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Abstract
The Bat optimizing algorithm (BOA) is one of the metaheuristic algorithms and applied here to interpret self-potential (SP) 
data. The BOA is depending upon a bat echolocation behavior for global optimization, which the global optimum solution 
reached at the suggested minimum value of the objective function. The best interpretive source parameters for the subsurface 
structures occurred at the minimal the objective function value (global best solution). The BOA is applied to 2D SP anomaly 
data to estimate the characteristic source parameters (i.e., the depth to center, amplitude coefficient, origin location, geometric 
shape factor, and polarization and inclination angle of the causative buried structure). The BOA can be applied to single and 
multiple source structures in the restricted class of simple geometric shapes, which these bodies help in the validation of the 
subsurface ore and mineral targets. The stability and efficiency of the proposed BOA have been examined by several synthetic 
examples. In addition, three different real field examples from Germany and Indonesia have been successfully applied to ore 
and mineral investigation and geological structure studies. In general, the achieved results are in good agreement with the 
available borehole data and results mentioned in the literature.

Keywords Self-potential · Bat optimizing algorithm (BOA) · Mineral and ore exploration · Inclined sheets · Simple 
geometric shapes · Fault

Introduction

The self-potential (SP) technique represents an inactive 
source of the electric field that measured naturally arising 
potential variations in the subsurface caused by electroki-
netic, thermoelectric, and electrochemical fields. Negative 
SP anomalies are commonly seen around mineralized zones. 
Additionally, SP anomalies of a minor scale are linked to 
other geological formations. The SP technique has been 
widely utilized to investigate a variety of minerals as well 
as subsurface geologic structure investigations. The SP tech-
nique has progressed (Revil et al. 2008; Ikard et al. 2012; 
Essa et al. 2020; Eppelbaum 2021). It is now widely used for 
sulfide, graphite, uranium, magnetite, and gold investigation 

(Essa et al. 2008; Biswas et al. 2014; Kawada and Kasaya 
2018; Essa 2020; Mehanee 2021), archaeological investiga-
tions (Wynn and Sherwood 1984; Drahor 2004), mapping 
paleo-shear zones (Mehanee 2015; Biswas 2017), environ-
mental and geotechnical engineering (Hunter and Powers 
2008; Xie et al. 2021), cavity discovery (Vichabian and Mor-
gan 2002; Eppelbaum 2021), geothermal exploration (Min-
sley et al. 2008), coal fires detection (Shao et al. 2017; Gao 
et al. 2021), and monitor water movement (Soueid Ahmed 
et al. 2016; Kukemilks and Wagner 2021). The electrical SP 
technique is used in a variety of monitoring investigations, 
including landslides and mass sliding caused by pore pres-
sure accumulation in the rock (Heinze et al. 2019).

Self-potential methods are favored over other geophys-
ics-techniques in measurements, which are sensitive to fluid 
movements in fractured and porous rock and under natural 
or an applied hydraulic gradient responding to weak fluid 
movements (Sill 1983; Fournier 1989).

Several SP data techniques have been developed and 
may be classified into two categories: The SP anomaly 
of multi-dimensional structures (2D and 3D) falls under 
category I. SP inversions in multiple dimensions can be 
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non-unique, unstable, and time-consuming to compute 
(i.e., Minsley et al. 2007; Rittgers et al. 2013; Oliveti and 
Cardarelli, 2017). Regularization techniques are standard 
approaches for getting a stable solution to the ill-posed 
inversion problems (Soueid Ahmed et al. 2016).

Category II uses geometrically basic models such as 
vertical cylinders, horizontal cylinders, and spheres to rep-
resent the collected self-potential anomaly. This category 
provides a quick quantitative interpretation intending to 
gauge the depth, position, and orientation parameter of 
the interpretative model that matches the observed data. 
The research introduced here belongs to this category. To 
delineate the depth, shape, and the polarization parameter 
of the causal source body from the measured SP anomaly, 
several quantitative techniques have been well known for 
category II (i.e., Yüngül, 1950; Banerjee, 1971; Rao and 
Babu 1983; Abdelrahman et al. 2004; Essa and Mehanee, 
2007; Soueid Ahmed et  al. 2013; Essa 2019;  Elhus-
sein 2021). The drawback of these approaches focused 
on subjectivity, which may lead error in appraising the 
source parameters of the subsurface causative structures 
(Mehanee 2014).

Using simple geometric models, several numerical and 
graphical approaches for elucidating self-potential data were 
developed. For example, Abdelrahman et al. (2009) pre-
sented a graphical approach to estimate the shape and depth 
to the center of the subsurface structures using the second-
order moving average operator. Santos (2010) employed the 
particle swarm approach to invert SP anomalies using basic 
geometries. Mehanee (2014) used the conjugate gradient 
minimizer in the dimension of the non-logarithmic and loga-
rithmic parameters to build a regularized system for inter-
preting SP data. Di Maio et al. (2017) established a spectrum 
analysis method based on the periodogram, Multi-Taper, and 
Maximum Entropy methods for a full SP data interpretation 
using simple-geometric bodies. Sungkono (2020) introduced 
a global optimization technique using micro-differential evo-
lution (MDE) to invert self-potential data comprising simple 
geometric shapes and inclined sheets.

Many metaheuristic-inspired algorithms have been estab-
lished in recent decades to handle complicated issues, for 
example, the genetic algorithm (GA) (Di Maio et al. 2019), 
the particle swarm algorithm (PSO) (Pekşen et al. 2011), the 
global optimizing algorithm of simulated annealing system 
(Sharma and Biswas 2013), and the ant colony optimizing 
algorithm (Srivastava et al. 2014). These algorithms are 
popular among researchers because of their adaptability 
and ability to cope with a wide range of issues compared to 
standard optimization approaches. Bat optimizing algorithm 
(BOA) represents one of the newly proposed metaheuristic 
algorithms that have been applied in geophysical investiga-
tions, i.e., seismic refraction (Poormirzaee 2017; Poormir-
zaee et al. 2019; Essa and Diab 2022).

Several swarm intelligence algorithms have been devel-
oped and applied to various real-world problems to date, 
but the use of the Bat optimizing algorithm (BOA) in 
geophysical data analysis is relatively recent. BOA is the 
first algorithm of its kind in the field of optimization and 
computational intelligence since it uses frequency tuning. 
Fister (2013) concluded that BOA outperforms PSO after 
conducting various experiments on the implementation of 
the bat algorithm. Although methods like genetic algorithms 
(GA) and PSO can be quite beneficial, they still have cer-
tain limitations when it comes to multi-modal optimization 
issues (Yang and He 2013). The BOA has many advantages: 
one of the major advantages of the BOA is that it may give 
extremely rapid convergence at a relatively early stage by 
transitioning from exploration to exploitation. This makes 
it an effective method for applications requiring a rapid 
answer, such as classifications. BOA can use as a global 
optimizer as well as a local optimizer. BOA has ability 
to handle multi-model problem efficiently. BOA utilizes 
controlling parameter to update parameter as the iteration 
progresses. BOA is maintaining the diversity of solutions 
in the population. The drawbacks of BOA lie in the fol-
lowing: it has a lack of good exploration. It required the 
parameter tuning to achieve better search output. It needs 
an improved control strategy to switch between exploration 
and exploitation.

In the current work, we applied a Bat optimizing algo-
rithm (BOA) approach for interpreting self-potential data 
recorded along with 2D profiles by a certain basic geometri-
cal (i.e., vertical and horizontal cylinders, spherical shaped 
models, inclined sheets) as well as multi-source models. The 
goal of the current work is to invert the self-potential data 
(i.e., appraising the depth (z), location of the source origin 
 (xo), the amplitude coefficient (K), polarization and inclina-
tion angles (θ & φ), and the shape type (q)). The best-inter-
preted model parameters are obtained corresponding to the 
minimum normalized root-mean-squared error (NRMSE) of 
the objective function after reaching the global best solution. 
The present BOA approach is applied to different field exam-
ples around the world for mineral exploration and geological 
structure delineation (i.e., fault).

The paper structure is prepared as follow: Sect. Bat 
optimizing algorithm (BOA) covers the fundamentals 
of echolocation plus the conventional formulation of the 
BOA. Section Methodology delivers a brief explanation of 
how to invert SP data using the BOA. Section Methodol-
ogy describes the forward modeling and formulation of the 
proposed BOA. Section Numerical datasets test provides 
that the proposed BOA approach is verified on numerical 
examples (including free and noisy examples, investigating 
the interference multiple model effects). Section Field data-
sets test discusses the applicability of the proposed BOA 
on different real field examples. Finally, Sect. Conclusions  
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provides conclusions that summarize the objective of the 
proposed BOA approach.

Bat optimizing algorithm (BOA)

The Bat optimizing algorithm (BOA) is a metaheuristic 
optimization offered by Yang (2010). The BOA is relied 
on the echolocation behavior of micro-bats. Microbats uti-
lize echolocation to find their nest, evade obstacles, and fol-
low prey in the dim. These bats generate an extremely loud 
sound pulse in the 8–10 kHz range and listen for echoes 
from surrounding objects. Every pulse takes a fraction about 
10 ms. The pulse rate of Bats increases while their sound 
loudness decreases when they are approaching prey or an 
object (Yang 2010). Consequently, microbat echolocation 
activity may be represented in a way that optimizes objective 
functions. The main rules of the BOA can be shortened in 
three steps: (1) Bats utilize echolocation to assess distance; 
(2) Bats locate their objects by flying at a stable frequency 
in the range of [Fmin, Fmax] with an initial velocity (Vi) at 
position (Xi); and (3) The loudness (Li), and emission rate 
(ri), which differ depending on the space amongst the bats 
and the target.

Generally, the wavelength spectrum [Kmin, Kmax] refers to 
the frequency range [Fmin, Fmax]. As a result, adjusting the 
frequency or wavelength can be used to change the move-
ment range of bats in an optimization issue. Consequently, 
choosing the right frequency or wavelength range is crucial, 
and it should be chosen to match the scale of the region of 
curiosity before harmonizing down to lower ranges. Next 
running the procedure with various parameters, the spectrum 
of [0, 0.5] was calculated as the best frequency range in this 
investigation. The pulse rate, ri, can be anywhere between 
0 and 1, with 0 indicating no pulses and 1 indicating the 
maximum emission rate. The vicinity of the object or target 
determines the range. Additionally, the initial loudness, i.e., 
Li, should normally within the domain of [1, 2] (Yang 2010). 
The loudness of the bats decreases as they approach their 
victim, while the emission rate increases. The Bat algorithm 
can only update the loudness and emission rates if the new 
solutions develop, inferring that the bats are approaching the 
optimum solution (Fister et al. 2013).

The effects of the optimizing tuning parameters of the 
frequency (Fi), Loudness (Li), and rate of pulse emission 
(ri) on the rate of BOA convergence were studied (Fig. 1) 
using different ranges of each parameter. The influence of 
each set of (Fi, Li, and ri) parameters on the convergence 
rate and convergence behavior is shown in Fig. 1. Figure 1 
suggests that the optimum set is that of (F1 = [0, 5], L1 = 1.0 
and r1 = 0.9), which has a minimum NRMSE of the objec-
tive function than other sets and gives a fast convergence to 
the optimum solution. Note the initial speed (Vi) at position 

(Xi) was set to zero at the beginning of the BOA inversion 
process. The performance of the BOA technique to obtain 
the optimal model parameters of the assumed model (i.e., 
synthetic data example model-1) measured using MATLAB 
function "tic & toc." It takes less than 50 s on ordinary com-
puter. The result indicates that the BOA algorithm is faster 
than the other metaheuristic algorithms (PSO, CS, and ABC) 
(Khari et al. 2020).

The relationship between algorithm parameters is 
depicted in the equations as follows:

where Fi is the frequency of ith bat which is updated in 
every iteration, � is a random vector of uniform distribution 
between [0, 1], and Xbest is currently the global best solution 
among the whole bat numbers, � and � are constants, 0 < 
�  < 1 and � > 0, and � is the scaling factor.

The BOA utilizes a random path to produce novel solu-
tions from every chosen best solution in the local search, as 
follows:

where � ∈ [−1, 1] represents a randomly numbers, and Lt 
represents the mean loudness of the whole bat numbers at 
the present stage.

(1)Ft
i
= Fmin +

(
Fmax − Fmin

)
�

(2)V
(t+1)

i
= Vt

i
+
(
Xt
i
− Xbest

)
Ft
i

(3)X
(t+1)

i
= Xt

i
+ V

(t+1)

i

(4)L
(t+1)

i
= �Lt

i

(5)rt
i
= r0

i

[
1 − exp (−��)

]
,

(6)Xnew = Xold + �At,

Fig. 1  Effect of different sets of optimization parameters (Fi, Li and 
ri) on the convergence rate and behavior of the BOA approach
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Methodology

It is critical to acquire correct findings for the subsurface 
model parameters to match the observed data when inter-
preting self-potential data. As a result, a large-capacity 
inversion method is required to get appropriate assess-
ments of subsurface model parameters as depth, position, 
and shape of the buried body, among others. Metaheuris-
tic inversion algorithms have shown to be beneficial in a 
variety of case studies. Most metaheuristic inversion algo-
rithms are easy, quick, and more efficient than traditional 
inversion algorithms.

In this research work, we developed a MATLAB code to 
invert self-potential data based on the BOA (Yang 2010). 
Depth (z), location (xo), polarization angle (θ), inclination 
angle (φ), body shape (q), and the amplitude coefficient 
(K) are the most critical characteristics that impact self-
potential data anomaly. As a result, these parameters are 
searched in the suggested inversion technique to identify 
an acceptable subsurface model that fits the real data.

In particular, the place of every bat in search space sig-
nifies a solution. Bats flying haphazardly in search space 
and apply a solution in each iteration process. The location 
of every bat is determined using the best locations. The 
location with the lowest misfit of the NRMS of the objec-
tive function is picked as the best solution (Xbest). In this 
study, the BOA inversion program was initially evaluated 
on a variety of numerical datasets. After that, it was tested 
on real field datasets. The search range should be adopted 
to simulate more realistic cases where a priori information 
is absent. Therefore, the search space is chosen in both 
synthetic and real datasets based on the objective func-
tion (OFn) where the search range for the model parameter 

which will give the minimum OFn will be selected as the 
suitable search range.

The SP effect (mV) of simple geometric bodies such as 
vertical & horizontal cylinders models and spheres model at 
a stationary point P(xj, z) across 2D profile (Fig. 2a, b and c) 
is provided by (Yüngül 1950; Mehanee 2014):

where xj (m) denotes the measurement station coordinates 
along a profile (Fig. 2), xo (m) is the origin/center point of 
source model, z (m) is the depth of buried source, K (mV.
m2q−1) denotes the amplitude coefficient (moment of the 
electric dipole), the unit of which is dependent upon the 
shape factor (Abdelrahman et al. 2006). θ (degrees) denotes 
the angle of polarization, q (dimensionless) represents the 
shape factor, and n denotes the data points.

Also, the SP for a 2D inclined thin sheet (Fig. 2d) (Sunda-
rarajan et al. 1998; Essa and Elhussein 2017) is expressed as:

where K (mV) represents the amplitude coefficient ( = I�

2�
, 

I denotes the current density, � denotes the circumference 
resistivity), φ (degree) denotes the angle of inclination, h 
(m) denotes the thin sheet’s half-width.
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Fig. 2  Configurations of simple 
geometric-shaped models:  
a vertical cylinder model,  
b horizontal cylinder model,  
c sphere model, and d 2D infi-
nitely inclined thin sheet
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For the full interpretation using the BOA, the misfit 
objective function (OFn) between observed (measured) and 
calculated (estimated) model response is:

where N characterizes the total data points numbers, Vo rep-
resents the observed SP data and Vc represents the calcu-
lated SP response. Once a summation is approaching zero 
or smaller than one, the misfit increases, according to Eq. 9. 
Although such a circumstance is unlikely to arise with SP 
data, it should be avoided. In case of several data points 
around a zero crossing, for example, a possible gradient 
anomaly, the data might pose problems. To deal with such 
a scenario, a distinct form of misfit is well known as (Kaik-
konen and Sharma, 1998):

Equation 10 has very good results are obtained when 
applying the proposed BOA technique for the inclined thin 
sheet model. Initially, Eqs. 9 and 10 are employed to com-
pute misfits, and afterward the bat with a minimum misfit 
function is selected as the Xbest. The BOA fundamental pro-
cesses can be seen using the pseudocode in Fig. 3 and the 
flow chart in Fig. 4.
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Numerical datasets test

To measure the efficiency and rationality of the proposed 
BOA approach, it was examined on different numerical SP 
datasets. The numerical example responses are confined to 
the delimited class of the basic geometrical shapes (vertical 
cylinder, horizontal cylinder, and spheres) as well as to the 
inclined thin sheet. Firstly, the developed algorithm is tested 
on noise-free numerical examples, and then, the inversions 
are performed on noisy data for multiple sources to study the 
interference effect of neighbor structure and fault.

Model‑1: Interference and multiple structure effects

The observed SP effect due to isolated anomalies of buried 
sources can be impacted by an interference influence (that 
is, the action of surrounding multiple structures) in specific 
geologic contexts (Mehanee and Essa, 2015). We com-
puted the composite self-potential response (using formula 
(7)) of two surrounding geologic sources, namely a hori-
zontal cylindrical model with [K1 = 700 mV.m, z1 = 12 m, 
xo1 = − 50  m, θ = − 35° and q1 = 1] and a sphere model 
with [K2 = 2500 mV.m2, z2 = 7 m, xo2 = 50 m, θ = − 45° and 
q2 = 1.5], along a profile length of 200 m (Fig. 5a) to test 
this influence on the stability of the distinctive parameters 
deduced from the BOA algorithm presented here. Apply-
ing the procedure of the BOA algorithm described before, 
the calculated self-potential response of the two models is 
shown in Fig. 5a. The obtained average loudness of the com-
posite anomaly is revealed in Fig. 5b, while the emission rate 
of bat for the composite anomaly is exposed in Fig. 5c. The 
NRMSE of the global best solution (min objective function, 
OFn) is obtained in Fig. 5d, and the average NRMSE of all 
the bats is shown in Fig. 5e. Figure 5 and Table 1 show that 
the two recovered model parameters of the two introduced 
models are identical to the true ones. The relative error (RE) 
and standard deviation (SD) of the recovered parameters are 
illustrated in Table 1. The RE and SD can be computed using 
these formulas:

where the �A is the actual true value and �R is the recovered 
value.

where the �i is each value of the population parameter, � is 
the mean value of population and N in the total number of 
populations or data points.

(11)RE =
|||
|
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�A

|||
|
× 100%,

(12)SD =

�
∑N

i=1

�
�i − �

�2

N − 1
,

Define Objective Function OFn (xj) [equation (9)]
Initialize the bat population Xi (i = 1, 2, ..., n) and Vi
Define pulse frequency Qi at Xi

Initialize pulse rates ri and the loudness Li

while (t < Max number of iterations)
Generate new solutions by adjusting frequency, and updating velocities 
and locations/solutions [equations (2) to (4)]
if (rand > ri)

Select a solution among the best solutions Generate a local 
solution around the selected best solution

end if
Generate a new solution by flying randomly
if (rand < Li & OFn (Xi) < OFn (Xbest) )

Accept the new solutions
Increase ri and reduce Li

end if
Rank the bats and find the current Xbest

end while

Fig. 3  Bat optimizing algorithm (BOA) pseudo code (modified after 
Yang 2010)
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Fig. 4  Flow chart steps of the 
BOA
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The outcomes concluded that the BOA algorithm is 
more stabilized and accurate in the case of multi-structures 
depending upon the extent of the surrounding effect.

To further investigate the procedure of BOA on multi-
structure and surrounding effects, we contaminated the 
composite SP response (Fig. 5a) with a Gaussian noise 

level of 20% (Fig. 6a). Figure 6b, c presents the average 
loudness and emission rate of the bat to the overall com-
posite SP anomaly, respectively. Figure 6d, e represents the 
NRMSE of the global best solution (min objective func-
tion, OFn) and the average NRMSE of all the bats, respec-
tively. Figure 6a and Table 2 illustrate that the calculated 

Fig. 5  Model-1: Interference 
and multiple structure effect. 
a The composite SP anomaly 
generated by horizontal cylinder 
and sphere model (true model 
parameters), as well as the 
calculated SP response of them 
(recovered model parameters) 
using the BOA, b loudness of 
the bats, c emission rate of the 
bats, d NRMSE of the global 
best solution (OFn) of the bats 
versus the iteration numbers, 
and e the average NRMSE of all 
the bats

Table 1  Model-1: True and recovered model parameters of the composite interference SP anomaly of a horizontal cylinder and a sphere model 
with corresponding RE for each model parameters using the BOA

Model parameters True value Search range Recovered value RE (%) OFn

Horizontal 
cylinder 
model

Sphere model Horizontal 
cylinder 
model

Sphere model Horizontal 
cylinder 
model

Sphere model

K (mV.m2q−1) 700 2500 100:3000 690 ± 59.83 2550 ± 60.00 1.43 2.00 4 *  10–8

z (m) 12 7 1:15 12.5 ± 0.59 7.5 ± 0.60 4.17 7.14
xo (m) − 50 50 − 100:100 − 50 ± 2.65 50 ± 2.65 0 0
θ (°) − 35 − 45 − 5:− 90 − 33 ± 3.35 − 43 ± 3.34 5.71 4.44
q 1 1.5 0.5:1.5 1 ± 0.40 1.5 ± 0.25 0 0
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composite anomaly and the recovered model parameters 
of the two introduced models after noise contamination 
differ slightly from the true ones. The RE and SD of the 
recovered parameters are illustrated in Table 2. Generally, 
the parameters recovered using the BOA algorithm for the 
noisy interference sources are in great matching with the 

true ones (Table 2). The obtained results support and con-
firm the mentioned BOA algorithm finding.

Model‑2: 2D inclined sheet

To further investigate the BOA algorithm for studying the 
geological structures, such as faults, a noise-free example 

Fig. 6  Model-1: Noisy interfer-
ence and multiple structure 
effect. a The noisy composite 
SP anomaly produced by data 
set exposed in Fig. 5a after add-
ing 20% random Gaussian noise 
(true model parameters), as well 
as the calculated SP response of 
them (recovered model param-
eters) using the BOA,  
b loudness of the bats, c emis-
sion rate of the bats, d NRMSE 
of the global best solution (OFn) 
of the bats versus the iteration 
numbers, and e the average 
NRMSE of all the bats

Table 2  Model− 1: True and recovered model parameters of the noisy composite interference SP anomaly of a horizontal cylinder and a sphere 
model (20% random Gaussian noise) with corresponding RE for each model parameters using the BOA

Model parameters True value Search range Recovered value RE (%) OFn

Horizontal 
cylinder 
model

Sphere model Horizontal 
cylinder 
model

Sphere model Horizontal 
cylinder 
model

Sphere model

K (mV.m2q−1) 700 2500 100:3000 750 ± 60.39 2520 ± 59.90 7.14 0.80 1.0 *  10–7

z (m) 12 7 1:15 12.9 ± 0.96 6.3 ± 0.91 7.50 10.00
xo (m) − 50 50 − 100:100 − 51 ± 0.65 49 ± 0.65 2.00 2.00
θ (°) − 35 − 45 − 5:− 90 − 43 ± 5.95 − 44 ± 6.00 22.86 2.22
q 1 1.5 0.5:1.5 1 ± 0.40 1.5 ± 0.25 0 0
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of a 2D inclined sheet model has been examined (model 
d in Fig. 2). The SP effect of the 2D inclined sheet model 
with input parameters: K = 250 mV, z = 15 m, h = 10 m, 
xo = 0 m and φ = 55° is calculated using Eq. (8) of the 
inclined sheet model with a 200-m-long profile (Fig. 7a). 
Applying the same procedure of the BOA algorithm 
described above, the computed SP response of the 2D 
inclined sheet model is displayed in Fig. 7a. The average 
loudness of the SP anomaly is revealed in Fig. 7b, and 
the emission rate of the bat is obtained in Fig. 7c. The 

NRMSE of the global best solution (min objective func-
tion, OFn) is shown in Fig. 7d, and the average NRMSE of 
all the bats is shown in Fig. 7e. Figure 7a and Table 3 show 
that the recovered model parameters of the 2-D inclined 
sheet model are identical to the true one. The RE and SD 
of the recovered parameters are illustrated in Table 3. The 
result supports that the BOA algorithm can be used to 
investigate the geological structure like sheets or faults, 
precisely.

Fig. 7  Model 2: noise-free 
synthetic example of the 
inclined sheet model. a The 
measured SP anomaly generated 
by inclined sheet model (true 
model parameters), as well 
as the calculated SP response 
(recovered model parameters) 
using the BOA, b loudness of 
the bats, c emission rate of the 
bats, d NRMSE of the global 
best solution (OFn) of the bats, 
and e the average NRMSE of all 
the bats

Table 3  Model-2: True and 
recovered model parameters of 
the noise-free synthetic example 
of the inclined sheet with the 
corresponding RE for each 
parameter using the BOA

Model parameters True value Search range Recovered value RE (%) OFn

K (mV) 250 50:500 249.90 ± 0.064 0.04 6.0 *  10–9

z (m) 15 5:25 15.08 ± 0.062 0.53
h (m) 10 1:15 9.96 ± 0.060 0.40
xo (m) 0 − 100:100 0.00 ± 1.632 0.00
φ (°) 55 5:90 54.93 ± 0.05 0.13
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The stability of the BOA algorithm is tested on the 
inclined sheet model by introducing a 20% Gaussian noise 
to the SP effect presented in Fig. 7a. Using the same proce-
dures of the BOA algorithm to the noisy data, the best model 
parameter recovered at the minimum NRMSE of the objec-
tive functions (OFn). Figure 8a shows the contaminated SP 
anomaly after adding the 20% noise and the calculated SP 
response after obtaining the best model parameters using the 
BOA inversion algorithm. The loudness and emission rate 
of the bats are shown in Fig. 8b, c. Figure 8d, e depicts the 

NRMSE of the global best solution (min objective function, 
OFn) and the average NRMSE of all the bats. Table 4 shows 
that the recovered model parameters of the contaminated 
self-potential anomaly are not significantly affected by the 
noise and are too close to the actual ones. Therefore, it can 
be concluded that the BOA algorithm suggested here is sta-
bilized with regard to noise. The RE and SD of the recovered 
model parameters are illustrated in Table 4.

Fig. 8  Model 2: noisy synthetic 
example of the inclined sheet 
model. a The measured SP 
anomaly generated by inclined 
sheet model in Fig. 7a after add-
ing 20% random Gaussian noise 
to the data (true model param-
eters), as well as the calculated 
SP response (recovered model 
parameters) using the BOA,  
b loudness of the bats, c emis-
sion rate of the bats, d NRMSE 
of the global best solution (OFn) 
of the bats, and e the average 
NRMSE of all the bats

Table 4  Model-2: True and 
recovered model parameters 
of the noisy synthetic example 
of the inclined sheet after 
adding 20% random Gaussian 
noise to the SP anomaly and 
the corresponding RE for each 
parameter using the BOA

Model parameters True value Search range Recovered value RE (%) OFn

K (mV) 250 50:500 244 ± 6.84 2.40 1.0 *  10–6

z (m) 15 5:25 16 ± 0.81 6.66
h (m) 10 1:15 9.4 ± 0.68 6.00
xo (m) 0 − 100:100 0.01 ± 3.23 0.00
φ (°) 55 5:90 53 ± 6.83 3.63
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Field datasets test

In the following sections, we studied the application of the 
developed BOA to three published SP field datasets for 
mineral exploration and geological structure investigation. 
The first example is the KTB anomaly (multiple-sources 
anomaly) from Germany for graphite deposits explora-
tion. The second example is the Pinggirsari anomaly from 
Indonesia for delineating fault structure. Finally, the third 
example is the Bavarian woods graphite deposits anomaly 
(Germany) investigation.

The KTB SP anomaly, Germany

The KTB SP anomaly was observed around KTB-Boreholes 
through the Continental Deep Drilling Program in the north 
sector of Oberpfalz, northeast of Bavaria, Germany (Stoll 
et al. 1995) (Fig. 9). Two distinct negative peak anomaly 
zones are visible in this anomaly. The location of these two 
distinct peak anomalies should be the appropriate position of 
the subsurface structure. The graphite deposits found on the 
KTB's shear faults are only a few meters in thicknesses (Stoll 
et al. 1995). Graphite mineralization was the primary source 
of strong electrical conductivities in the upper crust (Stoll 
et al. 1995; Biswas 2017). Boreholes was conducted at the 
KTB-VB to 4 km in depth, and at KTB-HB to 200 m distant 
and around 9.1 km in depth (Emmermann and Lauterjung 

Fig. 9  Geological map in the vicinity KTB area, northern Oberpfalz, Germany (modified after Stoll et al. 1995; Hirschmann et al. 1997)
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1997). The KTB SP anomaly is digitized at a 20 m sampling 
interval (Fig. 10a).

The KTB SP anomaly is investigated by different tech-
niques (Stoll et al. 1995; Srivastava and Agarwal 2009; 
Mehanee 2015; Biswas 2017; Sungkono 2020). Stoll et al. 
(1995) interpreted the SP anomaly of KTB using electro-
chemical modeling method with depths at 50 m and 30 m. 
Srivastava and Agarwal (2009) interpreted the SP anomaly 
employing the ELW approach considering quasi-sheet-like 
structures with depths at 135.5 m and 80 m. Mehanee (2015) 
analyzed the anomaly exploiting deterministic inversion in 

view of thin sheet-type structures with depths about 27 m 
and 26 m to the top of the sheet structures. Biswas (2017) 
reinterpreted the KTB anomaly utilizing the VFSA global 
optimization technique takes into accounting thin sheet-type 
structure with depths 372 m and 298 m to the center of the 
sheet structures. Sungkono (2020) interpreted the anomaly 
using micro-differential evolution (including MVDE and 
µJADE) technique as thin sheet type structures with depths 
to the center at 447.09 m and 134.82 m using MVDE and 
using µJADE with depths to the center at 556.99 m and 
154.15 m.

Fig. 10  KTB SP anomaly, 
Germany. a The measured SP 
anomaly profile (blue squares), 
and the calculated best-fitting 
SP response (red circles) using 
the BOA, b loudness of the bats, 
c emission rate of the bats,  
d NRMSE of the global best 
solution (OFn) of the bats 
versus the iteration numbers, 
and e the average NRMSE of all 
the bats

Table 5  KTB self-potential 
anomaly, Germany. Recovered 
model parameters with the 
corresponding min OFn for each 
parameter using the BOA

Model parameters Search range Recovered value OFn

First anomaly Second anomaly

K (mV) 1:150 72 ± 16.90 80 ± 31.61 1.0 *  10–6

z (m) 1:500 380 ± 11.47 275 ± 68.32
h (m) 1:500 350 ± 43.11 360 ± 59.99
xo (m) − 850:850 − 400 ± 46.60 570 ± 47.80
φ (°) 5:180 75 ± 16.56 120 ± 25.81
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The KTB SP anomaly is interpreted using the presented 
BOA algorithm considering thin sheet-type structures. 
Applying the procedures of the BOA algorithm discussed 
before, the characteristics source parameters of the KTB 
SP anomaly were estimated (Table 5). Figure 10b, c shows 
the average loudness and emission rate of the bat over the 
self-potential anomaly, respectively. Figure 10d, e shows the 
NRMSE of the global best solution (min objective function, 
 OFn) and the average NRMSE of all the bats, respectively. 
The best-interpreted model parameters occurred at the min 
NRMSE of the OFn. The min OFn is 0.000001 and the cor-
responding inferred model parameters of the first anomaly 
are K1 = 72 mV, z2 = 380 m, xo1 = − 400 m, h1 = 350 m, and 
φ1 = 75°, while the best-inferred characteristic parameters of 
the second anomaly are K2 = 80 mV, z2 = 375 m, xo2 = 570 m, 
h2 = 360 m, and φ2 = 120° (Table 5). The depths obtained 
here are in good agreement with those obtained by Biswas 
(2017) and Sungkono (2020). The observed and calculated 
self-potential KTB anomalies are extremely well matched 
(Fig. 10a). Table 6 displays a comparison of the outcomes 
introduced by the previous methods and the obtained results 
using the proposed BOA algorithm. Figure 11 shows the 
sketch diagram of the results obtained by Stoll et al. (1995) 
using the trial-and-error technique (Fig. 11a) and the pre-
sent approach (Fig. 11b). According to these results, the 
present approach gives a more insight view with the geo-
logical cross-section (Fig. 11c) for the KTB anomaly than 
Stoll et al. (1995).

The Pinggirsari SP anomaly, Indonesia

The SP anomaly of Pinggirsari is observed to identify and 
characterize the fault structure in the Pinggirsari village, 
Java, Indonesia (Fajriani et al. 2017). The data acquisition 
of the self-potential has been intersected the fault location in 
the study area as displayed in the geological map (Fig. 12 top 
panel), while the geological cross section was taken in S–N 
direction parallel to the SP survey line and perpendicular to 
the fault strike along the geological map to show the struc-
ture variation perfectly (Fig. 12 lower panel). The observed 

SP data were smoothed employing the moving average filter 
to sharpen the anomaly of SP and eliminate the regional 
background effects. The SP anomaly shows the occurrence 
of high potential difference anomalous with value of about 
162 mV located at a distance between 400 and 600 m. A 
10-m sample interval is utilized to digitize the Pinggirsari 
self-potential anomaly of 1040 m length (Fig. 13a).

The SP anomaly of Pinggirsari is interpreted by applying 
the BOA. The characteristics source parameters of the Ping-
girsari SP anomaly can be estimated (Table 7). Figure 13b, 
c shows the average loudness and emission rate of the bat 
over the SP anomaly, respectively. Figure 13d, e shows the 
NRMSE of global best solution and the average NRMSE 
of all the bats, correspondingly. The best-interpreted model 
parameters are K = 51 mV, z = 16 m, xo = 5 m, h = 43 m, and 
φ = 223°, which suggests that the effect of the SP anomaly 
resulted from a thin sheet-like model approximated by fault 
structure (Table 7). The observed and calculated self-poten-
tial anomalies are well matched (Fig. 13a).

The observed SP anomaly of Pinggirsari has been 
explored by different anthers researchers. For example, 
Fajriani et al. (2017) interpret the SP anomaly as a thin sheet 
(i.e., approximated by fault) using the Levenberg–Marquardt 
(LM) method with depth to the center z = 14.63 m. Hary-
ono et al. (2020) interpret the SP anomaly as a 2D inclined 
sheet (approximately fault) using the improved crow search 
algorithm (ICSA) technique with top depth  z1 = 7.15 m and 
bottom depth  z2 = 32.79 m. Sungkono (2020) analyzed the 
Pinggirsari SP anomaly using the micro-differential evolu-
tion method, which included two approaches [the vectorized 
random mutation factor (MVDE) and the adaptive differen-
tial evolution (µJADE)]. The depth to the center using the 
MVDE approach was 20 m, while the depth determined by 
the µJADE approach was 19.55 m. The obtained depth of 
the developed BOA algorithm here is to the center of the 
2D inclined thin sheet, approximated by fault structure. The 
orientation and the depth of the fault structure, as shown in 
Table 8, are in good accordance with the published literature 
and geological cross-sectional information. Figure 14 shows 

Table 6  Comparison results of the KTB SP anomaly, Germany

Algorithm Source K (mV) z (m) h (m) xo (m) φ (°)

VFSA (Biswas 2017) Anomaly #1 73.5 371.8 524.6 998.6 139.6
Anomaly #2 79.0 298.2 394.8 1472.1 134.2

MVDE (Sungkono 2020) Anomaly #1 74.98 447.09 429.13 505.52 79.11
Anomaly #2 120.06 134.82 128.86 1224.99 103.95

µJADE (Sungkono 2020) Anomaly #1 67.08 556.99 530.23 500.00 80.00
Anomaly #2 91.67 154.15 149.84 1271.08 117.76

BOA (Present study) Anomaly #1 72 ± 16.90 380 ± 11.47 350 ± 43.11 − 400 ± 46.60 75 ± 16.56
Anomaly #2 80 ± 31.61 275 ± 68.32 360 ± 59.99 570 ± 47.80 120 ± 25.81
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Fig. 11  a Sketch diagram for 
the results obtained by Stoll 
et al. (1995) using trial and 
error modeling, b The inter-
preted sketch diagram using the 
developed BOA for the KTB 
anomaly, c Geological cross-
section in the vicinity of the 
KTB-HB borehole, Germany. 
(modified after Stoll et al. 1995)
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the interpreted designed graph of the buried source structure 
outlined employing the BOA method.

The bavarian woods SP anomaly, Germany

The SP anomaly gathered across a graphite ore body in the 
southern Bavarian woods in Germany is outlined in Fig. 15a 
(Meiser 1962). The graphite deposits are wedged amongst 
crystalline limestone and paragneiss of similar age in a 
Hercynian gneissic complex. Typically, the ore deposit pro-
duces creases that are classified as Precambrian bituminous 
sediments. The veins of the graphite are therefore wedged 
through the gneisses and limestone, forming a parallel series 
of thickness-inconsistent lenses (Meiser, 1962). A 5.2-m 
sample interval is exploited to digitize the SP anomaly pro-
file with length of 525 m (Fig. 15a).

The Bavarian Wood anomaly has been examined by vari-
ous researchers. Al-Garani (2010) interpreted the SP anom-
aly approximately as a horizontal cylindrical target applying 
the neural network (NN) inversion with z = 33 m. Mehanee 
(2014) interpreted the SP anomaly profile employing the 
regularized inversion technique as a horizontal cylindrical 
model with a depth to the center equals 46 m. Göktürkler and 
Balkaya (2012) using the genetic algorithm described the 
SP anomaly by a horizontal cylinder model (z = 45.03 m), 
simulated annealing (z = 47.59 m), and a particle swarm 
algorithm (z = 47.59 m). Di Maio et al. (2016) match the SP 

Bavarian anomaly by a horizontal cylinder using a spectral 
analysis and tomographic approach with depth of 44.9 m. 
Essa (2020) utilized the particle swarm optimization (PSO) 
technique and interpreted the Bavarian wood anomaly with 
depth of 51.6 m.

We interpreted the SP anomaly of the Bavarian wood 
using the present BOA method. The BOA interpretation 
procedures have been applied to the SP anomaly profile 
using a suitable search range for the characteristics source 
parameters (Table 9). Figure 15b, c presents the average 
loudness and emission rate of the bat over the SP anom-
aly, respectively. Figure 15d, e represents the NRMSE of 
global best solution and the average NRMSE of all the bats, 
respectively. The best interpretative model parameters are 
K = 29,000 mV.m, z = 49 m, xo = 5 m, q = 1 and θ = − 55°, 
which suggests that the ore deposit body is approximated 
by a horizontal cylinder-like model (Table 9). The observed 
anomaly of the Bavarian as well as the calculated anomaly 
is matched very well as shown in Fig. 15a. The depth of 
burial (z) as shown in Table 10 is in excellent accordance 
with the scholarly works. Figure 16 shows the interpreted 
designed graph of the buried source structure outlined from 
the BOA (Fig. 16a) and geological cross section (Meiser 
1962) (Fig. 16b).  

Fig. 12  Pinggirsari area location showing the measurement of SP 
data represented by SP line, geological map of the surrounded area 
(upper panel) (note the presence of fault outcrop on the surface of 

the geological map) and cross-section AB from the geological map 
crossed the fault (lower panel) (modified after Alzwar et  al. 1992; 
Fajriani et al. 2017)
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Fig. 13  Pinggirsari SP anomaly, 
Indonesia. a The measured SP 
anomaly profile (blue squares), 
and the calculated best-fitting 
SP response (red circles) using 
the BOA, b loudness of the 
bats, c emission rate of the bats, 
d NRMSE of the global best 
solution (OFn) of the bats versus 
the iteration numbers, and e the 
average NRMSE of all the bats

Table 7  Pinggirsari SP anomaly, Indonesia. Recovered model param-
eters with the corresponding min OFn for each parameter using the 
BOA

Model parameters Search range Recovered value OFn

K (mV) 1:200 51 ± 3.26 1.8 *  10–5

z (m) 1:100 16 ± 2.44
h (m) 10:200 43 ± 1.63
xo (m) − 262:262 480 ± 77.0
φ (°) 5:360 223 ± 3.27

Table 8  Comparison results of the Pinggirsari SP anomaly, Indonesia

Model 
parameters

Fajriani 
et al. (2017)

Sungkono (2020) Present Study

MVDE µJADE

K (mV) 41.5 48.67 46.85 51 ± 3.26
z (m) 14.63 20.00 19.55 16 ± 2.44
h (m) 34 31.72 33.01 43 ± 1.63
xo (m) 478.25 481.01 480.07 480 ± 77.0
φ (°) 334.52 − 156.20 − 156.93 223 ± 3.27
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Fig. 14  Sketch diagrams show the buried source of the SP anomaly of Pinggirsari outlined from the suggested BOA

Fig. 15  Bavarian wood SP 
anomaly, Germany. a The meas-
ured SP anomaly profile (blue 
squares) and the calculated best-
fitting SP response (red circles) 
using the BOA, b loudness of 
the bats, c emission rate of the 
bats, d NRMSE of the global 
best solution (OFn) of the bats 
versus the iteration numbers, 
and e the average NRMSE of all 
the bats
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Conclusions

We have introduced a global optimization metaheuristic 
algorithm so-called Bat optimization algorithm (BOA) 

with an application to interpret the SP data for obtaining 
the best convenient characteristic parameters and discover 
a satisfactory buried model. The best-interpreted model 
parameters are obtained corresponding to the minimum 
objective function after reaching the global best solution. 
The BOA method does not require a priori information; 
the recovered solutions depend on using a search space 
to search for the model parameters which is controlled by 
the NRMS of the objective function. The benefits of the 
BOA method can handle multi-model problems efficiently. 
Furthermore, the appropriate efficiency and accuracy of 
the suggested method have been confirmed on numerical 
datasets with noise-free and noise. In addition to, the BOA 
method is verified on various real datasets with fruitful 
results compared to the drilling and geological informa-
tion. At the end, we recommend the proposed method 

Table 9  Bavarian wood SP anomaly, Germany. Recovered model 
parameters with the corresponding min OFn for each parameter using 
the BOA

Model parameters Search range Recovered value OFn

K (mV.m) 10,000:50,000 29,000 ± 1581 1.0 *  10–5

z (m) 1:100 49 ± 5.99
xo (m) − 262:262 5 ± 2.16
θ (°) −  5:− 90 − 55 ± 6.00
q 0.5:1.5 1 ± 0.40

Table 10  Comparison results of the Bavarian wood SP anomaly, Germany

Model 
parameters

Essa et al. (2008) Essa (2011) Göktürkler And Balkaya (2012) Mehanee (2014) Di Maio 
et al. (2016)

Present Study
GA PSO SA

K (mV.m) 30,608.7 27,212.7 21,272.9 33,343.8 26,257.4 27,105 25,000 29,000 ± 1581
zo (m) 47.7 46.59 45.03 47.59 44.99 46 44.9 49 ± 5.99
xo (m) – – 268.79 269.88 269.17 – 265.9 5 ± 2.16
θ (°) − 51.2 − 59.04 − 51.29 − 48.6 − 49.98 − 57 − 59.5 − 55 ± 6.00
q 1.0 1 .0 1.0 1.0 1.0 1.0 1.0 1.0 ± 0.40

Fig. 16  a A sketch diagram for 
the buried source model out-
lined using the BOA, and  
b geological cross section (after 
Meiser 1962)
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extended to be applied in the future to investigate differ-
ent potential field data.
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