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Abstract
This study appraised optimisations of numerical solutions of the one-dimensional advection–dispersion model (AD-Model) 
to synthetic data generated using an analytical solution. The motivation for the work was to identify reliable methods for 
estimating stream solute transport parameters from observed events in small rivers. Numerical solutions of the AD-Model 
must contend with several effects that might disturb the solution, with the introduction of numerical diffusion and numerical 
dispersion being particularly important issues. This poses a problem if physical dispersion is being identified by optimising 
model coefficients using observations of solute transport from field experiments. The discretisation schemes used were the 
Backward-Time/Centred-Space, Crank–Nicolson, Implicit QUICK, MacCormack and QUICKEST methods. Optimisations 
were obtained for several grid resolutions by keeping the time step constant whilst varying the space step: the range of Peclet 
number, Pe, was 1.5–12.0. Generally, increasing the space step led to poorer estimated coefficients and poorer fits to the 
synthetic concentration profiles. For Pe < 5 only Crank–Nicolson, MacCormack and QUICKEST gave reliable optimised 
dispersion coefficients: those from Backward-Time/Centred-Space and Implicit QUICK being significantly underestimated. 
For Pe > 5 Crank–Nicolson and MacCormack gave slightly overestimated dispersion coefficients whilst the other methods 
gave significantly underestimated dispersion coefficients. These findings were generally consistent with the known presence 
of numerical diffusion and numerical dispersion in the methods.

Keywords Advection–dispersion model · Numerical methods · Solute transport parameters · Numerical properties · 
Optimisation

Introduction

Worldwide, there is a constant threat of high-level contami-
nation of freshwater resources such as streams through, inter 
alia, discharge of effluents from treatment plants, accidental 
industrial spillage or intentional disposal of pollutants. In 
many cases, unintentional spills are the most significant eco-
nomic danger to fresh water resources (USEPA 2009). Pre-
diction of the subsequent movement and longitudinal spread-
ing of contaminants in streams is necessary for a timely 
response by water authorities in respect of downstream 

consumers and purposes of alleviation. Alleviation can only 
be possible if the characteristics of pollutant migration in 
such streams are reliably known. There are numerous pro-
cesses that transport matter within streams. In the present 
context these processes can be categorised as either advec-
tion or mixing, and they exist in three spatial dimensions. 
However, we will assume they do not vary in time.

Attempting to include the processes in a 2- or 3-dimen-
sional spatial framework would result in a complex model 
with difficulties associated with the availability of data for 
development of the model. A 1-dimensional model, con-
versely, has the advantages of improved ease of application 
as well as more easily obtainable data. However, all the 
mixing processes become combined in a single term, creat-
ing some separation between the model and the real world. 
Furthermore, the use of the 1-dimensional model is only 
suitable beyond an initial mixing zone, in which a pollutant 
becomes sufficiently well distributed within the cross sec-
tion of the flow. Once achieved, the 1-dimensional mixing 
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is usually termed longitudinal dispersion, represented by a 
dispersion coefficient (Fischer et al. 1979; Rutherford 1994; 
Martin and McCutcheon 1999; Ani et al. 2009), and the 
corresponding 1-dimensional advection is quantified by the 
cross-sectional average longitudinal velocity. Both of these 
vary with the flow rate and the size of the stream channel. 
Although stream geometry is usually variable along the 
stream, introducing significant complexities into the dis-
persive aspects (Ani et al. 2009), lack of data often prevents 
the inclusion of such detail and, therefore, streams are often 
modelled as uniform 1-dimensional systems. Consequently, 
application of the models produces reach-averaged solute 
transport parameter values (Wallis et al. 2013; Wallis and 
Manson 2004).

Most of the mass transport modelling in streams has been 
undertaken using the 1-dimensional governing transport 
equation known as the advection–dispersion model (AD-
Model) (Fischer et al. 1979; Rutherford 1994). It has been 
observed that best practices for estimating solute transport 
parameters combine tracer experiments with the AD-Model 
(Rutherford 1994). In this, workers combine solutions of 
the model equation with some form of parameter estima-
tion. Experimental data is in the form of solute concentra-
tion–time profiles (or breakthrough curves), obtained by 
conducting slug-release tracer experiments. Several types 
of solution of the governing equation are available which 
include analytical solutions (Ogata and Banks 1961; Kumar 
et al. 2009) and numerical solutions (Abbott and Basco 
1989; Versteeg and Malalasekera 2007).

In most practical situations the solution to governing 
equations is through numerical approaches because the 
initial and/or boundary conditions of analytical solutions 
are rarely satisfied in the field. There is evidence to sug-
gest that, depending on the numerical method used, different 
solute transport parameter values can be estimated with the 
same observed data, such that prediction and interpretation 
of mass transport in streams may depend on the numeri-
cal approach used (Wallis and Manson 2004; Wallis et al. 
2013). Numerical solution methods of the AD-Model must 
deal with several effects that disturb a solution. Primarily, 
these effects are a result of numerical approximation of 
the advective term (Sobey 1984; Abbott and Basco 1989), 
which may introduce artificial mixing (see later) into the 
solution. In the computed solution it may not be possible 
to differentiate between the artificial mixing introduced by 
a numerical scheme and the physical process of longitudi-
nal dispersion (Sobey 1984). Therefore, it would be prudent 
to compare solutions given by various numerical methods. 
This is the theme of the current paper. The aim of the work 
was to investigate the reliability of several numerical meth-
ods for estimating stream solute transport parameters in a 
small stream using the AD-Model. The primary objective of 
the study was to estimate solute transport parameters using 

synthetic data generated with an analytical solution over a 
range of numerical grid resolutions. Since the parameter val-
ues used to generate the data were known, the accuracy of 
the estimated parameters could easily be assessed.

Background

The spreading of solutes in a fluid is termed as mixing (Chin 
2013). Mixing occurs because of molecular diffusion, turbu-
lent diffusion and shear dispersion. Longitudinal mixing in 
streams is primarily caused by shear dispersion which results 
from the stretching effect of cross-sectional velocity gradi-
ents combined with cross-sectional turbulent diffusion. The 
longitudinal dispersion coefficient is used to measure the 
longitudinal mixing of a solute which is well mixed across a 
channel (Chin 2013). Taylor (1954) argued that when a sol-
ute is well mixed in turbulent pipe flow longitudinal disper-
sion can be described by Fick’s law. Based on this, Fischer 
argued that in open channels, sufficiently downstream of an 
initial mixing zone, concentration distributions can be mod-
elled using an analogy of Fick’s law (Fischer et al. 1979). In 
this zone there is an equilibrium between longitudinal veloc-
ity shear and transverse mixing. Depending on the release 
conditions of the solute, the zone may extend by up to 100 
stream widths: Rutherford (1994) provides more detail on 
this issue. The general 1-dimensional equation describing 
longitudinal transport is expressed as (Rutherford 1994):

where A is the cross-sectional area of the channel, D is the 
longitudinal dispersion coefficient, υ, is the cross-sectional 
average longitudinal velocity, φ, is the cross-sectional aver-
age solute concentration, x is the longitudinal coordinate 
and t is the time. The above equation is Taylor’s (1954) and 
Fischer et al.’s (1979) 1-dimensional advection–dispersion 
model (AD-Model). Commonly, constant mixing rates and 
cross-sectional average velocities are assumed (Chanson 
2004). Therefore, for constant dispersion coefficient and 
velocity, the 1-dimensional advection–dispersion model is:

In this equation, the longitudinal dispersion coefficient 
quantifies the rate of longitudinal stretching of a solute cloud, 
and the cross-sectional average velocity quantifies the rate of 
downstream movement of the whole cloud (Chanson 2004; 
Wallis 2007). Application to a particular advection–disper-
sion problem requires a complete mathematical statement 
consisting of the AD-Model and specific boundary and 
initial conditions. The AD-Model is implemented through 
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calibration, i.e. selection of values for coefficients υ and D 
for use in solutions of Eq. (2), and several types of solution 
exist. The available solutions include analytical solutions 
(Ogata and Banks 1961; Kumar et al. 2009), numerical solu-
tions (Wallis et al. 1998; Hoffman 2001; Manson et al. 2001; 
Chapra 2008) and routing procedures (Rutherford 1994; 
Singh and Beck 2003). There are very many solutions to the 
AD-Model depending on which boundary and initial condi-
tions are specified (Fischer et al. 1979; Barnett 1983; Graf 
and Altinakar 1998; Chanson 2004; Chin 2013). Analytical 
approaches are derived to obtain solutions that are precise 
and continuous in time and space whereas numerical and 
routing approaches are inherently approximate and discrete.

There are essential analytical solutions of the AD-Model 
that are considered as the bases from which other solutions 
can be developed. These essential solutions mostly corre-
spond to instantaneous slug releases of a solute in a stream 
in which the velocity and mixing fields are longitudinally 
uniform. One such solution is Taylor’s solution of the AD-
Model with constant coefficients, written as (Rutherford 
1994):

where M = mass of the solute released, and the other vari-
ables are as previously defined. The solution is based on the 
situation where concentration is known as a spatial distribu-
tion at an initial time, and it satisfies the following initial and 
boundary conditions (Rutherford 1994; Graf and Altinakar 
1998):

where M1 is the mass of solute released per unit cross-sec-
tional surface area and δ is the Dirac delta function. The 
Taylor solution is reliable in the equilibrium zone, i.e. at 
some distance downstream from the point where the slug is 
released (Rutherford 1994).

Equation  (3) predicts Gaussian spatial concentration 
profiles and slightly skewed temporal concentration pro-
files. Observations of solute transport in streams are usu-
ally undertaken in the time domain and they too are not 
Gaussian, but they do not necessarily obey Taylor’s solution 
(Chapra 2008). There are several reasons for this, e.g. the 
conditions in the field may not be consistent with the initial 
and boundary conditions of the solution, the stream may not 
be longitudinally uniform and the assumption of uniform 
concentration across the stream section may not hold. In 
addition, dead zones in the stream often create long tails 
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in concentration profiles resulting in further deviations of 
temporal profiles from Gaussianity (Singh and Beck 2003).

Most practical situations require the use of a numeri-
cal solution because ultimately the models are required for 
more complex problems than those that allow the use of 
analytical solutions (Martin and McCutcheon 1999; Wallis 
2007). Unfortunately, numerical solutions are neither exact 
nor continuous in both time and space, producing discrete 
solutions. Numerical solution techniques involve convert-
ing the governing differential equation into algebraic dif-
ference equations that can be solved for values at incremen-
tal points, or nodes, in space and time (Abbott and Basco 
1989; Wallis 2007; Szymkiewicz 2010; Chapra and Canale 
2015). In applying numerical methods, accurate results may 
be obtained when the number of nodes is infinitely large 
regardless of the method used. However, practical calcula-
tions can only use a limited number of nodes. In that case, 
results can only be physically realistic when the discretisa-
tion scheme has important properties, namely that they be 
stable, conservative, bounded and transportive (Ferziger and 
Peric 2002; Versteeg and Malalasekera 2007).

A solution method is said to stable if the errors that 
appear during the numerical solution process do not mag-
nify; a conservative method is one that maintains the origi-
nal mass of solute throughout the calculations. A bounded 
method entails that solutions remain within appropriate 
physical limits. Therefore, in the absence of sources, the 
concentration values at internal nodes should be bounded 
by boundary values, which in the context of solute transport 
in rivers implies that internal concentrations should be less 
than the concentrations propagated into the solution domain 
from the upstream boundary (because the physical system 
is advection dominated). A transportive method is one that 
recognises the directionality of influence in the flow. For 
solute transport in rivers conditions at a downstream loca-
tion are heavily influenced by conditions further upstream 
with there being little or no influence from locations further 
downstream (because the physical system is advection domi-
nated). In the numerical solution, the Peclet number (see 
below) plays an important role because it is a measure of the 
relative strength of advection and dispersion.

There are various discretisation schemes with varying 
properties (Leonard 1979; Abbott and Basco 1989; Hoffman 
2001; Versteeg and Malalasekera 2007). Numerical solu-
tions are discretised using one of the three basic approaches, 
namely: finite differences, finite volumes and finite elements 
(Abbott and Basco 1989; Ferziger and Peric 2002; Versteeg 
and Malalasekera 2007; Szymkiewicz 2010). However, the 
two most common discretisation approaches used in model-
ling solute transport in streams are the finite difference and 
finite volume methods. The finite volume approach has an 
advantage in that mass conservation is guaranteed (Versteeg 
and Malalasekera 2007) whereas finite difference schemes 
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may require that special care is taken (Ferziger and Peric 
2002). A solution method for a time-variable problem can 
be advanced in time in two ways, namely: explicitly and 
implicitly (see next section).

The main issue in the application of numerical methods 
to Eq. (2) is the formulation of an appropriate scheme for 
the values of the transported property when accounting for 
the advective contribution to the solution (Abbott and Basco 
1989; Wallis and Manson 1997; Versteeg and Malalasekera 
2007; Wallis 2007).

It is now necessary to define and explain some termi-
nology in order to help mitigate some unavoidable confu-
sion. Mathematically, Eq. (2) is of the form of an advec-
tion–diffusion equation. When the truncation errors of 
numerical solutions to it are examined, it is possible that 
they include the second, third and higher spatial derivatives 
of concentration. Mathematically, such terms introduce 
unwanted errors known as numerical diffusion (from the 
second spatial derivative) and numerical dispersion (from 
third spatial derivative). Similar errors are introduced by 
the higher spatial derivatives, but the second and third ones 
are the dominant terms. In the context of the application 
of Eq. (2) to longitudinal mixing in rivers the numerical 
diffusion enhances the physical dispersion causing greater 
longitudinal spreading and amplitude attenuation to occur 
in solutions than would be expected based on the value of 
the dispersion coefficient specified by the modeller (Chapra 
2008; Szymkiewicz 2010). In contrast, numerical dispersion 
encourages the appearance of oscillations (or wiggles) in 
the numerical solutions (Leonard 1979; Manson and Wallis 
1995; Chapra 2008) caused by the various components of 
the solution being propagated at different wave celerities 
(Szymkiewicz 2010). Usually the presence of these oscil-
lations is most noticeable on the leading or trailing edge of 
a concentration profile and as a consequence the non-zero 
part of the profile extends further than it would if numerical 

dispersion were not present. In order to conserve the mass 
of the solute, some amplitude reduction and phase shift of 
the profile is often observed also. This is illustrated in Fig. 1 
using a simulation with the Crank–Nicolson scheme (one 
of the schemes described later in the paper). Although it 
appears that the simulated concentration profile has spread 
further than the corresponding physical profile, the cause is 
not numerical diffusion, but is numerical dispersion. Since, 
physically, diffusion and dispersion are different processes, 
and dispersion has two quite different meanings to math-
ematicians and river modellers, in this paper we use the term 
artificial mixing when discussing the modified longitudinal 
spreading caused by any truncation error terms. Usually, 
the majority of this is due to numerical diffusion from the 
second spatial derivative in the truncation error.

The typical ways of judging the suitability of a numeri-
cal solution of the AD-Model, i.e. stability, boundedness, 
mass conservation etc., reveal little about the accuracy of a 
numerical solution (Sobey 1984). The fact that a scheme is 
numerically bounded or stable does not guarantee its accu-
racy. The grid resolution (i.e. the magnitude of the time and 
space steps in comparison with the duration and length, 
respectively, of the solute cloud being modelled) also has 
a considerable influence on the accuracy of a numerical 
scheme though it is often given little attention (Sobey 1984). 
Overall, the suitability of a numerical solution depends on 
the relative strength of the transport processes of advection 
and dispersion, the characteristics of the numerical method 
and the grid resolution used (Wallis and Manson 1997; 
Versteeg and Malalasekera 2007; Wallis 2007). Although 
these issues are inter-related the performance of a numerical 
method is heavily influenced by two non-dimensional prop-
erties known as the advection (or Courant) and dispersion 
(or diffusion) numbers. The ratio of the advection number 
to the dispersion number is known as the Peclet number 
(Ferziger and Peric 2002; Versteeg and Malalasekera 2007), 

Fig. 1  Comparison of a simu-
lated concentration profile using 
the Crank–Nicolson scheme 
with the corresponding physical 
concentration profile
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which indicates whether the solution is dominated by advec-
tion or by dispersion (Chapra 2008; Chin 2013). An impor-
tant application of the Peclet number is that it can be used 
to predict the appearance of oscillations (Abbott and Basco 
1989; Versteeg and Malalasekera 2007; Szymkiewicz 2010).

In contrast to simulating a solute transport event, esti-
mating solute transport parameters using observed concen-
tration data requires an inverse modelling method. In this, 
values of model parameters are determined which give the 
best fit between the simulated and the observed data (Semu-
wemba 2011; Chin 2013). The level of agreement between 
the model output and the observations is used to assess the 
capability of the model (Runkel and Broshears 1991; Wal-
lis et al. 2013), which can be assessed using one or more 
performance measures (Bennett et al. 2013).

Applied numerical methods

Several numerical methods were applied in this investiga-
tion. The choice of various discretisation schemes was based 
on discretisation type, solution method and scheme order. 
Hence, finite difference (FD) and finite volume (FV) dis-
cretisation approaches, explicit and implicit solution meth-
ods and first, second and third-order accurate discretisation 
schemes were chosen. The FD schemes were the Backward-
Time/Centred-Space method, the Crank–Nicolson method 
and the MacCormack method (Ferziger and Peric 2002; 
Chapra 2008). The FV schemes were the Implicit QUICK 
(quadratic upstream interpolation for convective kinetics) 
method (Leonard 1979; Versteeg and Malalasekera 2007) 
and the QUICKEST (quadratic upstream interpolation for 
convective kinetics with estimated streaming terms) method 
(Leonard 1979).

The FD approach subdivides the solution domain into a 
mesh, in which grid lines serve as local coordinates. The 
derivatives in the AD-Model are expressed in terms of nodal 
quantities of both dependent and independent variables at 
the intersection of the grid lines. The discretisation results 
in algebraic equation(s) with all unknowns prescribed at dis-
crete mesh points of the solution domain. The FV approach 
subdivides the solution domain into several control volumes 
(CVs) each of which is centred at a node of the mesh. The 
derivatives in the AD-Model equation are integrated over 
the CV allowing the net solute mass entering the CV to be 
expressed in terms of the differences in advective and dis-
persive solute fluxes passing through the faces of the CV. 
The nodal values are then used in an interpolation formula 
to approximate the solute fluxes at the CV faces. Conse-
quently, one obtains an algebraic equation for each CV, in 
which several neighbouring nodal values appear (Ferziger 
and Peric 2002; Versteeg and Malalasekera 2007). “Appen-
dix 1” provides explanatory figures for the two approaches.

A general approach for advancing a FD solution over 
time employs a temporal weighting, θ, and is expressed as 
(Abbott and Basco 1989):

where Δt is the time step and the superscripts n and n + 1 
refer to the times at the start and end of the time step, respec-
tively. Once the spatial gradients have been replaced by finite 
difference approximations, Eq. (7) is used to evaluate the 
solute concentration at time n + 1 for all the nodes, assum-
ing all nodal solute concentrations at time n and all bound-
ary conditions at the edges of the computational domain 
are known. When applying Eq. (7), if θ = 0 only transported 
variable values at the old time are used to evaluate one 
unknown concentration, resulting in an explicit calculation; 
if θ = 1, transported variable values at the new time level are 
used; and if θ = 0.5 transported variable values at both time 
levels are used. The latter two cases give a set of simultane-
ous equations containing all the unknown concentrations, 
resulting in an implicit calculation. In principle, the θ = 0.5 
case is superior to the other cases because it is second-order 
accurate in time whilst the other cases are only first-order 
accurate in time. FV schemes can be expressed in a similar 
temporal weighting framework.

The non-dimensional numerical properties introduced 
earlier, which have an important bearing on the behaviour 
of the numerical schemes (advection number, dispersion 
number and Peclet number) are expressed as follows (Abbott 
and Basco 1989; Versteeg and Malalasekera 2007), where 
Δx is the space step:

Each of the numerical methods used is described in the 
following sub-sections. Information on the expected behav-
iour of the methods is considered later.

The Backward‑Time/Centred‑Space method

Using Eq.  (7) with θ = 1, the method approximates the 
spatial derivatives at time level n + 1 by the centred dif-
ference approach. Thus, the method is a Backward-Time/
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Centred-Space Implicit scheme (Chapra 2008). The method 
is a FD scheme and is expressed as:

For computational purposes, the above equation can be 
expressed in terms of the non-dimensional numerical prop-
erties introduced above as:

In this method values of the transported variable at the 
new time level are evaluated in terms of other unknown vari-
able values at the new time level, requiring the solution of 
a set of simultaneous equations. This method is first-order 
accurate in time and second-order accurate in space and is 
unconditionally stable, allowing arbitrarily large time steps 
to be taken (Chapra 2008). In advection dominated flows 
Wallis (2007) warns that the promise of stability is out-
weighed by increasing inaccuracy as c increases above unity 
because the implicit nature of the method compromises the 
upstream-biased transportive nature of the physical system.

The Crank–Nicolson method

Using Eq. (7) with θ = 0.5 the method employs a centred-
time/centred-space approach in which estimates of the spa-
tial derivatives are expressed using values of the transported 
property at time levels n and n + 1 . This is an implicit FD 
scheme and is expressed as:

For computational purposes the above equation can be 
written as:

In this method, values of the transported variable at the 
new time level are evaluated in terms of variable values 
from both the old and the new time levels, requiring the 
solution of a set of simultaneous equations. The scheme is 
based on centred differencing in time and space and is thus 
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second-order accurate in time and space. The scheme is 
unconditionally stable, but it has been observed to be inac-
curate at high values of Pe (Chapra 2008) and its implicit 
nature implies that the warnings of Wallis (2007) apply to it.

The Implicit QUICK method

This is a FV approach with CV face values of the transported 
variable expressed in terms of an upstream weighted para-
bolic interpolation and spatial gradients of the transported 
variable expressed using linear interpolation (Leonard 
1979). Using θ = 1 in the FV equivalent version of Eq. (7) 
gives:

Using Hayase et al.’s formulation (Hayase et al. 1992; 
Versteeg and Malalasekera 2007) to express variable values 
at the CV surfaces gives:

The discretised equation for a general FV centred at node, 
j, is expressed as:

The scheme is first-order accurate in time and third-order 
accurate in space. Its implicit nature offers unconditional 
stability, but the warnings of Wallis (2007) apply to it.

The MacCormack method

The MacCormack (or Predictor–Corrector) method is a 
two-step FD method, unlike the above-discussed techniques 
which are one-step methods. There are various formulations 
of the approach (e.g. MacCormack 1982; Fürst and Fur-
mánek 2011). Here we follow the semi-implicit formulation 
described in (Chapra 2008). The first step (predictor) uses 
the following explicit estimator, which uses forward spatial 
differencing for the advective term and centred spatial dif-
ferencing for the dispersion term:
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The second step (corrector) uses the following implicit 
estimator, which uses backward spatial differencing for the 
advective term and centred spatial differencing for the dis-
persion term:

Finally, an average of the two estimators is used to obtain 
the result expressed as:

This method, in a similar way to the Crank–Nicolson 
method, uses an average of an explicit scheme and an 
implicit scheme. For computational purposes, Eq. (21) can 
be expressed as:

This has the same form as other implicit methods 
described above and is similar to that presented by Fürst 
and Furmánek (2011). The scheme is second-order accurate 
in time and space. Chapra (2008) claims that the scheme is 
conditionally stable, but Fürst and Furmánek (2011) claim 
it is unconditionally stable.

The QUICKEST method

The QUICKEST method (Leonard 1979) is a FV approach 
similar to, but superior to, the QUICK method. As well as 
using the upstream weighted parabolic interpolation of the 
QUICK method (Abbott and Basco 1989; Versteeg and 
Malalasekera 2007) it is an explicit formulation, using the 
θ = 0 version of the FV equivalent of Eq. (7). In addition, 
it includes ‘estimated streaming terms’ (EST) to account 
for advection and dispersion occurring during the time step 
(Leonard 1979). Variable values at CV faces are given by 
the following expressions (Leonard 1979; Abbott and Basco 
1989):
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For computational purposes the method may be expressed 
as (Leonard 1979; Abbott and Basco 1989):

This shows that unknown variable values at the new 
time level can be computed one at a time (an explicit 
calculation). In principle, the scheme is third-order accu-
rate, but its explicit nature leads to conditionally stability. 
Thus, it can be unstable at modest values of Pe: Leonard 
(1979) provides some detail on this issue.

Expected behaviour of applied numerical 
methods

Although the order of accuracy, given above, of the numeri-
cal methods gives an insight into how their performances 
might compare, a deeper study of the truncation error is 
much more revealing. This is achieved by substituting Taylor 
series expansions into the algorithms and identifying any 
temporal and spatial derivatives that might be a source of 
poor performance. As introduced earlier, the second and 
third spatial derivatives are particularly problematic so that 
methods which minimise the magnitude of such terms, or 
better still eliminate them, are likely to be among the bet-
ter performing methods. Since the lowest spatial derivative 
emanating from the physical dispersion term is the 4th one 
it is only necessary to examine the truncation terms from the 
temporal and advective terms in order to quantify the numer-
ical diffusion and numerical dispersion (from the dominant 
terms) of a numerical method. It is also necessary to replace 
any second or third temporal derivative with a corresponding 
spatial derivative, considering advection only. The proce-
dure is often referred to as the modified equation approach 
(Szymkiewicz 2010) but appears elsewhere without being 
named (Abbott and Basco 1989).

Table 1 shows the results of this analysis for the five 
methods considered in the paper. “Appendix 2” summa-
rises the method, provides intermediate expressions for all 
five methods and shows completed analyses for two of the 
schemes, namely Implicit QUICK (IQ) and MacCormack 
(M). Completed analyses for Crank–Nicolson (CN) and 
Backward-Time/Centred-Space (BTCS) are readily avail-
able elsewhere (Szymkiewicz 2010). The reader is left to 
confirm the result for QUICKEST (Q) for themselves. In 
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the remainder of the paper we use the abbreviations intro-
duced above to refer to the five numerical methods.

These results suggest that CN, M and Q are free from 
numerical diffusion, but that BTCS and IQ contain the 
same amount of numerical diffusion, which depends only 
on the time step and the velocity. All the methods except 
Q contain numerical dispersion, but to differing degrees 
which are dependent on the space step, velocity and advec-
tion number. These results are consistent with those given 
elsewhere, e.g. Leonard (1979), Chapra (2008) and Szym-
kiewicz (2010).

Computational procedure

This study used Microsoft Excel spreadsheets to apply the 
numerical methods and followed the design described by 
Karahan (2006, 2007, 2008). Excel spreadsheets have the 

advantages of computational speed and visual feedback 
through cell values and graphical displays (Billo 2007; Kara-
han 2006). Also, they can be configured to solve implicit 
numerical methods without the need for matrix algebra by 
writing algorithms in a direct form and using an iterative 
technique (Karahan 2006).

A separate workbook was created for each numerical 
method (Eqs. 12, 14, 18, 22 and 25). The general structure 
of the calculations for each implicit method is shown in 
Fig. 2. The input values were Δx, Δt, υ and D, and these 
were written to cells B1, B2, B3 and B4, respectively. The 
three numerical properties (Eqs. 8–10) were evaluated in 
cells B5, B6 and B7 and were derived from the input values. 
In the main calculation area columns represent different spa-
tial locations or grid points (defined in row 8) and rows rep-
resent different times (defined in column C). The time step 
was fixed, but the spatial resolution of the computational 
domain was varied so that model parameters could be esti-
mated over a range of numerical properties. Each space step 
case had its own worksheet tab in each of the workbooks. 
Initial conditions were provided in row 10 (zero concentra-
tion at all locations), and the upstream boundary condition 
was provided in column E.

In each worksheet the direct form (see below) of the 
numerical method being tested was written to the cells in 
the main calculation area. Having entered the equation in 
cell F10, it was then copied along the row as far as a loca-
tion well beyond the downstream end of the reach being 
modelled where a zero concentration downstream bound-
ary condition was supplied. Provided that Excel’s iterative 

Table 1  Coefficients of numerical diffusion and numerical dispersion 
derived from the modified equation approach: c is the advection num-
ber, as defined in Eq. (8)

Scheme Coefficient of numerical 
diffusion

Coefficient of numeri-
cal dispersion

BTCS Δtν2/2 − Δx2ν(− c2 + 1)/6
CN 0 − Δx2ν(c2 + 2)/12
IQ Δtν2/2 − Δx2ν(− c2 + 1/4)/6
M 0 − Δx2ν(c2 + 3c + 2)/12
Q 0 0

Fig. 2  Example spreadsheet showing the structure of the solution method (Backward-Time/Space-Centred method) for one space step case
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calculation mode was enabled, a solution to the set of simul-
taneous equations thus entered was automatically achieved. 
The complete row of calculations was then copied to all 
subsequent rows thus obtaining a solution at every time 
denoted in column C.

The direct forms of the implicit methods were simple re-
arrangements of the algorithms such that the concentration 
in the target cell was expressed as a function of unknown 
concentrations in neighbouring cells. For the case shown in 
Fig. 2, the direct form of the BTCS method is a re-arrange-
ment of Eq. (12) to give:

for which the calculation in the worksheet for cell G11, for 
example, is:

where cell G11 contains the concentration at time n + 1.
Optimisation of the model parameters (υ and D contained 

in cells B3 and C4, respectively) was achieved by minimis-
ing the sum of squared errors (SSE) between calculated 
concentrations at the downstream end of the reach being 
modelled (column M) and the synthetic data for that location 
(column D). The SSE was minimised using Excel’s solver 
function which uses a steepest descent optimisation code 
(Lasdon et al. 1978; van den Bos 2007; Fylstra et al. 1998). 
Figure 3 summarises the procedure.
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Implementation of the Q method followed the same 
spreadsheet design as used for the implicit methods except 
that an iterative solution of the direct form of the algorithm 
wasn’t required (it being an explicit method an unknown 
concentration is only dependent on other concentration val-
ues in the previous row). In addition, however, a special 
treatment of the upstream boundary was needed because 
when applied to the cells in column F (see Fig. 2) a concen-
tration value further upstream than the boundary is required. 
To overcome this, the CN scheme was applied to the cells in 
column F. Solving this simultaneously with the Q algorithm 
in column G yielded an explicit solution for column F. A 
similar CN implementation in column F was also used for 
the IQ method, but within the direct form of solution.

Some of the direct form implementations of the implicit 
methods did not always yield robust solutions (particularly 
higher Peclet number cases for BTCS). To remedy this, such 
cases were solved (also using Excel) using a double-sweep 
elimination method, which is described briefly in “Appen-
dix 3”. The opportunity was also taken to confirm a sample 
of the results from the other three implicit methods because 
the double-sweep elimination method could be applied to 
them with only a little extra work.

Application of the numerical methods

To assess the reliability of the numerical methods for 
identifying the velocity and the dispersion coefficient 
from temporal concentration profiles, synthetic data was 

Fig. 3  Flow chart of the optimi-
sation process Stream reach = 200 m
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generated using Eq. (3). The use of synthetic data derived 
from analytical solutions has become common (Semu-
wemba 2011; Vaghela and Vaghela 2014) and has several 
advantages over using observed data. For example: condi-
tions can be tailored for a particular situation, the values 
of solute transport parameters are known precisely and 
analytical solutions can provide results for a broad range 
of conditions that would not be practically possible with 
observed data (Semuwemba 2011). As well as attempting 
to estimate the parameter values used with the analyti-
cal solution, the numerical methods were also required to 
simulate the temporal concentration profiles given by the 
analytical solution at the downstream end of the reach.

Application of the numerical methods was made to syn-
thetic data generated using two different sets of parameter 
values and time steps. The first set was generated using 
υ = 0.225 m/s and D = 0.750 m2/s with a time step of 20 s 
and the second set was generated using υ = 0.150 m/s and 
D = 0.500 m2/s with a time step of 30 s. The parameter 
values were selected based on previous studies of the 
stream where the AD-Model was going to be applied in 
later research by the authors, namely the Murray Burn 
in Edinburgh, UK. A hypothetical stream reach of length 
200 m was used, which was similar to the Murray Burn 
study reach length. Hence, for each synthetic data set an 
upstream and a downstream temporal concentration profile 
were generated at 600 m and 800 m, respectively, from the 
solute source. The mass of solute was 1 kg and the cross-
sectional area of the channel was 1 m2. The numerical 
methods were applied to the synthetic data over a range of 
space steps (5–40 m), such that optimisation of the model 
parameters was observed under different values of the non-
dimensional numerical properties (e.g. Pe being 1.5–12). 
The parameter values of the second set were deliberately 
chosen to yield the same values of the non-dimensional 
numerical properties as those for the first set.

Results and discussion

Results from the two sets of synthetic data were very simi-
lar in nature such that only one set of results is considered 
in detail here, namely that from the first set (υ = 0.225 m/s, 
D = 0.750 m2/s, time step = 20 s). In all cases the numeri-
cal schemes behaved conservatively and simulations were 
stable. In several of the figures referred to below various 
aspects of the results are plotted against Peclet number, 
Pe. As shown previously, numerical discretisation can be 
expressed in terms of velocity, dispersion coefficient, space 
step and time step or in terms of advection number, disper-
sion number and Peclet number. The results were plotted 
against Pe because it combines the effects of the other two 
non-dimensional properties and the plots are an effective 
way of showing the behaviour of the numerical methods 
when the space step is varied.

Figure 4 shows plots of the sum of squared errors between 
simulated and synthetic concentration profiles at the down-
stream end of the reach plotted against Pe for the first data 
set. In every case the simulated profile was generated using 
the optimised velocity and dispersion coefficient. In general, 
simulation errors increased with increasing Pe for all the 
numerical methods. Simulation errors obtained for Pe < 5 
were very small (< 0.01 μg2/l2) for all the methods, whilst for 
Pe > 5 simulation errors increased significantly with increas-
ing Pe for all the methods. Generally, the finite difference 
methods gave higher simulation errors than the finite vol-
ume methods. The methods could be ranked in the following 
order of decreasing accuracy: Q, IQ, CN, BTCS, M. To a 
great extent this reflects the spatial orders of accuracy of 
the methods noted earlier. However, this is a rather super-
ficial analysis to which some refinements are required, as 
described below.

Tables 2 and 3 show optimised values of velocity and 
dispersion coefficient. It should be noted that the values of 
the non-dimensional numerical properties, i.e. advection 

Fig. 4  Variation of sum of 
squared errors (between simula-
tions with optimised velocity 
and dispersion coefficient and 
synthetic downstream data) 
with Peclet number for the first 
data set
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number, dispersion number and Peclet number, shown in the 
tables were calculated using the parameter values used for 
generating the synthetic data so that the results of all meth-
ods could be easily compared. It can be observed that there 
is variation of optimised velocity and dispersion coefficient 
both with the numerical method used and with the numeri-
cal properties. In all cases the optimised velocity is greater 
than the synthetic value. For Pe < 5 the percentage errors in 
the velocities are typically less than 2%. They increase to 
about 8% when Pe = 12. Generally, Q has the smallest veloc-
ity errors and M has the largest.

Turning attention to the optimised dispersion coeffi-
cients, which generally show greater errors than the opti-
mised velocities, Fig. 5 shows results for all the numerical 
methods for the first data set (i.e. the data in Table 3). It 
can be observed that for Pe < 5, the results fall into two dis-
tinct groups. Here, CN, M and Q yield optimised dispersion 

coefficients that agree closely with the synthetic value; 
BTCS and IQ yield values that are similar to each other, but 
which are considerably too small. This is consistent with the 
analysis of the numerical diffusion in the methods shown in 
Table 1. Furthermore, the error in the optimised dispersion 
coefficients (i.e. the difference between the optimised value 
and that used to generate the synthetic data) for BTCS and 
IQ is very close to the value given by the numerical diffusion 
coefficient in the table (~ 0.5 m2/s, using the synthetic value 
of velocity). In other words, the presence of numerical diffu-
sion means that a smaller physical dispersion coefficient than 
the synthetic value is required to fit the model to the data.

For Pe > 5, optimised dispersion coefficients for all the 
methods diverge from the synthetic value. Those from 
CN, M and BTCS show a small increase from the value 
in the lower Pe range whilst those from IQ and Q show a 

Table 2  Non-dimensional 
numerical properties and 
optimised velocities for first 
data set (synthetic velocity of 
0.225 m/s)

Δx (m) Advection 
number

Dispersion 
number

Peclet number BTCS CN IQ M Q

5.00 0.900 0.600 1.500 0.226 0.225 0.226 0.226 0.225
6.06 0.743 0.408 1.818 0.226 0.225 0.226 0.226 0.225
7.14 0.630 0.294 2.143 0.226 0.226 0.226 0.226 0.225
8.00 0.563 0.234 2.400 0.226 0.226 0.226 0.226 0.225
10.00 0.450 0.150 3.000 0.227 0.226 0.226 0.227 0.225
12.50 0.360 0.096 3.750 0.227 0.227 0.226 0.228 0.225
14.29 0.315 0.073 4.286 0.228 0.227 0.227 0.228 0.225
16.67 0.270 0.054 5.000 0.229 0.228 0.227 0.229 0.225
18.18 0.248 0.045 5.454 0.229 0.229 0.227 0.230 0.225
20.00 0.225 0.038 6.000 0.230 0.229 0.228 0.231 0.226
25.00 0.180 0.024 7.500 0.233 0.232 0.229 0.234 0.226
28.57 0.158 0.018 8.571 0.235 0.234 0.230 0.236 0.227
40.00 0.113 0.009 12.000 0.243 0.242 0.235 0.244 0.231

Table 3  Non-dimensional 
numerical properties and 
optimised dispersion 
coefficients for first data set 
(synthetic dispersion coefficient 
of 0.750 m2/s)

Δx (m) Advection 
number

Dispersion 
number

Peclet number BTCS CN IQ M Q

5.00 0.900 0.600 1.500 0.235 0.749 0.255 0.749 0.746
6.06 0.743 0.408 1.818 0.235 0.749 0.260 0.748 0.749
7.14 0.630 0.294 2.143 0.234 0.748 0.264 0.747 0.750
8.00 0.563 0.234 2.400 0.233 0.747 0.267 0.746 0.750
10.00 0.450 0.150 3.000 0.231 0.746 0.273 0.745 0.749
12.50 0.360 0.096 3.750 0.228 0.743 0.278 0.744 0.744
14.29 0.315 0.073 4.286 0.226 0.742 0.279 0.744 0.739
16.67 0.270 0.054 5.000 0.225 0.741 0.278 0.745 0.728
18.18 0.248 0.045 5.454 0.225 0.750 0.275 0.747 0.718
20.00 0.225 0.038 6.000 0.226 0.739 0.269 0.751 0.704
25.00 0.180 0.024 7.500 0.238 0.752 0.240 0.770 0.649
28.57 0.158 0.018 8.571 0.255 0.766 0.207 0.790 0.594
40.00 0.113 0.009 12.000 0.316 0.827 0.032 0.854 0.332
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substantial decrease from the value in the lower Pe range. 
In both cases, the divergence increases with increasing Pe.

In order to aid the interpretation of these results, Figs. 6 
and 7 show composite plots (i.e. results from all 5 meth-
ods) of the simulated concentration profiles for two values 
of Pe, namely, 6 and 12, respectively. The downstream syn-
thetic concentration profile is also shown. For the lower 
Pe case, there is little difference between the simulated 
profiles and they all match the synthetic profile well. 
This reflects the relatively low modelling errors shown in 
Fig. 4 (described earlier). In contrast, Fig. 7 shows that, 
to a greater or lesser extent, all 5 simulated profiles are 
distorted, being characterised by a reduced amplitude 
(compared to the synthetic profile), a little more spread-
ing (particularly on the rising limb) and an oscillation on 
the trailing edge. Such behaviour is caused by numerical 
dispersion, as described earlier (see Fig. 1).

Table 4 shows the coefficients of numerical dispersion, 
obtained using the formulae in Table 1, for four values of Pe 
from the range covered in the optimisations. Clearly, these 
coefficients increase with increasing Pe for all schemes, and 
they are significantly larger for Pe = 12 than for Pe = 6. Fur-
thermore, the degree of distortion of the simulated profiles 
in Fig. 7 (for the higher Pe case) mirrors the magnitude of the 
numerical dispersion coefficients. Thus, the ranking order 
of the degree of distortion is similar to the ranking order 
of the coefficients of numerical dispersion. For example, 
the errors in the peak concentrations are − 8.6%, − 9.2%, 
− 12.0%, − 12.4%, − 13.5% for Q, IQ, CN, BTCS and M, 
respectively.

For CN and M in the higher Pe range the generally larger 
dispersion coefficient than the synthetic value (see Fig. 5 and 
Table 3) helps to damp out the oscillation, but sacrifices the 
fit around the peak of the profile. Of course, the optimisation 
finds the combination of velocity and dispersion coefficient 

Fig. 5  Variation of optimised 
dispersion coefficient with 
Peclet number for first data set 
(synthetic dispersion coefficient 
of 0.750 m2/s—indicated by 
dashed line)
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Fig. 6  Simulation results for 
five numerical methods using a 
space step of 20 m and a time 
step of 20 s for first data set 
(synthetic dispersion coef-
ficient of 0.750 m2/s, synthetic 
velocity of 0.225 m/s, Peclet 
number = 6.0)
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that gives the best fit considering the whole profile. In these 
cases where the optimised dispersion coefficient is larger 
than the synthetic value, artificial mixing arises from the fit-
ting of the model to the distorted profile and so is related to 
the presence of numerical dispersion rather than numerical 
diffusion. Similarly for BTCS, and allowing for the numeri-
cal diffusion it contains, some additional physical dispersion 
(compared to the lower Pe range) is helpful in damping out 
the oscillations in the higher Pe range leading to a better fit 
to the whole concentration profile. Although the presence 
of numerical dispersion influences the optimised dispersion 
coefficient via model fitting to the distorted profile (simi-
larly to CN and M), in these BTCS cases artificial mixing is 
dominated by the presence of numerical diffusion.

The results from IQ and Q in the higher Pe range display 
smaller oscillations than the other three methods which ena-
bles the optimisation to find better fits to the synthetic profile 
(see Fig. 4), but the dispersion coefficients are too small 
suggesting that additional numerical errors become signifi-
cant in the higher Pe range. Regarding Q, it is interesting 
that the profile in Fig. 7 shows a distortion, yet according to 
Table 1 the method contains no numerical dispersion. Simi-
larly, the optimised dispersion coefficients are very small 
(implying that numerical diffusion is present), in contrast 
to the result in Table 1. It seems very likely, therefore, that 

higher-order truncation error terms than the second and 
third spatial derivatives are playing a significant role. Such 
higher-order terms were not included in the modified equa-
tion analysis because usually the second and third spatial 
derivatives are the dominant terms for numerical diffusion 
and numerical dispersion, respectively. Since even trunca-
tion error terms are associated with numerical diffusion 
(Szymkiewicz 2010), the source of this numerical diffusion 
in Q is likely to be the 4th spatial gradient term. The trend 
of the IQ results in Fig. 5 in the higher Pe range is similar to 
that of Q, reflecting their common basis (quadratic upstream 
interpolation of control volume face concentrations). So it 
seems that higher-order truncation error terms affect the IQ 
results also, but of course in this case numerical errors from 
the second and third spatial derivatives are also present (see 
Tables 1 and 4). However, the latter is much smaller than for 
the other implicit methods (see Table 4), as reflected in the 
modelling errors shown in Fig. 4.

IQ and Q may also be affected by the CN treatment of the 
first computational cell next to the upstream boundary. This 
will introduce a little numerical dispersion, and the effect 
will be greater for the higher Pe case than for the lower Pe 
case because (a) the CN method contains more numerical 
dispersion in the former than in the latter (see Table 4) and 
(b) there is a greater ratio of affected computational cells 

Fig. 7  Simulation results for 
five numerical methods using a 
space step of 40 m and a time 
step of 20 s for first data set 
(synthetic dispersion coefficient 
of 0.750 m2/s, synthetic velocity 
of 0.225 m/s, Peclet num-
ber = 12.0)
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Table 4  Coefficients of 
numerical dispersion evaluated 
using the formulae in Table 1

Δx (m) Advection 
number

Dispersion 
number

Peclet number BTCS CN IQ M Q

5.00 0.900 0.600 1.500 − 0.2 − 1.3 0.5 − 2.6 0
10.00 0.450 0.150 3.000 − 3.0 − 4.2 − 0.27 − 6.8 0
20.00 0.225 0.038 6.000 − 14.5 − 15.7 − 3.0 − 21.1 0
40.00 0.113 0.009 12.000 − 63.8 − 65.0 − 14.8 − 77.6 0
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to unaffected computational cells in the former than in the 
latter (1 to 5 compared to 1 to 11). However, simulations of 
an initial value problem (for which the upstream boundary 
concentration was zero for all time) using Q under similar 
numerical conditions also showed some oscillatory behav-
iour. So the source of the numerical dispersion appears to be 
a truncation error term (probably the 5th spatial gradient).

We have not investigated the cause of the underestimation 
of the dispersion coefficient for Q and IQ in the higher a Pe 
range any further because in practice there is little point in 
using these (or any) methods under conditions when oscil-
lations affect simulations. Better to decrease Pe so that arti-
ficial mixing, stemming from the second, third or higher 
spatial derivatives in the truncation errors is reduced to 
acceptable limits.

Optimised dispersion coefficient and velocity results from 
the second set of synthetic data showed very similar pat-
terns of results to those from the first data set. The degree 
of similarity was investigated by computing the ratio of the 
estimated parameters to the corresponding values used to 
generate the synthetic data. Example results (for 4 Pe values) 
for the dispersion coefficients are shown in Tables 5 and 6 
for the first and second data sets, respectively.

As well as highlighting differences between optimised 
values from the 5 numerical methods, the identical results 
in the two tables highlights the way in which the non-
dimensional numerical properties, rather than the individual 
parameter values, control the behaviour of the numerical 
solutions. As might be expected from the velocity results 
shown earlier, the ratios of optimised to synthetic velocity 
values were much closer to unity than for the dispersion 
coefficients for all the methods over the range of Pe used (for 
both synthetic data sets).

Overall, the dispersion coefficient results cast doubt on 
the reliability of obtaining them by optimising numerical 

models of the AD-Model unless due attention is paid to the 
characteristics of the numerical method and the numerical 
properties under which the models are applied. In particu-
lar, the presence of artificial mixing needs to be taken into 
account. Optimised dispersion coefficients will be underes-
timated in the presence of numerical diffusion (very signifi-
cantly in some cases) and will be overestimated (but not sig-
nificantly) in the presence of numerical dispersion, assuming 
numerical diffusion is absent.

Conclusions

Five different numerical methods were applied to synthetic 
solute concentration data under the same grid resolutions 
and non-dimensional numerical conditions, and optimised 
dispersion coefficients and velocities were obtained. The 
ranges of advection number, dispersion number and Peclet 
number covered were 0.900–0.113, 0.600–0.009 and 
1.5–12.0, respectively. For Pe < 5, using the optimised dis-
persion coefficients and velocities, all the numerical methods 
were able to simulate the synthetic data well (sum of squared 
errors being < 0.01 μg2/l2 and with little visual difference 
between synthetic and simulated concentration profiles), 
but simulations were increasingly inaccurate as Pe increased 
beyond 5. However, optimum model fits to the synthetic data 
were only achieved by adjusting, to greater or lesser extents, 
the velocity and dispersion coefficient to accommodate the 
presence of numerical errors. Differences between the opti-
mised and synthetic velocity values were typically less than 
2% for Pe < 5, but increased to about 8% for Pe = 12. The 
methods yielded a range of optimal values of the dispersion 
coefficient some of which were significantly different to the 
value used to generate the synthetic data. The behaviour 
of the methods was generally consistent with the known 

Table 5  Non-dimensional 
numerical properties and 
ratio of optimised dispersion 
coefficients to synthetic 
dispersion coefficient for the 
first data set

Δx (m) Advection 
number

Dispersion 
number

Peclet number BTCS CN IQ M Q

5.00 0.900 0.600 1.500 0.314 0.999 0.340 0.998 0.995
10.00 0.450 0.150 3.000 0.308 0.994 0.364 0.993 0.998
20.00 0.225 0.038 6.000 0.301 0.985 0.359 1.001 0.939
40.00 0.113 0.009 12.000 0.421 1.103 0.043 1.139 0.443

Table 6  Non-dimensional 
numerical properties and 
ratio of optimised dispersion 
coefficients to synthetic 
dispersion coefficient for the 
second data set

Δx (m) Advection 
number

Dispersion 
number

Peclet number BTCS CN IQ M Q

5.00 0.900 0.600 1.500 0.314 0.999 0.340 0.998 0.995
10.00 0.450 0.150 3.000 0.308 0.994 0.364 0.993 0.998
20.00 0.225 0.038 6.000 0.301 0.985 0.359 1.001 0.939
40.00 0.113 0.009 12.000 0.421 1.103 0.043 1.139 0.443
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presence of artificial mixing, caused by numerical diffusion 
and/or numerical dispersion, in them. In this regard, numeri-
cal diffusion in Backward-Time/Centred-Space and Implicit 
QUICK reduced the optimised dispersion coefficient from 
0.75 m2/s to about 0.25 m2/s for Pe < 5, whilst optimisations 
with Crank–Nicolson, MacCormack and QUICKEST, which 
contain no numerical diffusion, produced reliable optimised 
dispersion coefficients in this Pe range. For Pe > 5 the simula-
tions from all five methods were affected by an oscillatory 
distortion which became more prominent with increasing 
Pe, this being generally consistent with the known presence 
of numerical dispersion in the methods. In this higher Pe 
range optimised dispersion coefficients for Crank–Nicolson, 
MacCormack and Backward-Time/Centred-Space increased 
a little from the values in the lower Pe range due to the fit-
ting of the distorted simulated concentration profile to the 
whole synthetic one, whilst those from Implicit QUICK and 
QUICKEST showed a substantial decrease from the value 
in the lower Pe range due to numerical diffusion. It was sug-
gested that results for these two methods were affected by 
numerical errors from higher-order truncation error terms 
than the second and third spatial derivatives.
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Appendix 1

See Figs. 8 and 9.

Fig. 8  Computational grid 
for a finite difference method: 
information at the nodes is 
used directly to express solute 
concentration derivatives
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Appendix 2

Following Szymkiewicz (2010), the modified equation 
approach aims to write a numerical method in the following 
form:

where φt, represents the first temporal concentration deriva-
tive and φx, φxx and φxxx represent the first, second and third 
spatial concentration derivatives. Dn and En are termed the 
coefficients of numerical diffusion and numerical dispersion, 
respectively. Only advection is considered because it is only 
truncation errors emanating from the first temporal and first 
spatial derivatives that contribute to the second and third 
spatial derivative terms in Eq. (28). By using Taylor series 
expansions to express a nodal concentration in terms of a 
neighbouring nodal concentration that is typically separated 
from it by one space step (Δx) or one time step (Δt), the fol-
lowing expressions can be obtained for the five numerical 
methods used in the paper.

Backward-Time/Centred-Space

Crank–Nicolson

Implicit QUICK

(28)�t + ��x = Dn�xx + En�xxx +⋯

(29)�t −
Δt

2
�tt +

Δt2

6
�ttt + �

(

�x +
Δx2

6
�xxx

)

+⋯ = 0

(30)
�
t
+

Δt

2
�
tt
+

Δt2

6
�
ttt

+ �

(

�
x
+

Δx2

6
�
xxx

+ Δt�
tx
+

Δt2

2
�
ttx

)

+⋯ = 0

(31)�t −
Δt

2
�tt +

Δt2

6
�ttt + �

(

�x +
Δx2

24
�xxx

)

+⋯ = 0

MacCormack

QUICKEST

where c is the advection number, as previously defined 
(Eq. 8). Note that the time-centred methods contain cross-
derivatives (φxt, φttx, φxxt) as a result of the need to express 
everything in terms of a concentration and its derivatives 
at the same node. This involves using Taylor series expan-
sions of concentration derivatives in exactly the same way 
as Taylor series expansions are used to express concentra-
tions. Finally use is made of the following relationships, 
obtained by differentiating the advection equation (Szym-
kiewicz 2010), to replace all temporal derivatives and 
cross-derivatives:

The analysis is completed below for two of the methods.
Implicit QUICK

(32)
�
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+

Δt

2
�
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6
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)

+⋯ = 0

(34)�tt = �2�xx

(35)�ttt = −�3�xxx

(36)�tx = �xt = −��xx

(37)�xxt = −��xxx

(38)�ttx = �xtt = �2�xxx

Fig. 9  Computational grid for a 
finite volume method: advective 
and dispersive solute fluxes 
passing through the control vol-
ume faces are interpolated from 
information at the nodes
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Equation (31) becomes:

Thus:

MacCormack
Equation (32) becomes:

Thus:

Appendix 3

The algorithm for any implicit method involving three 
unknown nodal concentrations surrounding the jth node 
can be written in the following form:

where α, β and γ are constant functions of time step, space 
step, velocity and dispersion coefficient, δj is a spatially var-
ying function of time step, space step, velocity, dispersion 
coefficient and known concentration values (at time level, n) 
and φj−1, φj and φj+1 are unknown concentrations (at time 
level n + 1). Letting j = 2 represent the first internal node and 
recognising that φ1 is known from the upstream boundary 
condition, Eq. (39) can be written as:

where p2, q3 and r2 are functions of α, β, γ, δ2 and φ1. For 
j = 3, Eq. (39) can be written as:
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(39)��j−1 + ��j + ��j+1 = �j

(40)p2�2 + q3�3 = r2

(41)p3�3 + q4�4 = r3

where φ2 has been eliminated using Eq. (40). Repeating this 
process for successively increasing j, we eventually obtain:

where φm is the known concentration at the downstream 
boundary (at time level n + 1) and pm−1, qm and rm−1 are 
given by:

The solution is summarised by the following three 
steps, which are repeated for every time step:

Calculate α, β, γ and, for j = 2 to m − 1, δj: then calculate 
p2 (= β), q3 (= γ) and r2 (= δ2 − αφ1).
Undertake a forward sweep: for j = 4 to m − 1 calculate 
pj−1, qj and rj−1 [using Eqs. (43)–(45)].
Undertake a backward sweep: for j = m − 1 to 2 calcu-
late φj [using Eq. (42)].

It is straightforward to derive a similar solution for an 
implicit method containing a fourth unknown nodal con-
centration (e.g. φj−2 needs to be included in Eq. (39) for 
Implicit QUICK) assuming that both the boundary value 
and the value at the first interior node are known. In this, 
Eqs. (42) and (44) remain the same, but Eqs. (43) and (45) 
are modified.
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