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Abstract
Unconventional oil and gas reservoirs from the lower Palaeozoic basin at the western slope of the East European Craton 
were taken into account in this study. The aim was to supply and improve standard well logs interpretation based on machine 
learning methods, especially ANNs. ANNs were used on standard well logging data, e.g. P-wave velocity, density, resistivity, 
neutron porosity, radioactivity and photoelectric factor. During the calculations, information about lithology or stratigraphy 
was not taken into account. We apply different methods of classification: cluster analysis, support vector machine and arti-
ficial neural network—Kohonen algorithm. We compare the results and analyse obtained electrofacies. Machine learning 
method–support vector machine SVM was used for classification. For the same data set, SVM algorithm application results 
were compared to the results of the Kohonen algorithm. The results were very similar. We obtained very good agreement of 
results. Kohonen algorithm (ANN) was used for pattern recognition and identification of electrofacies. Kohonen algorithm 
was also used for geological interpretation of well logs data. As a result of Kohonen algorithm application, groups cor-
responding to the gas-bearing intervals were found. Analysis showed diversification between gas-bearing formations and 
surrounding beds. It is also shown that internal diversification in gas-saturated beds is present. It is concluded that ANN 
appeared to be a useful and quick tool for preliminary classification of members and gas-saturated identification.
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Introduction

In recent years, machine learning methods have been used 
more and more successfully in petrophysical issues. The use 
of artificial neural networks for both classification and pre-
diction has become a tool supporting comprehensive inter-
pretation of well logging data (Hair et al. 2006; Szabó 2011; 
Szabó et al. 2013; Puskarczyk et al. 2015; Puskarczyk 2018).

The term electrofacies was introduced by Serra and 
Abbott in 1980. They defined electrofacies as the set of log 
responses which characterizes a bed and permits this to be 
distinguished from others. Based on standard well logging 

data, like natural gamma ray, bulk density, neutron porosity, 
resistivity or P-wave velocity log, the electrofacies can be 
defined and often they correspond to one or more lithofa-
cies. Traditionally lithofacies have been identified manually, 
based on core description and their correlation to well logs.

The most important step for electrofacies determination 
is core and log data integration. Electrofacies are based on 
log responses in the scale according to sampling rate of well 
logging while facies description based on cores are often 
in millimetres scale. We have to realize that electrofacies 
analysis given as general information about rock properties 
changes and can be used for pattern recognition in geological 
profiles of wells.

For determining electrofacies, authors like Doveton 
(1994) and Moss (1997) suggest to use clustering meth-
ods. In this paper, we use a few mathematical methods for 
automatization of the task of facies and electrofacies iden-
tification. These methods include support vector machine 
(SVM), cluster analysis (CA) and algorithms based on arti-
ficial neural networks (ANN). We were testing the results 
of using the mentioned mathematical methods for Polish 
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Palaeozoic shale gas formations. The scheme of calculation 
and analysis is shown in Fig. 1.

Data set

In this paper, we took into account shale formations from 
lower Palaeozoic basin located at the western slope of the 
East European Craton. Upper Ordovician and lower Silurian 
shale deposits are classified both, as a source rock and a res-
ervoir. The formations are characterised by facies changes 
from depositional environment with biological productiv-
ity to the clastic material distribution in the basin causing 
a dichroism of mud and clay deposits (Poprawa 2010). 
Because of vertical facies variability, their hydrocarbon 
potential is varied (Krakowska et al. 2016; Sowiżdżał et al. 
2016; Wawrzyniak-Guz et al. 2016; Puskarczyk 2017; Jar-
zyna et al. 2018).

In this study, we analysed data derived from Well-1, 
located in the northern part of the Baltic Basin. In this well, 
we choose for analysis depth interval, including deposits 
belonging to the Silurian Llandovery Formation and Ordo-
vician—Ashgill, Caradoc, Llandeil, Llanvirn, and Arenig 
Formations. The depth interval cover two potentially uncon-
ventional resources formations—Jantar Member (Ja Mb) in 
Paslek Formation (Pa Fm) and Sasino Formation (Sa Fm). 
In that depth interval also, two carbonates (partially) forma-
tions, the Prabuty Formation (Pr Fm) and Kopalino Forma-
tion (Ko Fm) are placed.

The oldest part of Paslek Formation, Jantar Member is 
built by black bituminous claystones, containing pyrite, with 
dark-grey calcareous and few marly limestone laminas. It is 
characterised by high organic matter content. The thickness 
of the member does not exceed 12 m (Modliński et al. 2006).

The Sasino Formation is built by black, dark-grey and 
grey-greenish bituminous shales. In some intervals, marls 

and limestones intercalations and also bentonite intercala-
tions are visible in place. The thickness of the formation var-
ied from 3.5 on the east to 37 m on the north-west in the land 
part of the Baltic Basin (Modliński and Szymański 2008).

As an input data in electrofacies analysis, standard well 
logging data were taken. Those well logs have been selected 
which are highly sensitive to lithology, porosity, and water or 
hydrocarbon saturation (Rider 2002; Serra and Serra 2004):

•	 GR (API)—natural gamma-ray log, total radioactivity of 
the formation. Gamma-ray log is a first shale indicator. 
Among the sedimentary rocks, shales have the strongest 
intensity gamma radiation due to higher concentration 
of K, U, Th elements. Potassium and thorium tend to be 
concentrated in clays, whereas uranium often shows high 
content in source rocks because of adsorption by organic 
matter.

•	 LLD (ohmm)—deep resistivity log, measured by later-
olog tool. Resistivity is the primary physical property 
that allows determining reservoir properties, in particular 
porosity and water and/or hydrocarbon saturation. When 
organic matter is present in shales, whether in the form of 
insoluble kerogen or soluble bitumen, it characteristically 
increases resistivity.

•	 DTP (μs/ft)—compressional wave slowness log. Princi-
pal use of sonic log is porosity evaluation. In shales, low-
ers sonic velocities are observed because of the presence 
of organic matter.

•	 NPHI (%)—neutron porosity. NPHI values are expressed 
in standardized neutron porosity units (p.u.), which are 
related to hydrogen index, HI—an indication of forma-
tion’s richness in hydrogen. In geological conditions, 
hydrogen nuclei are supplied by water and hydrocar-
bons that are mainly distributed in the pore space, thus 
NPHI is a good porosity indicator. In shales, NPHI 
curve has abnormally high values of neutron porosity. 

1
•Prepare available data (standard well logging data)

2
•Using hierarchical CA characterize the structure of the data
•Using k-means algorithm determine clusters

3
•Using SVM determine the classes

4
•Using Kohonen algorithm determine the classes

5
•Compare the results from different techniques of electrofacies determination
•Geological interpretation of the electrofacies 

Fig. 1   Flowchart of analyses for electrofacies characterization
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This is because clay water consists of free water, clay 
bound water as well as lattice water, which is part of clay 
mineral structure. Additionally, organic matter that has 
characteristic high hydrogen index causes a noticeable 
increase in NPHI readings in shales and clays.

•	 RHOB (g/cm3)—bulk density log. It is overall rock’s 
density that is a function of matrix density (mineral com-
ponents forming the rock) and total porosity. Thick series 
of shales demonstrates progressive increase in density 
due to the compaction, when formation is overpressured 
there is a break in normal shale compaction trend mani-
fested by a drop of bulk density, organic shales are dis-
tinguished by clear low anomalies on RHOB log because 
organic matter has much lower density in comparison 
with non-source shales.

•	 PE (b/e)—photoelectric factor log. PE measurements is 
an effective tool for matrix identification, because is a 
function of chemical/mineral composition and is inde-
pendent from porosity.

Overlay the DT with the LLD is a good qualitative and 
quantitative source rock indicator and allows to TOC calcu-
lation. This technique is known as ΔlogR method (Passey 
et al. 1990). Immature source rock has decreased velocity 
and no changes in resistivity (low resistivity in shales). A 
mature source rock is marked by low values of velocity and 
high values of resistivity (increase in resistivity in compari-
son with immature source rock).

Methodology

Cluster analysis

Clustering methods have been developed in order to combine 
objects similarity in terms of studied features into homoge-
neous groups, called clusters. The members of clusters are 
at once alike and at the same time unlike members of other 
groups. In the clustering methods, we distinguish:

•	 the hierarchical methods that show the entire structure of 
the data set and allow the user to make a decision regard-
ing the number of clusters, e.g. dendrogram method;

•	 the non-hierarchical methods, where the number of 
clusters is determined in advance, and then the objects 
are assigned to groups based on similarity, e.g. k-means 
method.

In clustering methods, the measure of the similarity of 
objects is the distance between objects.

In the hierarchical methods, in the first step of analyses, 
a distance matrix is created (e.g. calculated according to 
the Euclidean or Manhattan metric). Then the most similar 

(the nearest) objects are searched and the first cluster is cre-
ated. In the next step, the distance matrix is reduced and 
the distances of the objects to the newly created cluster 
are re-calculated. This process is repeated until all objects 
are grouped in one cluster. The graphical representation of 
grouping effects is a dendrogram (Fig. 2).

In the k-means method, the number of clusters is assumed 
in advance. Then, cluster seeds are arbitrarily or randomly 
chosen, to which the distances of objects are re-calculated. 
For each cluster, gravity mean of clusters are calculated and 
in the next step the distances of objects to these centroids 
are re-calculated. Then, the objects are transferred to the 
closest cluster. The process is repeated until all objects are 
assigned to clusters to which centres of gravity have the clos-
est distance.

In practice, hierarchical methods are often used first to 
determine the number of clusters and the initial centroids, 
and then, the k-mean method is used, to divide large sets into 
homogeneous groups.

Support vector machine

The objective of the support vector machine algorithm is to 
find a hyperplane in an N-dimensional space that distinctly 
classifies the data points. Support vectors are data points that 
are closer to the hyperplane and influence the position and 
orientation of the hyperplane. Using these support vectors, 
we maximize the margin of the classifier. Deleting the sup-
port vectors will change the position of the hyperplane. In 
the SVM algorithm, we are looking to maximize the margin 
between the data points and the hyperplane. SVM has shown 
good performance in rock classification tasks (Wong et al. 
2005; Sebtosheikh et al. 2015).

Fig. 2   Hierarchical clustering dendrogram
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In this study, we performed two different kernel functions 
of SVM in the electrofacies prediction:

•	

•	

where x input variables vector, xi training data points vec-
tor and γ gamma parameter.

Artificial neural network

Artificial neural networks proposed by Kohonen (1982) are 
the most popular model of self-organizing networks.

The Kohonen networks work with the following 
algorithm:

•	 at the beginning, we have to select several parameters,
•	 the n-dimensional weight vectors v1, v2…vi of the j com-

puting units (randomly selected),
•	 an initial radius r, a learning constant a and a neighbour-

hood function α,
•	 an input vector ε (selected by using the probability dis-

tribution over the input space),
•	 the unit k with the maximum excitation and for which the 

distance between vi and ε is minimal,
•	 the weight vectors are updated by using the neighbour-

hood function

•	 a and/or α are modified then the recalculation are contin-
ued from the beginning (it can be stopped after Z itera-
tions).

By repeating the process several times, arriving at a 
uniform distribution of weight vectors in input space is 
expected. During the learning process, both the size of 
the neighbourhood and the value of neighbourhood func-
tion fall gradually so that the influence of each unit upon 
its neighbours is reduced. From an initial distribution of 
random weights, and over Z iterations, the networks settles 
into a map of stable zones. Each zone is effectively a feature 
classifier.

Results

To create groups characterized by similar physical (and 
lithofacies) properties, methods of clusters analysis and 
artificial neural networks were tested.

The following analyses were performed:

•	 Cluster analysis—hierarchical and k-means method,

(1)linear: k(x
i
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•	 Support vector machine,
•	 Kohonen neural network.

In the first step, we performed standard CA. Based on six 
input logs (given in “Data set” section), data grouping was 
performed. Figure 2 depicts the result of hierarchical group-
ing. Based on the dendrogram analysis, three main clusters 
were found (red line cut-off on the dendrogram). In the 
second more detailed division, eight subgroups were found 
(blue line cut-off on the dendrogram).

It can be seen that from the beginning of division group 
1 separates from groups 2 and 3. Group 1 is the most homo-
geneous group. Group 2 was divided into three subgroups, 
where subgroups 2a and 2c show greater similarity, in com-
parison with the group 2b. Among the subgroups of the third 
group, 3c is the most distant from the others, subgroups 3a 
and 3b show the greatest similarity.

In the next step, cluster analysis using the k-means algo-
rithm was done. Based on the results of the dendrogram analy-
sis (Fig. 2), for that classification, the same number of clus-
ters were chosen (3 and 8). Figures 3 and 4 show the average 
standardized values of the input logs, in the case of the clus-
ters selected using the k-means algorithm. Each of the three 
clusters is characterized by different input values. It can be 
concluded that in the most general division, the shales are dif-
ferentiated from the carbonates and the hydrocarbon saturated 
were differentiated from the water saturated intervals (Fig. 3). 
With a more detailed division, a much greater diversification 
of average values in individual clusters was found (Fig. 4). 

In general, division performed based on hierarchical 
methods and k-means algorithm gave very similar results, 
even in the detailed division. Small differences can be seen 
in the intervals of the gas-saturated shales.

Analysing the average values of input logs (for better vis-
ualization in Figs. 3, 4, we use standardized average values 
of well logs), we can conclude that:

Fig. 3   Average values of standardized well logging data in a division 
into three clusters. Colours differentiate the number of clusters
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•	 group 1 (blue colour in Fig. 3) is characterized by the 
highest photoelectric index values, high density and low 
values of natural radioactivity and neutron porosity also 
showing high P-wave velocity. If we analyse the average 
values on the eight-class division (Fig. 4), we will see 
that group 1 still shows similar dependencies (it is the 
most homogeneous group) as in the case of a three-class 
division. It can be noticed, however, that the higher value 
of PE is shown by group 2c (higher average value than in 
group 1).

•	 group 2 (red colour in Fig. 3) is characterized by medium 
values (in relation to other groups) of all input logs. 
Analysing the results of the division of the second class 
into three subgroups (Fig. 4), it can be visible that the 
subgroups 2a and 2b show similar average values of the 
input logs (similar values of well logs in that groups). 
Among subgroups of the second group, subgroup 2c 
shows very high PE values (the highest among all sub-
groups) and high density; however, due to small number 
of samples (only 5 samples located at the started depth 
of the Kopalino Fm), it was decided not to analyse this 
case more detailed.

•	 group 3 (green colour in Fig. 3) is characterized by the 
lowest density and photoelectric index, low P-wave 
velocity and high values of resistivity, natural radioac-
tivity and neutron porosity. Group 3 was divided into 
three subgroups (Fig. 4). The less numerous group 3a 
shows the highest resistivity values, low PE and density 
and high values of GR, NPHI, and DT. A similar value is 
obtained for most numerous group 3b, which, however, 
has a lower resistivity than 3a.

It was decided to separate the subgroup 32 (Fig. 4), 
which partially overlaps with groups 2 and 3 (form three 
cluster division) and is characterized by intermediate val-
ues of the logs.

Kohonen algorithm was applied to the unsupervised 
classification. We tested several networks, with different 
structure and number of neurons. As the best network, the 
four (SOM 6-4) and nine (SOM 6-9)—neurons network 
were chosen. In Fig. 5, where the histograms were shown 
with the numbers of samples (depth values) assign to the 
classes. The most numerous class in the general division is 
group 4 (Figs. 5a, 6a). In a more detailed division, group 
5 is the most numerous group (Figs. 5b, 6b).  

Results obtained from the Kohonen network have 
shown greater heterogeneity of the analysed interval than 
CA. However, many similarities can be noticed, a number 
of facies in both methods have been assigned to the same 
(or very similar) depth intervals. We can summarize that 
both methods gave good results of classification. More 
detailed results were obtained from ANN that’s why in an 
interpretation part we focused on it.

The use of the network SOM 6-4 which divided the 
interval into four electrofacies (Fig. 8, track 16) allowed 
for the separation of the main levels:

•	 electrofacies 1—assigned to the depth intervals corre-
sponding to the Ja Mb top interval and throughout the 
Sa Fm interval (in several sections),

Fig. 4   Average values of standardized well logging data in a division 
into eight clusters. Colours differentiate the number of clusters

Fig. 5   Histogram of the SOM 
6-4 (a) and SOM 6-9 (b) sam-
ples assign to the neurons
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•	 electrofacies 2—samples assigned to this group were 
located in the upper parts of the Ja Mb and Sa Fm,

•	 electrofacies 3—entire Ko Fm and upper part of Pr Fm,
•	 electrofacies 4—entire whole Pa FM, lower part of Pr Fm 

interval, and lower parts Ja Mb and Sa Fm.

For more detailed information about electrofacies, we 
decide to use SOM 6-9 network. As a result, the nine elec-
trofacies were obtained. The relation between SOM 6-4 and 
SOM 6-9 is as follows:

•	 from 193 samples from electrofacies 1 (in general divi-
sion), 75 were assigned to the facies 8, 49 and 48, respec-
tively, for the 6 and 7 facies and 19 samples for the 3 and 
2 samples to facies 4,

•	 among 53 samples belonging to electrofacies 2 (in gen-
eral division), 34 in the new division was assigned to 
facies 9, 7 in facies 7 and 9 in facies 8,

•	 from 203 samples belonging to electrofacies 3 (in general 
division), almost all samples (202) were assigned to new 
electrofacies 1, one sample was added to electrofacies 4,

•	 the most numerous electrofacies 4 (632 samples) was 
divided for four new electrofacies: facies 5 (335 sam-
ples), facies 4 (130 samples), facies 2 (119 samples) and 
electrofacies 3 (45 samples), 3 samples were assigned to 
electrofacies 6.

Neural networks were also used to examine the possi-
bilities of machine learning classifications using the sup-
port vector machine algorithm. We apply this method for 

classification for checking the ability to electrofacies analy-
sis. In that method as a pattern during the learning process 
(we divide data set in a proportion 80% in a training set and 
20% in a testing set), the information from Kohonen algo-
rithm was used. A series of tests were carried out to select 
the best junction function. The best results were obtained 
for the linear and RBF (radial based function) kernels. The 
prediction accuracy was very high, above 98% and 97%, 
respectively, for linear and RBF kernel (Fig. 7). In results, 
more than 97% of the data were classified in the same way 
when we use SVM as when we use Kohonen Network. Such 
a result testifies to the high effectiveness of the method in 
the issues of classification.

Figure 8 depicts composition of the input data (well log-
ging data) and the results of the classification using differ-
ent methods. For a better visualization into the composition 
were added some information, e.g. gas volume (VGAS), 
kerogen volume (VKEROGER).

Discussion about the geological 
interpretation of electrofacies

Based on the artificial neural network, the Silurian/
Ordovician interval in Well-1 was divided into 10 classes 
(electrofacies). The simplest network was built, so as an 
input only the standard well logging data were used (GR, 
DTP, RHOB, NPHI, LLD, PE). On the other hand, that 
logs contain information about lithology, porosity and 
saturation, so it was a good data set for electrofacies 
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Fig. 6   Average values of standardized well logging data (differentiated by colours) in a division into four (a) and nine (b) clusters. On the x-axis 
the clusters numbers (ID) are marked
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prediction. During the network building and analysis 
information about lithostratigraphy, porosity and satu-
ration were not taking into account. In that section, the 

classification result will be joint with geological infor-
mation and the characteristics of the electrofacies will 
be performed.

Figure 9 shows the relation between several parameters 
with a division into electrofacies.

Figure 9a, b shows dependencies between variables that 
were used to create classes. Based on the plots, it can be 
noticed the exact separation of classes:

•	 Electrofacies 1 (dark blue) is characterized by distinctly 
different properties from the other classes: high photo-
electric index (around 4.75 average), density (about 2.7 
average) and velocity testify to the fact that the samples 
belonging to this class are carbonates with low porosity.

•	 Electrofacies 8 and 9 are characterized by low PE (below 
3 average) values, low density, and relatively low veloc-
ity, it can be a shale interval, saturated with gas.

•	 Electrofacies 6 and 7 are characterized by low velocity 
and low density, it can be a shale interval.

•	 Electrofacies 2, 3, 4 and 5 were divided from one gen-
eral class (number 4 from SOM 6-4) and are character-

Accurate Wrong

Clusters (Accuracy)
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atadfo.o
N

Fig. 7   Accuracy of SVM classification results. No. of data means the 
number of data points (in this case it is equal the depth points). More 
than 200 points from the testing data set were classified to the correct 
clusters (more than 97%)

Fig. 8   Composition of input logs, results of interpretation and results of electrofacies prediction
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ized by relatively average values of input logs, they were 
assigned to the shale classes.

Figure 9c, d depicts the relations between some results of 
logs interpretation. The results of classification also on that 
plots (created based on parameters which were not taken 
into account during network building) show electrofacies 

separation. Based on that relations, it can be confirmed that 
electrofacies 7, 8, 9, which have the highest values of kero-
gen content and uranium content are the more perspective 
for hydrocarbon content.

In Fig. 10, the dependence of the gas content on the total 
organic carbon content was shown. Distinguished groups 
were differentiated in colors. Figure 10a shows the results 

Fig. 9   Cross-plots depict the ANN classification results (colours) in 
the statement to the relation between input logs (DTP, RHOB, PE) 
and between other parameters [DKER—volume of the kerogen (dec), 

VGAS—volume of gas (dec), URAN—uranium content (ppm), 
QRTZ—quartz mineral content (dec)]
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of the SOM 6-4 network, while in Fig. 10b, the results for 
the SOM 6-9 network are plotted. This correlation confirms 
the conclusions that group 2 (in 4 classes division SOM 6-4) 
has been divided into subgroups 7, 8 and 9 in SOM 6-9. It is 
the most prospective for hydrocarbons presence (TOC above 
4% wt and the highest gas volume). From group 1 (SOM 
6-4), subgroups 8, 6 and 7 (SOM 6-9) were separated in 
particular. They have also high TOC values, above 3% wt. 
Electrofacies 6 has the highest gas content, and electrofacies 
7 the highest TOC content.

A box-and-whisker plots (Fig. 11) were created to dis-
play graphically the influence of clustering into the analysed 
interval. If the box is long, log values are very dispersed. 
The structure of the box plot is the same for each variable 
(litho-porosity solution based on GEM™ Elemental Analy-
sis Tool results) and is as following: 

•	 the 10th percentile (10% of the log values which cor-
responds to the outliers), lower whisker,

•	 the first quantile (25% of the log values), lower box bor-
der,

•	 the median (50% of the log values), line through the box,
•	 the third quantile (75% of the log values), upper box bor-

der,
•	 the 90th percentile (90% of the log values), upper 

whisker,
•	 black dots correspond to the minimum and maximum 

values.

Based on dependencies summarized in Fig. 11 and previ-
ously described results, geological interpretations of elec-
trofacies have been established (note: 1) in the sub-point 

stratigraphy, value in bracket is the number of samples/
depth; 2) av. as an abbreviation of average):

1.	 Electrofacies 1 (202 samples):

•	 Lithology consists mainly of calcite, illite and dolo-
mite.

•	 Stratigraphy: Ko Fm (170), Pr Fm (29), Sa Fm (3).
•	 Porosity: av. total equal 4.5%, av. effective equal 

2.3%.
•	 Saturation: av. total water saturation equal 88%, av. 

effective water saturation equal 80%, gas volume 
0.5%.

•	 Organic matter content: negligible quantities.
•	 Reservoir potential: very low.

2.	 Electrofacies 2 (119 samples):

•	 Lithology consists mainly of illite and quartz.
•	 Stratigraphy: Pa Fm (84 samples), Sa Fm (30 sam-

ples), Pr Fm (3), Ja Mb (2).
•	 Porosity: av. total equal 9%, av. effective equal 3%.
•	 Saturation: av. total water saturation equal 96%, av. 

effective water saturation equal 90%, gas volume 
0.3%.

•	 Organic matter content: av. TOC 0.5% wt, av. kero-
gen content 0.5%.

•	 Reservoir potential: low.

3.	 Electrofacies 3 (64 samples):

•	 Lithology consists mainly of illite.
•	 Stratigraphy: Ja Mb (37), Sa Fm (18), Pa Fm (9).
•	 Porosity: av. total equal 7%, av. effective equal 1.6%.

Fig. 10   Relation VGAS versus WTOC for two different classifications (different neurons number) using ANN. Symbols: VGAS—volume of gas 
(dec), WTOC—total organic carbon content (wt%)
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•	 Saturation: av. total water saturation equal 90%, av. 
effective water saturation equal 65%, gas volume 2%.

•	 Organic matter content: av. TOC content 2.8% wt 
(max. 8.5% wt), kerogen content about 3% (max. 
9%).

•	 Reservoir potential: medium.

4.	 Electrofacies 4 (133 samples):

•	 Lithology consists mainly of illite, additionally 
occurs quartz and calcite.

•	 Stratigraphy: Pr Fm (48), Sa Fm (40), Pa Fm (36), Ja 
Mb (9).

•	 Porosity: av. total equal 7.4%, av. effective equal 
2.6%.

•	 Saturation: av. total water saturation equal 85%, av. 
effective water saturation equal 60%, gas volume 1%.

•	 Organic matter content: av. TOC equal 0.4% wt, av. 
kerogen volume 0.4%.

•	 Reservoir potential: low.

5.	 Electrofacies 5 (335 samples):

•	 Lithology: mainly illite and quartz.
•	 Stratigraphy: Pa Fm (332), Sa Fm (3).
•	 Porosity: av. total equal 8%, av. effective equal 1.7%.
•	 Saturation: av. total water saturation equal 97%, av. 

effective water saturation equal 90%, gas volume 
0.1%.

•	 Organic matter content: av. TOC equal 0.03% wt 
(max. 1.6 wt%)

•	 Reservoir potential: very low.

6.	 Electrofacies 6 (51 samples):

•	 Lithology: mainly illite and quartz.
•	 Stratigraphy: Sa Fm (32), Ja Mb (19).
•	 Porosity: av. total equal 10%, av. effective equal 5%.
•	 Saturation: av. total water saturation equal 71%, av. 

effective water saturation equal 45%, gas volume 2%.
•	 Organic matter content: av. TOC equal 1.2 wt% 

(max. 4.5%), av. kerogen volume equal 2.2%.

•	 Reservoir potential: medium/high.

7.	 Electrofacies 7 (59 samples):

•	 Lithology: mainly illite and quartz.
•	 Stratigraphy: Ja Mb (43), Sa Fm (16).
•	 Porosity: av. total equal 7.3%, av. effective equal 

2.6%.
•	 Saturation: av. total water saturation equal 70%, av. 

effective water saturation equal 21%, gas volume 
2.3%.

•	 Organic matter content: av. TOC equal 4.8 wt% 
(max. 8.6 wt%), kerogen volume equal 5%.

•	 Reservoir potential: high.

8.	 Electrofacies 8 (84 samples):

•	 Lithology: illite and quartz.
•	 Stratigraphy: Sa Fm (84).
•	 Porosity: av. total equal 8.5%, av. effective equal 5%.
•	 Saturation: av. total water saturation equal 74%, av. 

effective water saturation equal 56%, gas volume 2%.
•	 Organic matter content: av. TOC equal 2.7 wt% 

(max. 5.4 wt%), kerogen volume equal 2.8%.
•	 Reservoir potential: medium.

9.	 Electrofacies 9 (34 samples):

•	 Lithology: quartz and illite.
•	 Stratigraphy: Sa Fm (34).
•	 Porosity: av. total equal 6.3%, av. effective equal 

3.8%.
•	 Saturation: av. total water saturation equal 47%, av. 

effective water saturation equal 11%, gas volume 
3.4%.

•	 Organic matter content: av. TOC equal 5 wt% (max. 
5.7 wt%), kerogen volume equal 5%.

•	 Reservoir potential: high.

Conclusions

On the basis of Kohonen network and cluster analysis, elec-
trofacies were found and separated from the Silurian and 
Ordovician interval. Electrofacies as a groups that gave the 
same or similar response to the input logs used for classifica-
tion (GR, RHOB, DTP, NPHI, PE, LLD) were analysed in 
terms of their reservoir potential.

In conclusion, the obtained results were found:

•	 both cluster analysis and Kohonen networks are a good 
tool for determining electrofacies,

•	 the use of basic logs allows for proper electrofacies deter-
mination,

•	 the most detailed classification results were obtained by 
using the SOM 6-9 network,

Fig. 11   Box-and-whiskers plots, describing the distribution of 
litho-porosity interpretation results for selected electrofacies 
(11A—electrofacies 1, 11B—electrofacies 2, 11C—electrofacies 3, 
11D—electrofacies 4, 11E—electrofacies 5, 11F—electrofacies 6, 
11G—electrofacies 7, 11H—electrofacies 8, 11I—electrofacies 9). 
Symbols: a Quartz, calcite, dolomite, pyrite, chlorite, illite—mineral 
contents in decimal, range from 0 to 1 (dec), b kerogen content calcu-
lated for dry rock, on the plot values in the range from 0 to 0.1 (dec), 
c TOC—total organic carbon content, on the plot values in the range 
from 0 to 10 wt%, d CBW—clay bound water (dec), WF—free water 
(dec), Gas—gas volume (dec), PHIT—total porosity (dec), PHIE—
effective porosity (dec), on the plot values in the range from 0 to 0.1 
(dec), e SWT—total water saturation (dec), SWE—effective water 
saturation (dec), range from 0 to 1 (dec)

▸
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•	 SMV confirms the correctness of the SOM 6-9 classifica-
tion,

•	 nine electrofacies were distinguished, which partially 
overlap with the lithostratigraphic division,

•	 the largest internal differentiation was observed in the Ja 
Mb and Sa Fm (treated as a sweet spots),

•	 electrofacies 7 and 9 were considered the most prospec-
tive for the production of hydrocarbons,

•	 electrofacies 6, 3 and 8 were considered to have medium 
reservoir potential,

•	 electrofacies 1, 2, 4, 5 were considered the less prospec-
tive.
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