated at each generation from [0,1] interval for each i and j 
index separately, and c1 and c2 are acceleration coefficients 
(algorithm parameters to be set by the user). As may be seen, 
for each i-th particle three vectors are remembered—its cur-
rent position xi,g, the best position pbesti,g visited by the i-th 
particle since the initialization of the search and i-th particle 
current velocity vi,g. The parameter w is the so-called inertia 
weight that was first introduced by Shi and Eberhart (1998). 
Like in the case of DE, modern PSO variants are often much 
more complicated than the initial version—for a survey read-
ers are referred to Bonyadi and Michalewicz (2017), Cheng 
et al. (2018), and Shami et al. (2022). Modern PSO vari-
ants use different topologies—under this term we mean the 
communication possibilities between individuals (Lynn et al. 
2018; Xia et al. 2020; Li et al. 2022), theoretically or empiri-
cally modify the values of control parameters (Clerc and 
Kennedy 2002; Harrison et al. 2018; Piotrowski et al. 2020; 
Cleghorn and Stapleberg 2022; Meng et al. 2022), intro-
duce novel equations for movement of particles (Santos et al. 
2020; Li et al. 2021; Houssein et al. 2021), bring together 

(5)

v
j

i,g+1
=w ⋅ v

j

i,g
+ c1 ⋅ rand 1

j
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pbest
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= x
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+ v

j
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,

an ensemble of different PSO variants (Lynn and Suganthan 
2017; Wu et al. 2019; Liu and Nishi 2022), or hybridize PSO 
with other algorithms (Aydilek 2018; Sengupta et al. 2019; 
Xu et al. 2019; Dziwinski and Bartczuk 2020). The details 
of the five specific PSO variants used in the current study 
are given in the second half of Table 3.

Major differences between DE and PSO

Technically, PSO is a major algorithm within a family of 
Swarm Intelligence that is based on the communal behavior 
of animals, and DE is a version of Evolutionary Computa-
tion that is based on the evolutionary principles of life. How-
ever, such inspiration-focused differences are irrelevant from 
optimization point of view (Tzanetos and Dounias 2021; 
Molina et al. 2020; Sorensen 2015). What’s important is 
that, although both types of algorithms are population-based 
metaheuristics (Del Ser et al. 2019; Boussaid et al. 2013), 
they perform a search in much different way.

First of all, in DE the particular individual verifies the 
new solution in each generation, but moves to the new loca-
tion only if it is not inferior to the solution at which it was 
located at the beginning of the generation. It means that 
DE population may test new locations, but stay in the for-
mer ones until some promising region of the search space 
is found. Because the probability of visiting particular part 
of the search space is a function of the current location of 
individuals in DE population, such lack of movements may 
lead to stagnation (Weber et al. 2009) and hamper proofs 
of convergence (Hu et al. 2016; Opara and Arabas 2018). 
However, this feature assures that each individual is always 
located in the best place it has visited so far, and the location 
of the whole population is a kind of space-based memory of 
the high-quality solutions. On the contrary, the PSO parti-
cle in each generation moves and stays in the new location, 
irrespective how poor it is. As a result, the particle requires 
an additional memory in which a best solution it has visited 
so far is remembered. PSO particles may fly all around, and 
may have a problem with returning to the promising solu-
tions (Van der Bergh and Engelbrecht 2006). This inspired 
researchers to determine the relations between the trajecto-
ries of PSO and the values of control parameters or topolo-
gies in an analytical way (Clerc and Kennedy 2002; Harrison 
et al. 2018; Cleghorn and Stapleberg 2022).

Another main difference between DE and PSO is the 
crossover Eq. (3). In almost all DE variants, the sampled 
solution is a mix of the former solution and a solution that 
comes up as a result of initial move (which in most DE vari-
ants will be an extended version of Eq. (2)). The crossover 
is useful as it allows keeping some information from the 
previous solution within the newly tested one. It limits the 
diversity, but enhances the chance of finding a better solu-
tion; without that the number of successful steps would often 
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be very low in DE, and population could stagnate for a long 
time in the former location. As PSO performs moves all the 
time, crossover is not necessary (although it has been tested 
in some PSO variants, e.g. Engelbrecht 2016; Gong et al. 
2016; Molaei et al. 2021).

Finally, the majority of new DE algorithms use adaptive 
control parameters and population size modification schemes 
(Al-Dabbagh et al. 2018). Although, as noted above, adap-
tive and variable population-size PSO variants are also 
numerous, they are not as clearly superior to the variants 
with fixed but carefully chosen values (Bonyadi 2020). PSO 
variants that adaptively modify acceleration coefficients (c1, 
c2) are relatively rare (for examples see Harrison et al. 2018) 
and do not much improve the performance.

Description of the study area

The study is performed on the Kamienna River catchment. 
The Kamienna Catchment is located in the Central Vis-
tula basin in the Polish Upland area and covers 2020 km2 
(Fig. 3).

The main river of the catchment is the Kamienna (left 
tributary of the Vistula River), whose sources are located at 
the border of the Masovian and Świętokrzyskie provinces 
above the town of Skarżysko-Kamienna in the mountain-
ous area. The river is 156 km long and runs from west to 
east, predominantly through the Świętokrzyskie Province. 
The catchment elevation varies from about 130–600 m 
a.m.s.l. There are large variations of the longitudinal slope 
of the channel in the upper part of the Kamienna River 
(around 10%). This part has a mountainous character up 
to Skarżysko-Kamienna, from where the slope gradually 
decreases, reaching near Kunów about 0.7% (Lenar-Matyas 
et al. 2006). The catchment area is prone to natural and 
human hazards (FramWat 2019). Human activities focused 
on increase in water retention in the catchment by construct-
ing many small artificial reservoirs and two large ones: 
Wióry and Brody Iłżeckie.

According to the climate classification of Köppen–Gei-
ger (adapted by Peel et al. 2007), the Kamienna Catchment 
climate is "cold" with no dry season and a warm summer. 
Annual areal precipitation for the period 1968–2018 var-
ies from 410 to 920 mm, with a long-term annual mean of 
600 mm, while the long-term monthly mean varies from 
about 30–90 mm (Senbeta and Romanowicz 2021). The 
minimum and maximum precipitations occur in winter and 
summer, respectively. The mean monthly temperature in the 
watershed in the same observational period varies from − 3.1 
to 18.3 °C, with the minimum and maximum in January and 
July, respectively (Senbeta and Romanowicz 2021). The land 
use structure of the study catchment is dominated by agri-
culture (46.3%), a significant part of the area is also occu-
pied by forest and semi-natural land (43.3%); other parts are 
artificial land and water bodies, 10% and 0.4%, respectively.

Dataset

Data used include daily hydrological and climatological 
variables, namely streamflow, air temperature, precipita-
tion and potential evapotranspiration (PET) in and around 
the watershed. These data were collected for the historical 
period 1968–1982, during which the catchment could be 
considered free from anthropogenic influences. After 1982, 
the artificial reservoirs were constructed in the catchment, 
which changed the flow regime. The periods 1968–1970, 
1971–1976 and 1977–1982 were used for warm-up, calibra-
tion and validation, respectively. Hydroclimatic data were 
obtained from the Institute of Meteorology and Water Man-
agement (https://​dane.​imgw.​pl/).

The temperature-based method was used to estimate PET 
at each meteorological station. As both the HBV and GR4J 
models are lumped, temperature, precipitation and PET 
in the catchment were averaged using Thiessen polygon 
method.

Fig. 3   The Kamienna River catchment, flow gauging station and meteorological stations

https://dane.imgw.pl/
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Comparison criteria

Both HBV and GR4J models are calibrated using mean 
square error (MSE). As a result, we compare algorithms 
using exactly the same criterion that was used as objective 
function during search. Each algorithm is run 30 times on 
every model (HBV and GR4J). The mean, median, best, and 
worst performances from these 30 runs obtained for calibra-
tion and testing datasets are used for comparison. This is a 
frequently adopted compromise between the confidence in 
the result’s quality (the more runs, the more reliable results), 
and the applicability (more runs means more time for com-
putation). As shown in Vecek et al. (2017), the number of 
runs has only moderate impact on the final conclusions from 
the research. In addition, we also report the standard devia-
tion of the results obtained based on 30 runs. This allows 
us to discuss both the averaged performance, extremes, and 
the consistency of solutions found by particular optimiza-
tion algorithm.

Results and discussion

Calibration of the HBV model

Each time the model is calibrated, some data need to be 
set aside and not be available to calibration algorithm—we 

call this data set validation (or testing) data. This validation 
dataset is important, because it detects a potential model’s 
overfitting. For obvious reason, we want our model to work 
correctly not just for the data that were used during cali-
bration (calibration set), but also for some future, unknown 
data. Therefore, validation data set is needed to verify the 
practical effects of calibration. Thus the discussion of the 
results may be divided into two parts—the first covers the 
comparison based on the calibration data, and the second 
includes the comparison based on the validation data (see 
Table 4).

Based on the calibration dataset, two algorithms, namely 
PPSO and HARD-DE, appear to be the best ones for the 
HBV model. When comparing the performance based on 
the mean or median from 30 runs, the results obtained by 
PPSO are the best. In particular, the low median obtained by 
PPSO (14.039) shows that this algorithm often leads to the 
results with high performance. Three algorithms (HARD-
DE, MDE_pBX and L-SHADE) achieve equal median 
(14.505) indicating all these algorithms frequently find a 
similar, although sub-optimal solution. However, accord-
ing to the average values HARD-DE performs better than 
MDE_pBX and L-SHADE.

In contrast, OLSHADE-CS leads to by far the poorest 
results, with MSE that is over 30% (median MSE = 20.365) 
higher than that of PPSO and HARD-DE. In terms of the 
mean and median, PSO-based PPSO looks as the winner, 

Table 4   MSE results obtained for the HBV model

Measure Variants of differential evolution and particle swarm optimization algorithms

HARD-DE MDE-pBX L-SHADE OLSHADE-CS EnsDE DEPSO EPSO PPSO PSO-sono TAPSO

Calibration dataset
Mean 14.154 14.504 14.666 20.242 14.624 15.200 14.647 14.088 15.727 15.041
Rank mean 2 3 6 10 4 8 5 1 9 7
Median 14.505 14.505 14.505 20.365 14.603 14.926 14.629 14.039 16.066 15.065
Rank median 2 2 2 10 5 7 6 1 9 8
Best 12.158 14.487 14.487 18.389 14.505 14.506 14.303 13.042 14.572 13.270
Rank best 1 5 5 10 7 8 4 2 9 3
Worst 14.505 14.585 16.294 22.327 14.892 16.295 14.983 16.161 16.349 16.008
Rank worst 1 2 7 10 3 8 4 6 9 5
Standard deviation 0.811 0.017 0.481 0.939 0.086 0.608 0.163 0.988 0.710 0.607
Validation dataset
Mean 39.314 40.365 40.450 46.087 42.072 38.832 40.600 37.196 40.339 39.410
Rank mean 3 6 7 10 9 2 8 1 5 4
Median 40.026 40.027 40.025 44.484 41.886 39.367 39.937 37.118 39.974 39.349
Rank median 7 8 6 10 9 3 4 1 5 2
Best 32.350 39.964 39.354 36.918 37.665 37.076 38.811 35.099 38.859 37.291
Rank best 1 10 9 3 6 4 7 2 8 5
Worst 41.718 41.738 43.285 60.342 45.759 41.264 45.108 40.014 43.525 43.710
Rank worst 3 4 5 10 9 2 8 1 6 7
Standard deviation 2.644 0.677 0.886 5.908 1.545 1.197 1.578 1.329 1.256 1.315
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and DE-based OLSHADE-CS as the worst method. How-
ever, it does not mean the superiority of PSO over DE 
according to the mean and median measures, as the four 
remaining PSO variants (DEPSO, EPSO, PSO-sono and 
TAPSO) perform poorer than the majority of DE variants 
(HARD-DE, MDE-pBX, EnsDE, and often L-SHADE) on 
calibration data set.

The mean and median are not the only metrics to com-
pare algorithms. Many users would simply be rather inter-
ested in the best results found. When one compares the best 
and the worst solutions obtained during 30 runs, HARD-
DE becomes a winner. Indeed, the best solution found by 
HARD-DE (12.158) is about 7% better than the best solution 
found by PPSO (13.047). Moreover, HARD-DE never found 
a solution worse than the median (14.505), while the worst 
solution found by PPSO is over 10% poorer (16.161). We 
may also observe that the ranking of algorithms based on 
the best solutions found is generally different than rankings 
based on the mean or median. One should especially note 
that TAPSO and EPSO were able to find best solutions with 
lower MSE than the best solutions found by DE algorithms 
except HARD-DE. However, DEPSO and PSO-sono were 
not able to outperform DE methods anyway. Hence, accord-
ing to the ranking based on the best solutions found, DE 
still outperforms PSO in general, but the relative positions 
of specific algorithms are different, and the whole picture is 
more complicated.

The superiority of DE over PSO algorithms on the cali-
bration data set is probably an effect of the behavior of both 
families of algorithms. In the recent, efficient DE variants, 
the control parameters are often made adaptive. Hence they 
are flexibly being modified during search (Das et al. 2016; 
Al-Dabbagh et al. 2018), whereas the control parameters 
of PSO are more frequently set fixed throughout the whole 
search (e.g. Clerc and Kennedy 2002; Harrison et al. 2018). 
This flexibility of control DE parameters may give DE algo-
rithm additional chances to cope with complicated fitness 
landscape of each specific problem, in cases where the PSO 
variants with fixed control parameter values are more con-
servative. Another difference that may partly justify better 
performance of DE is the selection operator. DE algorithms 
reject poorer solutions that are found during search, and 
move only to the better locations. Hence, the current DE 
population is composed of solutions that are better than all 
their predecessors. On the contrary, PSO algorithms keep 
moving all the time, and will produce final generations in 
both better or poorer locations. As a result, PSO variants 
may be considered more chaotic, and less effective in finding 
the precise location of the optima.

The results obtained for the validation dataset are over 
twice poorer than the results that were obtained for the 
calibration data set. It is, however, rather up to the data, 
not the calibration process. Considering mean and median 

measures, the PPSO algorithm is the winner for testing data-
set, as it was for calibration dataset. However, the quality of 
solutions found by HARD-DE, MDE_pBX and L_SHADE 
is frequently not confirmed on testing dataset. All three algo-
rithms achieved the second-best median on the calibration 
dataset, but the median MSE for the validation dataset is 
only 6th–8th, which is 10% poorer than the median MSE 
obtained by PPSO. In contrast to the calibration dataset, the 
PSO-based algorithms do not perform poorer than the DE-
based ones on the validation dataset. It may suggest that 
finding the exact optimum based on the calibration data set 
is of moderate importance when the incoming data would 
significantly change (e.g. Beven 2006; Beven et al. 2022). 
Nonetheless, the overall best solution found by any method 
for the validation dataset again belongs to HARD-DE 
(32.350) and is again about 8% better than the best solution 
found by PPSO (35.099). This means that, in some sense, 
DE is still better than PSO on validation data, as one of DE 
variants is able to find much better result than all other com-
peting algorithms. Whether one prefers to look at the mean 
or the best results is up to the user’s taste.

Calibration of the GR4J model

Contrary to the HBV model, the calibration of the GR4J 
model seems to be much simpler, and almost all algorithms, 
apart from OLSHADE-CS, lead to almost the same median 
and best results. Only mean MSE slightly vary, and the 
DE-based methods (excluding OLSHADE-CS), especially 
HARD-DE, achieve clearly better mean results than the PSO 
algorithms (Table 5). This indicates that algorithms rather 
compete in terms of failures, not in finding the best results. 
The poor performance of OLSHADE-CS may be due to its 
very slow convergence, and may be a side-effect of the fact 
that OLSHADE-CS was initially tested on, and probably fit-
ted to, problems with very large number of allowed function 
calls (see Kumar et al. 2022 for initial tests).

The mean MSE obtained by HARD-DE (15.819) is by 
about 7% better than the mean MSE obtained by PPSO 
(16.567). This difference is also kept for the validation 
dataset, where HARD-DE is also about 8% better than 
PPSO. However, for the validation dataset surprisingly the 
best solution found by PPSO is better than the best solution 
found by HARD-DE. Moreover, the overall best solution of 
the GR4J model for the validation dataset is even found by 
the other PSO-based method, PSO-sono. This may look as 
the opposite finding compared with the one noted for HBV 
model. Nonetheless, the results obtained for the GR4J model 
are much less diversified than those for the HBV model. This 
may be due to much smaller number of parameters to be 
optimized—small number of parameters may lead to lower 
differences in performance between algorithms.
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Conclusion

The present paper discusses numerous state-of-the-art vari-
ants from the PSO and DE optimization methods which were 
applied to calibration of the catchment runoff models. In the 
literature dealing with computational optimization methods, 
no broader comparison of performance between PSO and 
DE families has been presented so far. We have chosen five 
DE and five PSO variants proposed between 2012 and 2022. 
These ten algorithms were applied for calibration of two 
conceptual rainfall-runoff models: HBV and GR4J, on the 
Kamienna catchment located in the middle part of Poland. 
We aimed at finding whether the DE or PSO algorithms 
would be better suited for calibration of rainfall-runoff mod-
els. Furthermore, we focused on the relative performance 
obtained by the algorithms from the two different modern 
families in calibration of hydrological models, rather than 
comparing the results obtained by both conceptual rainfall-
runoff models.

We show that the results obtained by different optimizers 
applied are roughly similar for the GR4J model, which has 
very few parameters. For the GR4J model, one may rather 
point at an inferior algorithm—OLSHADE-CS, rather than 
a winner, as many optimizers performed very similarly. No 
clear difference between PSO and DE methods could be 
found. This is probably because the GR4J model has low 
number of parameters that are relatively simple to calibrate. 

However, among the best results found during many runs, 
those found by two PSO variants (PPSO and PSO-sono) are 
better than those found by their DE competitors.

In the case of the HBV model, the results were much 
different. OLSHADE-CS showed the poorest performance 
as well, but the results obtained by other algorithms were 
diversified. Which exact method could be a winner depends 
on whether one focuses on calibration, or validation dataset, 
and whether one is interested in the mean/median perfor-
mance, or in finding the best possible solution in one among 
30 runs. Overall, two algorithms, PSO-based PPSO and 
DE-based HARD-DE performed best on the HBV model 
calibration. Comparison between both families of methods 
reveals that, in general, the DE algorithms slightly outper-
formed the PSO ones. The difference was, however, clearer 
for the calibration dataset than the validation dataset. We 
may recommend using adaptive variants of algorithms for 
model calibration, especially those that have flexible con-
trol parameters (e.g. HARD-DE) or advanced topology (e.g. 
PPSO) that may automatically tune the speed of information 
exchange between individuals within the population man-
aged by the algorithm. DE algorithms seems to be more 
appropriate choice for the calibration of rainfall-runoff mod-
els than PSO variants, but the difference between their final 
performances is limited and depends on the measure that is 
used to create the ranking of algorithms.

Table 5   Results obtained for the GR4J model

Measure Variants of differential evolution and particle swarm optimization algorithms

HARD-DE MDE-pBX L-SHADE OLSHADE-CS EnsDE DEPSO EPSO PPSO PSO-sono TAPSO

Calibration set
Mean 15.819 16.127 16.091 19.909 15.824 16.946 15.979 16.567 16.661 16.567
Rank mean 1 5 4 10 2 9 3 6 8 6
Median 15.719 15.719 15.719 19.871 15.719 15.828 15.737 15.828 15.815 15.828
Rank median 1 1 1 10 1 7 5 7 6 7
Best 15.719 15.719 15.719 17.030 15.719 15.719 15.719 15.719 15.719 15.719
Rank best 1 1 1 10 1 1 1 1 1 1
Worst 18.819 18.821 18.821 21.529 18.819 18.868 18.823 18.874 18.863 18.874
Rank worst 1 3 3 10 1 7 5 8 6 8
Standard deviation 0.557 1.054 0.932 1.344 0.556 1.521 0.764 1.356 1.423 1.356
Validation set
Mean 30.279 30.279 31.296 38.513 30.240 35.873 30.837 33.913 34.104 33.913
Rank mean 2 2 5 10 1 9 4 6 8 6
Median 29.759 29.759 29.759 35.996 29.757 30.275 29.759 30.221 29.759 30.221
Rank median 2 2 2 10 1 9 2 7 2 7
Best 29.759 29.759 29.749 28.874 29.049 28.840 29.079 28.840 28.816 28.840
Rank best 8 8 8 5 6 2 7 2 1 2
Worst 45.870 45.870 45.816 46.794 45.816 45.518 45.535 45.518 45.871 45.518
Rank worst 7 7 5 10 5 1 4 2 9 2
Standard deviation 2.894 2.894 4.765 5.992 2.894 7.753 3.939 6.937 7.372 6.937
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