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Abstract
Qualitative interpretation is one of the most important missions in geophysical methods, particularly the determination of the 
shape and depth of disturbing bodies. The characteristics of the gravity field make it difficult to unequivocally determine both 
of these parameters; therefore, the problem is solved by reducing the shape of the body by means of simple solid figures and 
on this basis an attempt to estimate their depth. This paper presents an analysis of depth estimation in microgravity surveys. 
The useful signal-to-error ratio in this survey causes an additional factor influencing the quality of the estimated depths. 
Werner deconvolution and Extended Euler deconvolution, as the most frequently applied methods, were used to resolving 
the problem. Based on the Werner method, a processing methodology was developed that minimizes the impact of the error 
on the calculation results. An algorithm was also created that allows obtaining a depth solution in this method. The results 
of the Werner method were compared with the results of the Extended Euler method. Tests have shown that despite the rela-
tively high error to amplitude ratio of the anomaly, satisfactory results can be obtained with the appropriate methodology.

Keywords  Microgravity · Depth to a body · Werner deconvolution · Extended Euler deconvolution

Introduction

In gravimetric interpretation, determining the parameters of 
disturbing bodies is usually difficult due to the ambiguity of 
solutions. This ambiguity is due to Gauss’ and Stokes’ laws, 
trying to find the parameters of three-dimensional bodies 
based on the surface or profile distribution. The parameters 
that you want to achieve are of course the shape of the body, 
its density (density contrast) and the depth of the position. 
Due to the fast reduction of the gravitational influence of the 
body with depth (inversely proportional to the square of the 
distance), the body shape is usually assumed in the form of 
simple solid figures, such as a sphere, vertical and horizontal 
cylinder, or a prism, and depth is looked for. It should also be 
noted that the linear dependence of the gravitational effect 
and the density (density contrast) of the body does not affect 
the shape of the measurement curve, but only its amplitude.

In the case of microgravity studies, the problem is even 
more complicated, because there are two factors that make 
interpretation difficult. Firstly, due to the shallow position 
of the bodies, the approximation of the disturbing bod-
ies with simple solid figures is in many cases insufficient, 
and secondly, a much higher error to useful signal ratio is 
observed for microgravity studies. In this publication, the 
authors assumed that the simple solid figures approximation 
is sufficient and focused on the impact of the error that was 
simulated by a random error.

There are many depth estimation techniques in potential 
methods, and thus also in the gravity method, performed 
using different methods (Hinze et al. 2012; Cooper 2011). 
Generally, they can be divided into two types—graphical 
techniques and semi-automated methods. Of course, there 
are other depth estimation solutions in potential methods, 
but they are of less application.

The graphical techniques are rather historical. They 
are based on the relationships between the distance of the 
characteristic elements of the anomaly and the depth of the 
top or centre of the solid figure. The first one is the half-
width method (Nettleton 1940). It is based on the relation-
ship between the characteristic points of the theoretical 
anomaly distribution—horizontal distance between maxi-
mum amplitude and half of its value. The second one is the 
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straight-slope method (Ram Babu et al. 1987). The vertical 
gravity derivative is often used instead of the gravity anom-
aly because this method is based on the distance at which 
the gradient of the anomaly or its derivative is constant. The 
Smith rules (Smith and Bott 1958; Smith 1959) are one of 
the graphical methods independent of source geometry. It is 
based on horizontal gravity derivatives.

The most modern depth estimation methods are the 
semi-automated methods. They operate on the basis of the 
FFT—fast Fourier transform, especially to calculate vertical 
and horizontal derivative of gravity anomaly. All results are 
an approximation of the depth and depend on the window 
length, quality of anomaly and geological conditions. The 
window length is the length of the operator window used 
to calculate depths and can be movable or fixed. If the win-
dow is fixed, the best length of this should be close to half 
the width of the gravity anomaly. The correctness of depth 
estimation, of course, depending on the quality of gravity 
anomaly, it means it depends on the measurement error. 
The most often used semi-automated methods are Euler 
deconvolution, Werner deconvolution and statistical spectral 
techniques. Euler deconvolution (Thompson 1982) and now 
Extended Euler deconvolution (Mushayandebvu et al. 2001) 
are based on the structural index (SI) for a couple of simple 
solid figures but can be used for almost all gravity sources. 
The solution is obtained by the least-squares inversion of 
the Euler’s homogeneity equation for assumed window. 
Werner deconvolution determines the depth of thin dike or 
sheet, on the understanding that the source of anomaly can 
be described as a complex of those dikes or sheets (Werner 
1953). The solution is obtained by standard matrix inversion 
for six coefficients (Dimri 1992; Ku and Sharp 1983). This 
deconvolution is also used for 2D contact depth estimation. 
The statistical spectral technique consists of spectral analysis 
of the anomalies; it means the wavelengths of the anomaly 
analysis. This method can be applied both on profiles and 
on maps. The average depth is the result of this technique 
(Spector and Grant 1970; Bhattacharyya and Chan 1977).

In the article, the Werner and Extended Euler deconvo-
lution methods were selected for the analysis of depth esti-
mation in microgravity studies. All depth calculations were 
made in the Geosoft Oasis montaj application, and their fur-
ther processing was based on our own programs.

Optimal step in gradient calculations

Selected methods of calculating the depth to the disturbing 
body (Werner and Extended Euler) in their calculations con-
tain horizontal and vertical gradients of gravity. Undoubt-
edly, the calculation of both gradients is largely influenced 
by the error in determining the value of gravity at a measure-
ment station which was presented for the horizontal gradient 

by Porzucek (2010). In this paper, the authors decided that 
the correctness of the calculation of the depth to the body 
generating the anomaly would be analysed for theoretical 
data disturbed by random errors with a maximum error equal 
to 5% and 10% of the anomaly amplitude. The analysis of 
many different bodies for both methods showed that the hori-
zontal cylinder would be the best body to analyse.

The horizontal cylinder selected for testing had param-
eters that could reflect a horizontal gallery or a karst void 
hollowed by a flowing underground river. The parameters of 
the test cylinder were: radius 1.7 m, depth 4 m and density 
contrast   − 2.55 g/cm3. For the parameters adopted in this 
way, the amplitude of the calculated anomaly was 773 m·s−2, 
i.e. within the limits of microgravimetric surveys.

Porzucek (2010) noted that the calculation of the hori-
zontal gradient is obviously influenced by the measurement 
error, but also by the distance between the computational 
points. In the first stage of the analysis, an attempt was made 
to determine the optimal calculation step based on the calcu-
lation of the horizontal gradient. In order to thoroughly ana-
lyse the solutions, an anomaly was generated by taking a cal-
culation step of 0.5 m, and then a random error in the range 
of ± 5% and ± 10% of the anomaly amplitude was added to 
the anomaly value. The calculated values were used to create 
data sets for analysis with a calculation step of 0.5 m, 1 m, 
1.5 m, 2 m, 2.5 m, 3 m, 4 m, 5 m, 6 m and 7.5 m. Figures 1 
and 2 show the results of the horizontal gradient calculation 
for the selected steps for 5% and 10% error, respectively.

The analysis of the results showed that the calculated dis-
tributions are similar for both errors. For small calculation 
steps, the mapping of the theoretical horizontal gradient dis-
tribution is strongly distorted, while for too large steps, the 
calculated distribution poorly reflects the horizontal gradient 
distribution. Obviously, the computational step depends on 
the horizontal extent of the anomaly, and therefore, the step 
is related to the half-width anomaly (x1/2), which is the dis-
tance between the maximum of the anomaly and the place 
where the anomaly reaches half of its maximum value. From 
the obtained distributions, it can be assumed that the meas-
uring step should be between 0.5x1/2 and x1/2. Additional 
tests on other bodies (sphere, vertical cylinder) showed that 
a step in this interval can be considered correct. In further 
calculations used in the analysis of the correctness of the 
determination of the depth with the Werner and Extended 
Euler methods, a step equal to 0.75x1/2 was adopted.

The methodology of depth calculation

During the test of depth calculations using the Werner 
method, many solutions were obtained for theoretical data 
disturbed by the error (Fig. 3). This was to some extent 
the result of using multiple sizes of calculation windows. 
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Therefore, in the next stage of the analysis, an attempt was 
made to limit the number of solutions. After many attempts, 
an algorithm was developed that allowed to limit the number 
of solutions to one.

In the first stage, the algorithm limited solutions due to 
their location on the profile. Due to the introduced error, the 
range of solutions is large and they cover the entire length of 
the profile. In actual measurements, it is usually not possible 
to provide a specific location of the characteristic point of 
the disturbing body (e.g. the centre of a sphere); therefore, 
it was decided to adopt a relatively wide range of possible 
body positions for profiles. Namely, it was assumed that 
the solution should be located no further than x1/2 from the 
anomaly centre; the remaining solutions were removed from 
the solution set.

In the next stage, the mean value of the depth from the 
remaining solutions was calculated. Then, the difference 
between the calculated values and the mean value was calcu-
lated. The solution error was determined as a percentage of 
the calculated mean depth. If there was no value greater than 
the assumed error in the set of differences, the mean value 
was considered a solution. Otherwise, a solution with the 
maximum deviation from the mean was sought and removed 
from the set of solutions. The process was then repeated 
until a clear solution was obtained.

This algorithm was tested on an anomaly from a horizon-
tal cylinder with parameters identical to the previous chap-
ter. Similarly, the data were also distorted by two random 
errors with a maximum value of 5% and 10% of the anomaly 
amplitude. In order to obtain meaningful results for each 
error, 100 draws were made and the results are presented 
in Fig. 4.

Figure 4a shows the distribution of all solutions for all 
100 data sets for a 5% error. It can be easily seen that the vast 
majority of solutions fall within the range ( − x1/2, x1/2.), i.e. 
for the examined horizontal cylinder ( − 4, 4), which is bet-
ter seen in Fig. 4b. There are also many solutions that differ 
significantly from the theoretical depth. The distributions for 
the 10% error are not included, but they are largely similar 
to those presented.

For both data sets, the above-described algorithm was 
used, while the calculations assumed four variants of the 
depth error (εz), i.e. 5%, 10%, 15% and 20%, and the results 
are shown in Fig. 4.

Figure 4c–j shows the depths obtained for both data 
sets after applying the algorithm proposed above for the 
above four variants. The best and most stable results were 
obtained for the depth error (εz) of 5%. The greater the 
error value, the greater the scatter of the results, which is 
obviously logical—incorrect solutions are less likely to be 

Fig. 1   Horizontal gradient theo-
retical (black) and calculated 
(grey) for horizontal cylinder 
anomaly with random error 5%
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rejected. It is worth noting that the algorithm is not per-
fect and there are solutions that are not correct. A typical 
example of this is the depth value of 5 m found in Fig. 4c. 
The analysis of this case showed that the Werner method 
gave solutions in which there were two clusters of solu-
tions with significantly different values and the algorithm 
chose a bad solution. Nevertheless, the goal was to obtain 
a single solution, and as you can see, the vast majority of 
solutions are correct.

Theoretical examples

The developed conditions for selecting the measurement 
step as well as the methodology for calculating the depth 
have been tested on several theoretical examples of solid 
figures that best described the most common anomalous 
bodies in the microgravity method (Table 1).

Fig. 2   Horizontal gradient theo-
retical (black) and calculated 
(grey) for horizontal cylinder 
anomaly with random error 10%

Fig. 3   Sample of solutions of 
Werner deconvolution for a 
horizontal cylinder with its axis 
at depth 4 m (random error 5%)
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Fig. 4   Solutions of Werner 
deconvolution for a horizontal 
cylinder with the axis at depth 
4 m for data with random error 
(100 drawings)
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For analysis were chosen:

•	 Sphere 1 as the approximation of void in karst,
•	 Sphere 2 as the approximation of an unconsolidated zone 

in the rock mass,
•	 Vertical cylinder 1 as the approximation of a mine shaft
•	 Vertical cylinder 2 as the approximation of an unconsoli-

dated zone in the rock mass,
•	 Horizontal cylinder as the approximation of a tunnel, a 

gallery etc.
•	 Prism 1as the approximation of unknown basement;
•	 Prism 2 as the approximation of an unconsolidated zone 

above a collapsed mine drift
•	 Contact as the approximation of a fault.

All solid figure parameters were selected so that the 
amplitude of the anomaly was about 0.08 mGal.

For all described solid figures, distributions of micro-
gravity anomalies were obtained. Two cases of the obtained 

distributions were considered for each a solid figure: the 
first one with a random error of 5% of an anomaly amplitude 
value and the second—10% of an anomaly amplitude value. 
For the identifiable of the results, in the case of analysis of 
the distributions for 5% error, the name of the solid figures 
is marked with the symbol “a”, for 10% error with the sym-
bol “b”.

Each of the anomalies was used to calculate the depth 
using the Werner and Extended Euler method for two depth 
errors (εz): 5% and 10% of a depth. In the Werner method, 
there are two possibilities of choosing the body: a dike 
and a contact. The tests showed that a contact body gives 
acceptable results only for faults, and for this reason, a dike 
was used to calculate the remaining solids. The authors, of 
course, are aware that the resulting depths will be affected 
by a mismatched body shape error for some figures, but it 
will be interesting to see how far the results differ from theo-
retical. In the Extended Euler method, the structural indices 
corresponding to given bodies were used (0 for contact, 1 

Table 1   Parameters of used 
solid figures

Solid figures Description of parameters

Sphere 1 Radius = 3 m, depth = 5 m, density contrast =  − 2.55 g/cm3

Sphere 2 Radius = 8 m, depth = 10 m, density contrast =  − 0.5 g/cm3

Ver. cylinder 1 Radius = 2.5 m, top depth = 4 m, bottom depth = 1000 m, density contrast =  − 2.55 g/cm3

Ver. cylinder 2 Radius = 10 m, top depth = 5 m, bottom depth = 20 m, density contrast =  − 0.5 g/cm3

Hor. cylinder Radius = 1.7 m, depth = 4 m, density contrast =  − 2.55 g/cm3

Prism 1 Roof depth = 1 m, dimensions 4 × 3 × 2.5 m, density contrast =  − 2.55 g/cm3

Prism 2 Roof depth = 5 m, dimensions 8 × 100 × 25 m, density contrast =  − 0.5 g/cm3

Contact Depth = 5 m, throw = 7 m, density contrast =  − 0.3 g/cm3

Table 2   Results of the depth 
calculations using Werner and 
Extended Euler methods

Solid figures Theoretical 
depth (dt)

Werner depth 
(εz = 5%)

Werner depth 
(εz = 10%)

ExEuler depth 
(εz = 5%)

ExEuler depth 
(εz = 10%)

m m % of dt m % of dt m % of dt m % of dt

Sphere 1a 5 4.33 87 4.14 83 7.65 153 7.6 153
Sphere 1b 5 2.79 56 2.94 59 6.61 132 6.9 138
Sphere 2a 10 2.09 21 2.38 24 12.49 125 12.3 123
Sphere 2b 10 7.37 74 7.37 74 12.37 124 11.9 119
Ver. cylinder 1a 4 13.78 345 15.42 386 5.61 140 5.5 137
Ver. cylinder 1b 4 14.81 370 14.12 353 5.86 146 5.9 146
Ver. cylinder 2a 5 8.3 66 7.65 61 13.26 106 13.9 111
Ver. cylinder 2b 5 11.32 91 12.48 100 13.54 108 13.5 108
Hor. cylinder a 4 3.89 97 3.87 97 3.88 97 3.6 91
Hor. cylinder b 4 3.95 99 4.12 103 4.13 103 3.7 91
Prism 1a 1 1.28 57 1.28 57 2.78 124 2.6 118
Prism 1b 1 1.85 82 1.85 82 2.64 117 2.7 120
Prism 2a 5 9.93 66 10.65 71 10.13 68 9.9 66
Prism 2b 5 10.99 73 10.67 71 10.42 69 11.8 79
Contact a 8.22 97 7.53 89 8.00 94 8.1 95
Contact b 8.04 95 8.04 95 7.49 88 7.6 90
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for dike and 2 for centre point). All solution results are pre-
sented in Table 2.

For a sphere, a theoretical depth is the depth to the centre of 
it, for a horizontal cylinder depth to its axis, for a vertical cyl-
inder 1 a depth to the top of it and for the rest of solid figures 
a depth to an average value of its top and bottom (as similar to 
3D bodies). For a contact as a half-width (x1/2) of the anomaly 
was taken a distance between the middle of the anomaly and a 
place, where the value of anomaly is a quarter of its amplitude.

For better visibility of the results, depths were shown as 
a bar chart of percent of theoretical depth (Fig. 5).

The analysis of the solutions presented in Fig. 5 shows 
that for both errors disturbing the anomalies, i.e 5% and 
10% of the anomaly amplitude, the results are similar, which 
confirms the solutions previously obtained for the horizontal 
cylinder. The values of the depth solutions depend on the 
estimation method. As we can see in Fig. 5a, solutions of 
the Werner method give generally lower values of the depth, 
and the Extended Euler method higher values.

As expected, the best solutions were obtained for the hori-
zontal cylinder and contact. It should be noted that despite 
the significant error distorting the theoretical data (5% and 
10%), the results got with both methods are very good. The 
calculated depth deviates from the theoretical no more than 
10%. The performed calculations show that in the case of 
contact, increasing the fault throw reduces the correctness 
of the results.

The solutions for a shallow prism 1 are more divergent 
than for a deeper prism 2 (Fig. 5b). For the prism 1, the 
Euler method gives similar depths for both error values 
(approx. 20% of dt), while the Werner method gives more 
divergent results (approx. 40% of dt for the prism 1a and 20% 
for 1b). For a prism 2 simulating an unconsolidated zone 

over a collapsed mine gallery, both methods give similar 
values, namely 30% theoretical. This is most likely due to 
the fact that the shape of the solid figures can be approxi-
mated to some extent with a horizontal cylinder (or a dike).

Acceptable results were also obtained for both spheres by 
the Werner deconvolution method (Fig. 5b). An error of the 
solutions is generally in the range of 15–40% of dt. For the 
sphere 2a, the error is much greater, due to the imperfection of 
the proposed algorithm. The solution analysis showed that two 
solution clusters were recovered and the algorithm selected 
the wrong one. Choosing the second cluster would give a solu-
tion error of less than 10% of dt. The Extended Euler method 
gives better solutions for sphere 2, when the disturbing body 
is deeper, which makes the width of the anomaly larger.

The weakest solution was obtained for the vertical cylin-
der 1 for the Werner method, for which the calculated depths 
are even more than three times greater than theoretical. Also, 
the Extended Euler method gives weaker results, and the 
calculated error is overstated by 40–50%. Surprisingly, good 
results were obtained for the vertical cylinder 2 for the Euler 
method, where the depth calculation error was approx. 10%. 
The Werner method obtained better results for more dis-
torted theoretical values (random error 10%). The analysis 
of the solutions for the 5% random error showed that they 
do not group into any clusters, so the final solution is close 
to the middle value of all solutions.

Conclusions

Finding the correct depth to the disturbing body in the 
gravity method is usually not easy, and in the micrograv-
ity method even more difficult. The article analyses the 

Fig. 5   Results of depth cal-
culations using Werner and 
Extended Euler methods: a an 
error in relation to the theoreti-
cal depth dt; b an absolute value 
of an error
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possibility of using the Werner and Extended Euler decon-
volution methods for microgravity profile data to find bodies 
that may reflect disturbing bodies found in microgravity sur-
veys. Most of these bodies are not two-dimensional, which 
of course introduces an additional error in determining their 
depth.

After testing, it was found that the calculation step should 
be in the range of 0.5–1 of half-width of an anomaly. Since 
the Werner deconvolution method gave many, sometimes 
very divergent, solutions, an algorithm was developed that 
allowed us to obtain one solution that was assumed to be 
correct.

The results carried out for various errors clearly indicate 
that the solutions obtained for the horizontal cylinder and 
the fault (with a small throw) are very good. Worse results 
were obtained for the sphere and the prism, but they also 
seem to be acceptable. Namely, the absolute error in calcu-
lating the depth is relatively large, 20–40% percent, but due 
to the shallow depth of the quantitatively disturbing bod-
ies, these values are not significant. The worst results were 
obtained for the vertical cylinder 1 reflecting the mine shaft. 
The results of Werner’s deconvolution have a large error, 
which means that this method should not be used for this 
type of body. The causes should be looked for in the small 
horizontal range of the anomaly, and thus large changes in 
the gradients resulting from the imposed error.

The obtained results make it possible to use Werner and 
Extended Euler deconvolution in microgravity bodies close 
to a horizontal cylinder and a fault, using the proposed algo-
rithm. The results for three-dimensional bodies are burdened 
with a much larger relative error, but quantitatively they are 
also acceptable.
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