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Abstract
Permeability is a property of rocks which refers to the ability of fluids to flow through each substance. It depends on several 
factors as pore shape and diameter. Also the presence and type of clay has a large influence on the permeability value. Per-
meability can be measured on rock sample in the laboratory by injecting fluid through the rock under known condition, but 
this provides only point information. Due to the dependence of the parameter on many factors, the deterministic estimation 
of permeability based on laboratory measurement and well logs is problematic. Many empirical methods for determining 
permeability are available in the literature and interpretation systems. An interesting approach to the problem is the use of 
artificial neural networks based on laboratory measurement and modern, high-resolution logging tools. The authors decided 
to use MLP artificial neural networks, which allow permeability estimation and can be used both in the test well and applied 
to neighbouring wells. The network was checked in several variants. Obtained results show the legitimacy of using artifi-
cial neural networks in the issue of estimating permeability. However, they also show limitations resulting from the lack of 
accurate data or influence of geological setting and processes.
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Abbreviations
ANN	� Artificial neural network
MLP	� Multilayer perceptron
GR	� Natural radioactivity, gamma ray 

log (API)
RHOB	� Bulk density, density log (g/cm3)
NPHI	� Neutron porosity in limestone unit, 

neutron porosity log (frac)
DT	� Sonic transit time, sonic log (μs/ft)
LLD	� Electrical resistivity, deep resistiv-

ity laterolog ( Ω m)

LLS	� Electrical resistivity, shallow resis-
tivity laterolog ( Ω m)

MSFL	� Electrical resistivity, micro-spheri-
cally focused resistivity log ( Ω m)

SP	� Spontaneous potential log (mV)
THOR	� Thorium content, spectral gamma 

ray log (ppm)
URAN	� Uranium content, spectral gamma 

ray log (ppm)
POTA	� Potassium content, spectral gamma 

ray log (%)
PE	� Photoelectric factor, litho-density 

log (barn/electron)
XRMI	� Electrical resistivity, X-tended 

Range Micro Imager ( Ω m)
VCL	� Volume of clay, result of petro-

physical interpretation of well logs 
(frac)

VANH	� Volume of anhydrite, result of 
petrophysical interpretation of well 
logs (frac)
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VDOL	� Volume of dolomite, result of petro-
physical interpretation of well logs 
(frac)

VLIM	� Volume of calcite, result of petro-
physical interpretation of well logs 
(frac)

VSAN	� Volume of quartz, result of petro-
physical interpretation of well logs 
(frac)

VPYR	� Volume of pyrite, result of petro-
physical interpretation of well logs 
(frac)

VTOC	� Volume of total organic carbon, 
result of petrophysical interpreta-
tion of well logs (frac)

PHI	� Effective porosity, result of petro-
physical interpretation of well logs 
(frac)

K	� Absolute permeability, result of 
petrophysical interpretation of well 
logs (mD)

SWI	� Irreducible water saturation, result 
of petrophysical interpretation of 
well logs (frac)

PHSW	� Volume of rock occupied by water, 
result of petrophysical interpreta-
tion of well logs (frac)

K_LAB	� Absolute permeability from labora-
tory measurements (mD)

K_ANN	� Absolute permeability from arti-
ficial neural network MLP 10-7-1 
(mD)

K_ANN1	� Absolute permeability from arti-
ficial neural network MLP 12-9-1 
(mD)

K_ANN2	� Absolute permeability from artifi-
cial neural network MLP 16-10-1 
(mD)

K_ANN3	� Absolute permeability from arti-
ficial neural network MLP 9-6-1 
(mD)

K_ZAWISZA	� Absolute permeability from 
Zawisza equation (mD)

K_WYLLIE–ROSE	� Absolute permeability from Wyl-
lie–Rose equation (mD)

Φ	� Porosity from laboratory measure-
ments (frac)

FZI	� Flow zone indicator (μm)

Introduction

Permeability is one of the most difficult properties of rocks 
to estimate. It refers to the ability of fluids to flow through 
the substance. Permeability of a rock for oil, gas or water is a 
function of the absolute permeability and the fluid viscosity.

Permeability is influenced, the same as porosity, by 
many depositional and diagenetic factors. The most impor-
tant factors that depend on the permeability of the rock is 
shape, pore diameter and pore connection (Schön 2011). 
Moreover, among the depositional factors affecting perme-
ability, size and sorting of the grains should be mentioned 
(Beard and Weyl 1973; Bloch 1991; Lucia 1995). Coarse 
and well-sorted grains ensure better flows in the reservoir. 
Diagenetic factors such as compaction and cementation 
cause a reduction in permeability. Also, the type of min-
erals, which build the rock, affects this parameter. The 
presence of quartz increases the absolute permeability, 
despite the smaller porosity, while clay minerals due to 
their properties and distribution in rock significantly affect 
its reduction (Neuzil 1994).

The permeability is related to the productivity of the 
rock formation. Occurrence of oil or gas saturation in low-
permeability reservoirs requires additional activities such 
as hydraulic fracturing or drilling of horizontal wells to 
obtain the hydrocarbon flow. Determination of the abso-
lute permeability is crucial in order to properly identify 
the reservoir parameters and determine the profitability 
of possible hydrocarbon production.

Permeability can be estimated in many different meth-
ods. The most reliable method is laboratory measurements, 
which mainly are based on injecting fluid to the core sam-
ple under known condition (Tiab and Donaldson 2000; 
Jarzyna and Puskarczyk 2009) and are carried out on liq-
uid permeameters. Laboratory measurements provide only 
point information and are mainly used to calibrate deter-
ministic calculations based on well logging (Iturrarán-
Viveros and Parra 2014; Wawrzyniak-Guz 2016).

Absolute permeability of materials is described by 
Darcy’s equation. Nevertheless, deterministic calculation 
of permeability in rocks is very difficult due to its depend-
ence on many factors, which are problematic in determi-
nation in laboratory measurements and interpretation of 
well logs. Despite this, many methods of permeability 
estimation are available in the literature and interpretation 
systems (Asquith and Krygowski 2004). Most of the equa-
tions are based on the relationship between permeability 
and porosity. This is due to the fact that the permeability 
mainly depends on the structure and specific surface of 
the pore space (Such and Leśniak 2006). Kozeny (1927) 
and Carman (1937), using the Darcy equation, proposed a 
formula (Eq. 1) combining these two parameters, but it is 
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challenging to correctly determine all the factors present 
in the formula (Amaefule et al. 1993):

where K—absolute permeability, �e—effective poros-
ity, Fs—shape factor, �—tortuosity, Sgv—surface area per 
unit grain volume.

Equations based on porosity are also available, which 
additionally use such quantities as irreducible water satu-
ration or shale volume. In Poland, the empirical equation 
suggested by Zawisza (1993) is often used, which includes 
porosity and irreducible water saturation (Eq. 2):

where a—regional factor, �—porosity, Swir—irreducible 
water saturation.

An interesting approach to the problem of permeability 
determination is the use of artificial neural networks based 
on laboratory measurement on core samples, modern, 
high-resolution logging tools or results of their qualitative 
interpretation.

Method

The precursor to the emergence of artificial neural net-
works was the development of the model of the neuron in 
the human brain and explained the mechanism of memoriz-
ing information via the biological network in the 1940s by 
McCulloch and Pitts (1943) (Tadeusiewicz 1992). The first 
designed and constructed neural network was the perceptron 
developed by Rosenblatt (1958). Initially, neural networks 
have not gained much interest because the use of single-
layer networks is limited. Further work demonstrating that 
multilayer, nonlinear networks have unlimited possibilities 
caused a significant increase in their use. Neural networks 
are widely used also in geophysical and petrophysical prob-
lems (Huang et al. 1996; Aminzade and De Groot 2006; 
Bhatt and Helle 2002; Sudakov et al. 2019).

Artificial neural networks (ANNs) with the ability to 
reproduce complicated functions are used to reduce inter-
ference, classification or prediction of data and parameters. 
Neural networks have the ability to learn, memorize and 
generalize calculations based on the training data set. They 
cope very well with inconsistent, distorted data. ANN are 
stable and resistant to damage. Calculations using the net-
work in relation to the structure are very efficient, even oper-
ating on large data sets.

(1)K =
�3
e

(

1 − �e

)2

[

1

Fs�
2S2

gv

]

(2)K = a�3.15
(

1 − Swir
)2

In the case of the parameter prediction task, feedforward, 
multilayer networks stand out, which guarantee very good 
results, and are relatively easy to design and use. Multilayer 
Perceptron (MLP) is built from at least three layers: the input 
layer, the hidden layers and the output layer (Fig. 1).

During the design of neural networks, the most important 
stages are the selection process and the learning stage, because 
they project on the network and obtained results. Romeo (1994) 
distinguishes three main causes resulting in bad network per-
formance: bad network configuration, algorithm suspension 
in the minimum and wrong learning set. The key moment is 
choosing the number of neurons in the hidden layer. There are 
no clearly defined rules for their number. However, the num-
ber of layers should not be too large because it can cause the 
network to be overly adapted to the test data. The best method 
to select the right number of layers is trial and error, starting 
with a small number of layers. In the case of selecting a training 
sample, it should be ensured that they are as representative as 
possible and possibly free from measurement errors. Avoiding 
the above-mentioned errors, it is possible to design networks 
that are capable of solving complex problems and predicting 
parameters whose relationship with measurements is not easy 
to describe using simple mathematical functions. One of such 
parameters used in petrophysics is the absolute permeability.

An important element of creating a network is the valida-
tion process. It allows to evaluate the quality of the solution 
obtained by the network. For this process, a certain sample of 
the output data is used, usually random, which is not used in 
the network learning process. The error function is minimized 
during the network learning process. Its drop is definitely faster 
for the learning sample and slower for validation. Changing 
the validation error is also an indicator for proper network con-
struction, because its increase during the learning process may 
suggest too many hidden layers (Krogh and Vedelsby 1994). 
While the network is being designed for the learning process 
and its evaluation, the error function is used. The task of the 

Fig. 1   Scheme of a multilayer perceptron (Tutak and Brodny 2019; 
modified)
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network is to minimize it, in each subsequent iteration. To 
calculate the error, various functions are used, such as mean 
absolute error function, the cross-entropy or maximum likeli-
hood function; and the most frequently used is sum of squares 
(Falas and Stafylopatis 1999) (Eq. 3):

where N—number of cases used for learning, yi—net-
work prediction result, ti—measured parameter value.

Presented analysis was performed in Statistica software 
(version 13) using Multilayer Perceptron algorithm with 
exponential activation function for the hidden and output 
neurons (StatSoft 2011).

Materials

Research was made on data from three wells located on Lub-
lin Syncline in Poland. The analysis covered the Silurian 
and Ordovician shale and mudstone formations, which are 
potential unconventional shale gas deposits. These forma-
tions are characterized by poor reservoir properties, in par-
ticular low permeability (Krakowska and Puskarczyk 2015). 
Due to the location of the wells within various geological 
regions, analogous formations are buried at various depths. 
The distance and complex tectonics of the area can affect the 
differences in petrophysical parameters between the layers.

The basis for the training of neural networks was the results 
of laboratory measurements of absolute permeability from gas 
permeameter and effective porosity from mercury porosimetry 

(3)E =

N
∑

i=1

(

yi − ti
)2

measured on core samples from one of the wells. For each well, 
there were also available results of well logging and the logs 
interpretation, the summary of which is presented in Table 1.

Results

The first, but very important step in the process of using 
neural networks is the appropriate selection of the data used. 
According to the assumption, the output data being tested, 
and training and validation data should be associated with 
the input data. In the case of creating neural networks, it is 
not entirely true to say that the more the better, because vari-
ables unrelated to the output data may cause deterioration of 
the network (StatSoft 2011).

The implemented input data for the creation of artifi-
cial neural networks were the following well logs: RHOB, 
NPHI, DT, LLD, LLS, MSFL, THOR, URAN, POTA, PE 
and the results of their interpretation: VCL, VANH, VDOL, 
VLIM, VSAN, VPYR, VTOC, PHI, K, SWI. As the qualita-
tive input for the training wells, absolute permeability from 
laboratory measurements was applied. Before performing 

Table 1   List of available data. Symbols are explained in the section: list of symbols

Well Well logs Interpretation data Laboratory data

A GR, RHOB, NPHI, DT, LLD, LLS, MSFL, SP, THOR, URAN, 
POTA, PE, XRMI

VCL, VANH, VDOL, VLIM, VSAN, VPYR, 
VTOC, PHI, K, SWI, PHSW

K_LAB, Φ

B GR, RHOB, NPHI, DT, LLD, LLS, MSFL, SP, THOR, URAN, 
POTA, PE, XRMI

VCL, VDOL, VLIM, VSAN, PHI, K, SWI, PHSW Φ

C GR, RHOB, NPHI, DT, LLD, LLS, MSFL, THOR, URAN, POTA, 
PE, XRMI

VCL, VDOL, VLIM, VSAN, PHI, K, SWI, PHSW –

Table 2   Basic statistics of 
laboratory data

Well Parameter Number of 
samples

Mean Median Minimum Maximum Standard 
deviation

A Total porosity (frac) 117 0.051 0.049 0.0110 0.105 0.019
Permeability (mD) 115 0.268 0.064 0.0001 4.596 0.536

B Total porosity (frac) 301 0.045 0.036 0.0001 0.014 0.030
C Total porosity (frac) – – – – – –

Table 3   Quality of artificial neural network

Artificial neural 
network name

Multilayer perceptron 
input-hidden-output

Quality of probe (determi-
nation coefficient)

Learning Test Validation

ANN MLP 10–7-1 0.86 0.79 0.47
ANN1 MLP 12–9-1 0.81 0.74 0.43
ANN2 MLP 16–10-1 0.82 0.85 0.54
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the data selection for all wells, the basic statistics and his-
tograms for reservoir parameters were calculated (Table 2).

Basic statistics of laboratory data indicate that the stud-
ied formations exhibit very poor reservoir parameters, in 
particular absolute permeability, which is typical for uncon-
ventional hydrocarbon resources, such as tight gas or shale 
gas (Xiao et al. 2014). For the training well A, the absolute 
permeability is very low, mostly not exceeding 0.01 mD, as 
evidenced by the median, i.e. the value that prevents the flow 
of hydrocarbons. The network learning process was carried 
out on the basis of trial and error, both checking the vari-
ous functions of activation of input and output neurons and 
observing the behaviour of the error function for individual 
network dimensions. Network design was carried out using 
automated algorithms in which a random selection of data 
for learning, testing and validation sets was applied.

Fig. 2   Comparison of laboratory data with estimated and calculated absolute permeabilities

Table 4   Basic statistics of measured, estimated and calculated abso-
lute permeabilities

Absolute perme-
ability

Mean Median Standard 
deviation

Minimum Maximum

K_ANN (mD) 0.230 0.140 0.350 0.002 1.637
K_ANN1 (mD) 0.275 0.199 0.297 0.002 1.637
K_ANN2 (mD) 0.282 0.167 0.313 0.001 8.176
K_ZAWISZA 0.709 0.256 1.563 0 40.504
K_WYLLIE–

ROSE
0.156 0.061 0.040 0 9.139

K_LAB 0.268 0.064 0.536 0.001 4.596
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At the beginning, for the well A, the networks were 
designed based on well logs, for the whole available depth 
interval. In the second step, division into stratigraphic units 
(periods: Silurian and Ordovician) was implemented as qual-
itative input. In the third step, based on the same data, the 
division into stratigraphic units was provided with details, 
taking into consideration Polish informal stratigraphic units: 
Ludlow, Wenlock, Llandovery, Ashgill, Caradoc. The abso-
lute permeabilities, which are equal to the minimum detected 
value (K = 0.0001 mD) in gas permeameter, were not con-
sidered, as not informative for the ANN. The total number 
of permeability values from laboratory measurements was 
equal to 109. Thanks to this procedure, three absolute per-
meabilities were obtained: K_ANN—no stratigraphic units 
were applied, K_ANN1—stratigraphic units were applied, 
and K_ANN2—informal stratigraphic units were applied.

Table 3 presents the results of probe quality using three 
different constructions of the Multilayer Perceptron in the 
form of determination coefficient for the estimated absolute 
permeabilities from ANN and from gas permeameter. The 
best results were obtained for the Multilayer Perceptron: 
MLP 16-10-1 (ANN3), which is revealed by the highest 
determination coefficient for the learning, test and valida-
tion procedure.

Calculated absolute permeabilities were compared quanti-
tatively and qualitatively with laboratory data (K_LAB) and 
permeability determined from the Zawisza (K_ZAWISZA) 
and Wyllie–Rose (K_WYLLIE–ROSE) formula using scat-
terplots (Fig. 2) and basic statistics (Table 4). Figure 2 pre-
sents the comparison between the absolute permeability 
from laboratory measurements and from ANN at the depth 
available from the laboratory measurements on the core 
samples. Absolute permeability from ANN is in the form 
of the log, so the values are available for each 0.1 m. ANN2 
network was used on the other wells because it presented 
the best validation, which indicated the ability to imple-
ment network to other data. Determination coefficient for 
the absolute permeability from gas permeameter (K_LAB) 
and absolute permeability from the artificial neural network 
ANN2 is 0.72.

Permeabilities from Zawisza (available from the inter-
pretation data set) and Wyllie–Rose (calculated by authors) 
formula were estimated in order to check the quality of 
the ANN results. Results obtained for Wyllie–Rose equa-
tion were better but similar to the Zawisza equation. The 
determination coefficient for K_LAB and K_Wyllie–Rose 
is 0.26. During the analysis, an attempt was made to learn 
the network applied to the division created using XRMI 
tool measurements, based on resistivity contrast between 
layers. Nevertheless, due to the small number of samples, 
the obtained results were unsatisfactory.

Analysing the calculated statistics, the parameter vari-
ability with the depth and the qualitative fit between the 
estimated permeability (K_ANN, K_ANN1, K_ANN2) 
and the input permeability (K_LAB, K_ZAWISZA), it 
was decided that the best match appears in the networks 
created for the most detailed stratigraphy (K_ANN2), even 
if the calculated matching factors are not the best.

Using the estimated permeability based on the formula 
(Eq. 4), the FZI (Flow Zone Index) parameter was cal-
culated, which was then used as an input parameter in 
the creation of artificial neural networks based only on 
interpretation data from well logs. Interpretation logs were 
available for the whole Silurian depth interval and par-
tially in Ordovician. The FZI parameter characterizes the 
rock ability to move media in the pore space. The determi-
nation of FZI classes allows classification of the formation 
according to intervals of similar hydraulic properties.

The calculated parameter FZI served as one of the 
parameters for the calculation of neural networks using 
the data obtained in the petrophysical interpretation. When 

(4)FZI = 0.0314

√

K

�

�

1−�

Fig. 3   Comparison between estimated absolute permeability (K_
ANN3) and from laboratory measurements (K_LAB)

Table 5   Basic statistic of absolute permeability (K_ANN3) estimated 
based on interpretation data and FZI parameter

Permeability K_ANN3 (mD)

Mean Median Standard deviation Minimum Maximum

0.176 0.078 0.270 0.001 2.614
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training the network, a similar procedure was used as in 
the case of well logging data. Multilayer Perceptron had 
the form of MLP 9-6-1 with determination coefficient for 
the input, hidden and output layers: 0.79, 0.70 and 0.28, 
respectively. The result, in the form of absolute permeabil-
ity K_ANN3, was obtained and is presented in the chart 
(Fig. 3) and in Table 5. Again, the best match was obtained 
for more detailed stratigraphy: K_ANN2.

The estimated absolute permeabilities were compiled 
on the track, to which the results of laboratory measure-
ments were superimposed (Fig. 4).

The analysis of logs shows that, as indicated by the 
calculated statistics, the differences between the perme-
abilities, in which the input data were well logs, are not too 
high and the best fit was considered for K_ANN. Neverthe-
less, ANN2 network was used on the other wells because 

Fig. 4   Results of absolute permeability estimation by artificial neural network in well A. Symbols of Polish informal stratigraphic units: A—
Ludlow, B—Wenlock, C—Llandovery, D—Ashgill, E—Caradoc
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it presented the best validation statistics and differences in 
fit between K_LAB and K_ANN were slightly lower. The 
other wells have also implemented networks, taught on the 
basis of interpretation data. However, the obtained results 

were not satisfactory. The results of the implemented net-
works were presented on the track (Fig. 5). Unfortunately, 
due to the lack of data from laboratory measurements on 
core samples, it was not possible to compare them. Only 

Fig. 5   Results of absolute per-
meability estimation by artificial 
neural network in well B and 
C. Symbols of Polish informal 
stratigraphic unit as in Fig. 4
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the comparison with the permeability calculated from the 
Zawisza formula was used.

The correlation coefficient between the absolute perme-
ability from the artificial neural networks and the Zawisza 
equation will be lower than 0.5 for both wells. Neverthe-
less, due to the lack of data from laboratory measurements 
on core samples, it is not possible to accurately assess this 
parameter. In particular, in the case of absolute permeability 
from the Zawisza formula calculated for the well C, it seems 
to be overestimated in relation to the actual parameters for 
the formation in the studied area. Lack of success in the 
application of the best ANN for wells B and C is caused by 
the strong heterogeneity of reservoir parameters for Silurian 
and Ordovician deposits and active tectonic in the research 
area. Even small changes in the diagenesis process for the 
thin-layered mudstone and shale deposits reveal enormous 
change in the petrophysical parameters, such as effective 
porosity and absolute permeability.

Conclusions

The presented work aimed at checking the legitimacy of 
using artificial neural networks to determine the absolute 
permeability parameter. Tests were carried out on data 
from Silurian and Ordovician shale and mudstone forma-
tions. These formations are characterized by poor reser-
voir parameters, such as effective porosity and absolute 
permeability, which additionally hampered the assumed 
task.

Attempts were made in providing the different sets of 
variables as the input data. The best results were obtained for 
well logs and the data from the well log interpretation, given 
as follows: RHOB, NPHI, DT, LLD, LLS, MSFL, THOR, 
URAN, POTA, PE, VCL, VANH, VDOL, VLIM, VSAN, 
VPYR, VTOC, PHI, K, SWI.

The best ANN was ANN2 with MLP 16-10-1 character-
istic, using Polish informal stratigraphic units, as an input 
division. In both cases, learned networks for smaller depths 
intervals worked better. Determination coefficient for the 
relationship between the absolute permeabilities derived 
from ANN2 and from absolute permeability from gas per-
meameter is R2 = 0.72.

Unfortunately, due to the lack of data from laboratory 
measurements on core samples in the remaining B and 
C wells, it was impossible to make an unambiguous and 
objective assessment of their quality. A possible poor fit may 
result from the complicated tectonic structure of the research 
area. An attempt in learning the network using measure-
ments from the XRMI tool, which seems to be an interesting 
issue, was made and failed also due to the small number of 
samples.

Artificial neural networks can be used in petrophysical 
analysis because they give the possibility to get the informa-
tion in the form of the log, from larger amount of data and 
calibrated with the laboratory measurements. Calculations 
of ANN are fast and quite cheap in comparison with the 
measurements and give good results for the parameters with 
nonlinear characteristic such as permeability in reference to 
well logs.
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