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Abstract
Lake waters are a significant source of drinking water and contribute to the local economy (e.g. enabling irrigation, offering

opportunities for tourism, waterways for transport, and meeting utility water demands); therefore, the ability to accurately

forecast lake water levels is important. However, given the significant lack of research with respect to forecasting water

levels in small lakes (i.e. 0.05 km2\ area\ 10 km2), the present study sought to address this knowledge gap by testing a

pair of hypotheses: (1) it is possible to forecast water levels in small surface lakes using artificial neural networks (ANN),

and (2) better water-level forecasts will be obtained when the wavelet transform (WT) is used as an input data pre-

processing tool. Based on an analysis of a case study in Lake Biskupinskie (1.16 km2) in Poland and based on a range of

model performance statistics (e.g. mean absolute error, root mean square error, mean squared error, coefficient of deter-

mination, mean absolute percentage error), both hypotheses were confirmed for monthly forecasting of lake water levels.

ANNs provided good forecasting results, and WT pre-processing of input data led to even better forecasts. Additionally, it

was found that meteorological variables did not have a significant impact in forecasting water-level fluctuations. In light of

the results and the limited scope of the present study, proposed future research directions and problems to be resolved are

discussed.
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BPNN Back-propagation neural network

CCNN Cascade correlation neural network

CWT Continuous wavelet transform

ESN Echo state network

FA Firefly algorithm

FL-ANN Fuzzy logic coupled to ANN

GEP Gene expression programming

L2 Rð Þ The space of the square integrable real

function defined on the real line R

M1–M8 WT-ANN models 1 through 8

MA Moving average (model)

MAD Mean absolute deviation

MAE Mean absolute error

MASE Mean absolute scaled error

MLP Multilayer perceptron (ANN)

MLR Multiple linear regression (model)

MSE Mean square error

NLP Nonlinear local prediction

NS Nash–Sutcliffe model efficiency coefficient

NWN Neural wavelet network

PSO Particle swarm optimization

RNN Radial neural network

RE Relative error (%)

R2 Coefficient of determination (between

observed and forecasted values)

RMAE Relative mean absolute error

RMSE Root mean square error

RNN Recurrent neural network

SARIMA Seasonal Auto-Regressive Integrated Moving

Average (model)

SI Scatter index

SOS Sum of squares
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SVM Support vector machine (model)

SVR Support vector regression (model)

TDHM Three-dimensional hydrodynamic model

TDM Triple diagram method

WLF Water-level fluctuations

WT Wavelet transform

WT-ANN Wavelet transform coupled to ANN

/ tð Þ Scale of wavelet transform

w tð Þ Details of wavelet transform

Introduction

As an integral part of ecosystems, lakes undergo dynamic

transformations—both qualitative (chemical composition)

and quantitative (water level, resource fluctuations and

changes in lake shape)—over the course of their existence.

The most dynamic among these parameters, water-level

fluctuations (WLFs), affect physical and morphometric

transformations [e.g. sedimentation (Håkanson 1977),

biogeochemical alterations (Furey et al. 2004) and changes

in lacustrine ecosystem dynamics (Coops et al. 2003)],

with attending shifts in flora and fauna. WLF also has

effects on light penetration (Loiselle et al. 2005) and water

temperature (Nowlin et al. 2004). In addition to being

important for water resources management, the ability to

accurately forecast changes in lacustrine water levels also

has economic [e.g. energy generation (Walton 2010),

fisheries (Marshall and Maes 1995), tourism and recreation

(McCarth 2013)], societal [e.g. potable water availability

(NOAA 2016)], and ecological [littoral zone species sur-

vival (Hynes 1961)] implications.

So far, worldwide WLF forecasting research has focused

on large lakes (Table 1), whose navigable surfaces and

water resources are important not only locally but also

globally. However, while small lakes (i.e. 0.05 km2-

\ area\ 10 km2; Silvestri 2010) are of lesser global

significance, they are often very important to local

ecosystems and economies. This constitutes a valid reason

to attempt to forecast WLF in the smaller and far more

numerous small lakes which dominate the landscape of

high-latitude regions where the effects of climate change

are particularly evident (Kundzewicz 2011). Particularly

susceptible to natural or anthropogenic changes, these

smaller lakes constitute an essential element of local

ecosystems and harbour habitats which support numerous

plant and animal species. As a result, these lakes represent

an ideal indicator of the mainly climate-driven changes that

may occur in a given region’s water resources. Based on

the methods of WLF forecasting developed for large lakes,

forecasting applications in this particular study were

developed by means of artificial neural networks (ANNs)

and wavelet transforms (WTs). While the effectiveness of

ANNs has been documented in the literature, data pre-

processing by WT has not attracted much attention in the

field of WLF forecasting. Given the lack of studies that

have explored artificial intelligence and WT methods for

WLF forecasting in small lakes, the present study aimed to

evaluate, for the first time, whether: (1) small lake water

levels could be accurately forecast using ANNs, (2) ANNs

fed with wavelet-transformed data would yield better

results in terms of forecast accuracy, and (3) certain input

data had a greater impact on the accuracy of monthly WLF

forecasting.

Study area

Lake Biskupinskie is located in north-central Poland

(Fig. 1), a young, post-glacial landscape formed over the
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Table 1 Overview of recent literature on forecasting lake levels

References Lake Method Criterion Conclusions

Altunkaynak

et al.

(2003)

Van TDM RE Triple diagram method (TDM) is applicable for all hydrological

variables. Does not require stationarity, linearity or

independence of residues

Altunkaynak

and Sen

(2007)

Van FL, ARMAX MAE A fuzzy logic approach performed better in terms of forecast

accuracy than an Auto-Regressive Moving Average with

eXogenous input (ARMAX) model. This approach can be

applied in the case of missing data

Altunkaynak

(2007)

Van ANN, AR, MA,

ARMAX

MAE, NS Artificial neural networks gave better forecasts than AR, MA

and ARMAX models

Aksoy et al.

(2013)

Van AR, ARMA – Water level was estimated based on a water budget (inflow–

outflow). Models assumed the existence of single or multiple

trends, with the latter performing better

Çimen and

Kisi (2009)

Van SVR, ANN MSE,

MARE,

NS, R2

Support vector regression (SVR) outperformed ANN

Shafaei and

Kisi (2015)

Van ARMA, ANFIS,

SVR

RMSE,

MAE, r

Pre-processing of input data by WT gave better results than

using raw data for the models employed. ARMA model fed

with Haar wavelet decomposed data yielded the best results

Buyukyildiz

et al.

(2014)

Beysehir PSO-ANN,

SVR, MLP,

RNN, ANFIS

RMSE,

MSE,

MAE, R2

Best results were obtained for e-SVR where inflow, rainfall,

evaporation and outflow exogenous variables were applied

Tezel et al.

(2013)

Beysehir AAFNN, MLP MAE,

MSE,

RMSE,

R2

Similar results were obtained for adaptive activation function

(AAF) and multilayer perceptron (MLP); however, the former

were more stable with regard to the calibration process and

number of hidden neurons. Inflow, outflow, rainfall and

evaporation were used as input data

Ondimu and

Murase

(2007)

Naivasha ANN MSE ANN can perform accurate forecasts up to 4 months ahead

based on lagged data from six previous months. Apart from

water level, models were based on rainfall, evaporation, inflow

from Malewa and Gilgil rivers and simple monthly harmonics

Ünes et al.

(2015)

Millers Ferry Dam ANN, AR,

ARMA, MLR

MSE,

MAE

ANN yielded better results than conventional models such as

AR, ARMA and multilinear regression (MLR). However, AR

and ARMA outperformed MLR, despite giving more scattered

results

Sanikhani

et al.

(2015)

Manyas, Tuz ANFIS-GP,

ANFIS-SC,

GEP

RMSE, R2 Forecasts were created for 1, 2 and 3 months ahead. ANFIS-GP

(artificial network fuzzy inference system grid partition)

outperformed ANFIS-SC (selective clustering) and gene

expression programming (GEP) in 1- and 3-month-ahead

forecasts. For 2-month-ahead forecasts, ANFIS-SC performed

better

Kisi et al.

(2012)

Iznik ANFIS, GEP,

ANN, ARMA

RMSE,

R2, SI, d1

GEP outperformed ANFIS and ANN, but all models were still

more accurate than the classical ARMA approach

Güldal and

Tongal

(2010)

Egirdir RNN, ANFIS,

AR, ARMA

RMSE,

RMAE

(%), RE

Radial neural network (RNN) and ANFIS were more accurate

than AR or ARMA. Those models needed relatively long time

series, so stochastic models will perform better in the case of

short time series

Kisi et al.

(2015)

Urmia SVM, GP, ANN RMSE, r,

R2
Forecasts were created for 1 and 7 days ahead. Support vector

machine (SVM) based on firefly algorithm (FA) can be

efficiently used for short-term forecasting. SVM gave similar

results to genetic programming (GP) and ANN

Noury et al.

(2014)

Urmia SVM, NWM RMSEs,

SSE, R2
SVM performed better than ANN (called NWN—neural wavelet

network) fed with wavelet-transformed input data. Best

forecasts were obtained based on rainfall, temperature, inflow

and previous levels

Abrahart

et al.

(2012)

Great Lakes MLR, RNN,

ESN, BNN

RMSE, r Due to periodicity in the data, recursive models performed

better. Methods used: echo state network (ESN), recurrent

neural network (RNN), Bayesian neural network (BNN)
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last glaciation (which ended approximately 12,000 years

ago). Characterized by one of the lowest total annual pre-

cipitation rates in Poland (& 500 mm year-1), in recent

years the region has shown a clear upward tendency in total

annual evaporation, which recently exceeded

800 mm year-1 (Piasecki and Marszelewski 2014). This

rise in evaporation was linked to recent increases in wind

speed, air temperature, and relative sunshine duration,

along with a decrease in humidity. Therefore, climatic

factors have the greatest impact on the regions’ hydrolog-

ical conditions. Data on precipitation, water level, etc.,

were taken from the IMGW PIB (Institute of Meteorology

and Water Management–National Research Institute of

Poland). Meteorological parameters were measured in

Kołuda Wielka (52.73N, 18.14E–80.8MASL), which is

28 km from Biskupinskie Lake. The water level was

measured by means of a staff gauge, which is located at

52.79N, 17.74E, and 78.68MASL. In the case of water-

level measurements, no missing data were observed.

Supplied with water from a small run-off stream

(Gąsawka), Lake Biskupinskie has a surface area of

1.16 km2, a mean depth of 5.5 m, a maximum depth of

13.7 m, an estimated volume of 6.4 9 106 m3, and a per

surface area surface outflow of 9.0–10.8 m3 h-1 km-2

(Markiewicz 2005). The Biskupinskie Lake basin, com-

prising the upper and middle parts of the Gąsawka river

catchment, is characterized by a dense network of water-

courses and drainage ditches. In 2004, monthly monitoring

of the flow values along the entire length of the Gąsawka

River was carried out. The average value of the flow below

Biskupinskie Lake was 0.131 m3 s-1. (Extreme values

were 0.04 and 0.296 m3 s-1; Markiewicz 2005.) In the area

of the Biskupinskie Lake basin, arable land (59%) and

forests (26%) dominate. Natural watercourses, including

the Gąsawka river, were deepened and their beds

straightened in the past. The main melioration works were

carried out in the nineteenth century, and after the Second

World War (in the 1950s and 1970s) the drainage network

was additionally compacted. Based on nineteenth- and

twentieth-century cartographic materials, water levels were

relatively high (79.6 m AMSL) over this period. In the

1930s, the water level dropped significantly and revealed

the remains of a Sorbian defensive settlement (Niewiar-

owski 1995), which were extensively excavated and stud-

ied. Until the early 1990s, Lake Biskupinskie’s water-level

amplitudes often exceeded 1 m, causing significant decay

at the archaeological site, where wooden construction

elements remained well preserved when submerged under

water, but rapidly decayed when exposed to the open air. In

1992, a weir (without spillway structures so the weir does

not control the outflow volume) was constructed to main-

tain a relatively high water level in the lake and to guar-

antee optimal conditions for the preservation of the wooden

structures. This archaeological site is a remnant of an

ancient settlement created in this place most probably in

the winter of 738 BC (Niewiarowski 1995). The archaeo-

logical significance of this place is very large, which is why

Table 1 (continued)

References Lake Method Criterion Conclusions

Coulibaly

(2010)

Great Lakes ESN RMSE, r ESN gives accurate forecasts even 10 months ahead. It may be

used to forecast water levels of other lakes, and its accuracy

can be improved by incorporating meteorological parameters

Altunkaynak

(2014)

Michigan-Huron WT-ANN-FL-

ANN

RMSE,

NS,

MAD,

SS

Created a hybrid forecasting model based on WT-ANN and

fuzzy logic (FL) to predict water level at several lead times.

Hybrid model outperformed single models: WT-ANN, FL-

ANN

Imani et al.

(2014)

Caspian See SVM, GEP,

CCNN

RMSE, R2 Cascade correlation neural network (CCNN) was used as a

benchmark for other models. Both SVM and GEP performed

better than the benchmark, although SVM was superior to GEP

Young et al.

(2015)

Yuan-Yang TDHM, BPNN,

ARMAX

MAE,

RMSE,

r, SS

Three-dimensional hydrodynamic model (TDHM) accurately

predicted water level during calibration stage, but not during

validation. Back-propagation neural network (BPNN)

performed better than ARMAX, but a conjunction of BPNN

and TDHM was the best model

Lan (2014) Poyang SVM RMSE,

MAPE,

R2

SVM was superior to the polynomial and RBF.

Khatibi et al.

(2014)

Trafford, Istokpoga,

Cypress, Winnipesaukee,

Salt Lake, Van

SARIMA, ANN,

GEP, MLR,

NLP

R2,

MAPE,

RMSE

None of the methods outperformed one another in terms of all

selected criteria
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it is protected by ensuring an adequate level of water in the

lake (Fig. 2).

Methods

Related work

The main factors influencing WLF include climatic con-

ditions, lake size and morphometric parameters, catchment

size, water supply (e.g. groundwater, precipitation, inflow

from rivers and other surface water flows), and human

activities. While a large number of studies have tackled the

problem of WLF forecasting (Table 1), the multiplicity of

factors influencing WLF makes it extremely difficult to

create a universal forecasting method capable of perform-

ing effectively in all cases (Khatibi et al. 2014). Using a

number of similar but non-identical forecasting methods

and addressing an individual or small number of lakes, the

WLF forecasting applications developed in these studies

employed particular sets of presumably relevant input

variables without, however, providing any justification for

the particular selection. With the myriad of forecasting

methods employed, their application to widely differing

Fig. 1 Study location
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lakes, the differing nature of the historical time series

drawn upon, and the use of different performance indices,

studies are almost impossible to compare. Even when the

selected criteria enable direct comparison, local conditions

may significantly influence model performance, making it

perfect for one area but useless in another (Khatibi et al.

2014). In light of the above, and also in an attempt to

improve upon traditional artificial intelligence forecasting

approaches, a new development in the field of forecasting

model development is the creation of hybrid models, most

often consisting of one or more artificial intelligence

methods with some form of pre-processing approach (e.g.

wavelet transforms).

Based on Table 1, Lake Van in Turkey and the Great

Lakes in North America have drawn the most attention.

Some papers focused on comparing artificial intelligence

methods with conventional time-series analysis approaches

such as AR or MLR. Others strove to develop novel

methods such as ANFIS-GP or methods of adjusting/cali-

brating models by means of firefly algorithms (FA) or

genetic programming (GP). Older methods such as ARMA,

MLR, or SARIMA were used as a benchmark to compare

with modern approaches which currently consist mainly of

various new artificial intelligence methods. Because there

is no universal method capable of taking into consideration

and detecting all factors influencing time-series variability,

some authors combined various approaches creating so-

called hybrid models. This research follows this trend by

applying WT as a data pre-processing tool and then uses

artificial neural networks for forecasting. Results obtained

from this hybrid approach were then compared to those of

an ANN model which, according to the literature, is

superior to most traditional approaches (e.g. ARIMA).

So far only Altunkaynak (2014) has forecasted lake

water-level fluctuations by means of WT-ANN. His pro-

posed model for two large lakes (Lakes Michigan and

Huron) outperformed traditional approaches based on sin-

gle multilayer perceptron and fuzzy logic. However,

Altunkaynak (2014) did not consider the impact of

meteorological parameters on water levels, but rather only

used preceding water levels as exogenous variables. In

contrast, in the present study water levels were forecast for

a small lake, while taking into account the impact of

meteorological parameters.

ANN: artificial neural network

Artificial neural network is a general term for mathematical

structures which carry out given calculations or signal

processing tasks through an array of individual artificial

neurons (a.k.a. processing elements) inspired by neurons in

the human brain (Fig. 3). ANNs are well suited to complex,

nonlinear problems, where interdependence between

exogenous and endogenous variables is often hidden and

hardly distinguishable. Besides the examples of ANN

application in limnology mentioned in the introduction,

ANNs are extensively used in fields such as geophysics

(Wiszniowski et al. 2014; Samui and Kim 2014); clima-

tology (Chattopadhyay 2007); medicine (Baxt 1995;

Smyczyńska et al. 2015); resource or energy demand

(Khwaja et al. 2015; Szoplik 2015; Piasecki et al. 2016);

renewable-resource availability forecasting (Cadenas and

Rivera 2009; Mellit and Pavan 2010); and drought fore-

casting (Adamowski and Chan 2011).

One of the most popular types of feed-forward net-

works, the multilayer perceptron (MLP), consists of a

single input layer, a variable number of hidden layers, and

a single output layer. The number of neurons in an output

layer is equal to the number of dependent variables (in this

case, one—water level), while in the input layer the num-

ber is equal to the number of exogenous variables, both

quantitative and qualitative.

In this study, linear, logistic, hyperbolic tangent, expo-

nential, and sigmoid functions were tested as the activation

function in the hidden and output layers. The number of

hidden neurons in the hidden layer ranged from 1 to 25.

During the learning process, the sum of squares (SOS)

served to assess model performance. The networks were
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taught by means of different variants of the Broyden–

Fletcher–Goldfarb–Shanno (BGFS; Shanno 1985) algo-

rithms. The initial set of input data was divided into cali-

bration (70%), validation (15%), and testing (15%) subsets

by means of a random sampling method and remained

constant over the whole study and across all models tested.

(One hundred calibration cycles were used for the ANNs.)

WT: wavelet transform

From a historical point of view, wavelets are new as a

mathematical tool, but have their mathematical roots in the

works of Joseph Fourier (1768–1830). Recently, studies

incorporating wavelets have been conducted in the areas of

hydrology (Lafrenière and Sharp 2003; Rajwa-Kuligiewicz

et al. 2016); manufacturing processes/fault detection

(Kasashima et al. 1995; Jin and Shi 2001); signal pro-

cessing (Sundararajan 2015); medicine (Faust et al. 2015);

forecasting (Chaturvedi et al. 2015); and power loads

(Jurasz and Mikulik 2016); among others. Multiresolution

analysis techniques, such as the wavelet transform (WT),

which are widely employed in science and engineering,

have received very little attention in water-level forecast-

ing. An approximation technique based on low-pass filters,

WT seeks to capture the coarse signal approximation, and

high-pass filters, which are designed to provide more

accurate approximations when applied to a non-stationary

time series.

Wavelet is a mathematical function characterized by a

null mean value and finite signal power, which also takes

zero values beyond certain finite intervals. These features

make it stable in both time and frequency domains, such

that both time and frequency localizations can be delivered

simultaneously (Mallat 1989). The WT is very similar to

the Fourier transform, but the main difference is that the

latter decomposes the signal into sines and cosines which

are functions localized in Fourier space, whereas wavelet

transform applies functions which exist in both real and

Fourier space.

There are two different versions of WT: continuous and

discrete. The first is very similar to the short-time Fourier

transform, where the signal is divided into segments by

means of a movable time window. In the case of contin-

uous wavelet transform (CWT), the scanning window is in

the form of a wavelet function. Comparatively, the discrete

WT is not only a digital version of CWT, but decomposes

the signal into approximations/scale (the coarse part) and

details (the accurate part).

From a mathematical point of view, WTs are constituted

of two parts (Joo and Kim 2015): scale / tð Þ and details

w tð Þ, given as:

/j;k tð Þ ¼ 2
j
2/ 2 jt � k
� �

ð1Þ

wj;k tð Þ ¼ 2
j
2/ 2 jt � k
� �

ð2Þ

where j denotes the scaling parameter and k denotes the

translation index. These functions are subject to the fol-

lowing constraints (Joo and Kim 2015):
Z

/ðtÞdx ¼ 1

Z
wðtÞdx ¼ 0

/ðtÞ;wðtÞ 2 L2R

ð3Þ

According to Joo and Kim (2015), L2 Rð Þ is a space of

square integrable real function defined on the real line R:

Based on these equations, the signal can be then decom-

posed into a set of approximations and details. The

reconstruction of the signal has been described in the work

of Burt and Adelson (1983).

In the present study, WT was used to decompose the

time series of water levels into various components, after

which approximations at five levels of decomposition were

used as input to WT-ANN models. The meteorological

parameters of evaporation and precipitation were not sub-

jected to WT. The spectral bands of WT can be selected

based on the power distribution (Altunkaynak 2014), where

bands which have several peaks are selected for further

study. Altunkaynak (2014) states that so far no universal

method/rule has been developed to divide time series into

different decomposition levels. In this study, the approach

hinged on the criterion of the mean relative error between

the approximation and the original time series (Nalley et al.

2013). This analysis pointed to the use of five levels of

decomposition.

The effect on forecasting model accuracy according to

the wavelet applied—Daubechies (db2, db3, db4, db5);

Coiflet (coif1, coif 2, coif 3, coif4, coif5); Symlet (sym2,

sym3, sym4, sym5); Discrete Meyer; Haar; Biorthogonal

(bior1.1, bior1.3, bior1.5, bior 2.2, bior2.4); and Rev-

erseBior (rbio1.1, rbio1.3, rbio1.5, rbio2.2, rbio2.4)—was

also assessed.

Fig. 3 Neuron model which may be located in the hidden and output

layers
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The ANN models were run in the Statistica software

package (StatSoft, Tulsa, OK), while WT was performed

using MATLAB 2015a.

Input selection

Previous studies imply that the most commonly used lake-

level forecast input variables are: evaporation, precipita-

tion, and previous monthly mean lake water levels (Abra-

hart et al. 2012). In this study, eight models differing in

input variable sets were investigated (Table 2); however,

various other combinations of inputs were formerly con-

sidered. The basic statistical parameters of the subsets

considered are given in Table 3. Table 3 briefly summa-

rizes the performance of all investigated models by means

of the RMSE criterion; additionally, the values for cali-

bration and validation phases are given.

Prior to building the variables of these eight models

(M1–M8), a preliminary analysis was conducted on models

fed only with a variety of wavelets from the two previous

months’ water levels. This analysis (Fig. 4) sought to sin-

gle out those mother wavelets which enabled simple

models to perform best. Analysis based on forecasting

models which used only wavelet-derived input data

revealed better results from the perspective of the RMSE

value for BIOR2.4 and DB2, whereas COIF2 and BIOR2.2

performed worse. Their RMSE values for the testing subset

were: 1.872, 1.968, 2.132, and 2.154, respectively. An

example of a five-level decomposition using db2 wavelets

is presented in Fig. 5. In the models developed, no weather

factors which might have an impact on water level, other

than evaporation and precipitation, were taken into

account; irradiation, relative humidity, and temperature, for

example, were disregarded. The reason for not taking into

account weather variables in this study was because the

available time series had many missing values—in some

cases over 20%. When the missing values were replaced

with the means usually observed over the given time of the

year, the correlation coefficient between those time series

and the water level was significantly lower than in the case

of evaporation and precipitation. Therefore, only those two

parameters were considered.

Figure 6 presents a general schematic of model devel-

opment. Prior to model creation, input data sets underwent

a normalization procedure (Eq. 4); once forecasts were

obtained, these were then converted back to their previous

range (Eq. 5). This allowed an unbiased assessment of

model performance, compared to expert judgment which

may be skewed when values range from - 1 to 1.

xnorm ¼ xi � xmin

xmax � xmin

ð4Þ

xi ¼ xn xmax � xminð Þ þ xmin: ð5Þ

Performance indices

The forecasting accuracy (lead time 1 month) of the pre-

sented models was evaluated for the testing data sets using

(103-element testing set) the statistic parameters of MAE,

RMSE, MSE, R2 and MAPE:

MAE ¼ 1

n

Xn

i¼1

Li � L�i
�� �� ð4Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

Li � L�ið Þ2

s

ð5Þ

MSE ¼ 1

n

Xn

i¼1

Li � L�i
� �2 ð6Þ

Table 2 Model input variable sets and wavelets used, subscripts t–x represent mean monthly variable values from x months prior to the present

Model ANN architecture Wavelet transform for water level Input variables

Layer Water level (m) Binary variables Evaporation (mm) Precipitation (mm)

I H O WTt-1 WTt-2 Lt-1 Lt-2 B0,1 B1–12 Et-1 Et-2 Pt-1 Pt-2

M1 40 11 1 db2 bior2.4 db2 bior2.4 X X X X X X X X

M2 36 8 1 db2 bior2.4 db2 bior2.4 X X X X – – – –

M3 26 5 1 db2 db2 X X X X – – – –

M4 26 5 1 bior2.4 bior2.4 X X X X X X X X

M5 30 5 1 bior2.4 bior2.4 X X X X – – – –

M6 28 7 1 bior2.4 bior2.4 X X X X X – X –

M7 20 4 1 No WT No WT X X X X X X X X

M8 16 8 1 No WT No WT X X X X – – – –

X = parameter considered. B0,1, B1–12 are binary variables related to backlogging (0, 1) and months (1–12). ANN architecture: I = input,

H = hidden, O = output
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R2 ¼
Pn

i¼1 Li � Li
� �

L�i � Li
� �� �2

Pn
i¼1 Li � Li

� �2Pn
i¼1 L�i � Li

� �2
ð7Þ

MAPE ¼ 1

n

Xn

i¼1

Li � L�i
Li

����

���� ð8Þ

where Li, L
�
i and Li are the observed, predicted and mean

observed values of water level, and n is the total number of

observations. There exists some controversy over these

criteria, regarding the comparison of models applied to

different data sets (Armstrong and Fildes 1995). This can

be resolved by means of the MASE (mean absolute scaled

error) introduced by Hyndman and Koehler (2006). How-

ever, this issue falls beyond the scope of this paper. In

general, the smaller the value of the error measure, the

better the performance of the forecasting model.

Table 3 Univariate statistics of input variables

Subset Variable (monthly) Maximum value Minimum value Mean Median STD Variance

Calibration Water level (cm) 108.66 32.53 71.05 74.77 19.30 372.49

Evaporation (mm) 130.20 3.00 49.69 47.68 36.50 1332.25

Precipitation (mm) 4.88 0.19 1.49 1.18 1.06 1.13

Testing Water level (cm) 140.00 19.37 71.13 75.45 19.55 382.20

Evaporation (mm) 164.30 3.00 47.87 47.68 36.46 1329.44

Precipitation (mm) 7.38 0.03 1.39 1.17 1.02 1.04

Validation Water level (cm) 121.00 18.40 71.75 75.19 19.40 376.36

Evaporation (mm) 151.90 3.00 51.05 47.68 36.30 1317.69

Precipitation (mm) 8.93 0.02 1.43 1.15 1.04 1.08

Fig. 4 Examples of wavelets

used in the most efficient

models. From right to left: top

row: Daubechies db2 and

Coiflets coif2; bottom row:

Biorthogonal bior2.2 and

bior2.4
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Results

The performance of all eight models (Table 2) was eval-

uated. The R2 between observed and 1-month-in-advance

forecast lake water levels (Fig. 7), and the accuracy

statistics of MAPE, RMSE, MAE and MSE (Fig. 8) served

to determine which model most accurately forecast lake

water levels. On this basis, the best-performing model was

M1, which had input variables of: (1) water level from two

previous periods (Lt-1 and Lt-2) decomposed by WT using

db2 and bior 2.4 mother wavelets; (2) non-decomposed

meteorological variables of precipitation and evaporation,

from two previous periods (Pt-1 Pt-2 Et-1 Et-2, respec-

tively); and (3) binary variables relating to months (1–12)

and backlogging (0–1).

Comparatively, M2, which differed from M1 in not

employing meteorological variables, performed better in

terms of the MAPE and MAE criteria (Fig. 8). However, in
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this case it was impossible to unequivocally state whether

meteorological variables had a significant impact on model

performance. The present study was limited in the fact that

WT was not applied to meteorological variables, a decision

which was based on the rapidly growing number of pos-

sible input set combinations given the multitude of possible

wavelets and decomposition levels which could be applied

to them. Similarly, Altunkaynak (2014) used non-WT-de-

composed meteorological variables in the forecasting of

lake water levels.

Models M4, M5 and M6 were based on the same wavelet

bior 2.4, but only M4 and M6 used meteorological vari-

ables. Of these two, the input variables used in M6 were

taken from only 1 month back, rather than two in the case

of M4. Models M4–M6 showed similar R2 criteria (all[
0.9887; Fig. 7). However, the remaining performance

measures unambiguously indicate the superior performance

of the M4 model (Fig. 8).

In the case of the M7 and M8 models, where wavelet

transformation was not applied to the prior water-level

data, the accuracy was poorer than that of their equivalent

WT-transformed counterparts, M1 and M2 (Figs. 7, 8).

Model M7 performed slightly better than model M8 (which

did not have meteorological variables), but the values of

the MAPE, RMSE, MAE and MSE criteria were still on

average 30 times greater than for the M1 model (see

Fig. 8). The performance was mainly poor with regard to

the MSE criterion, which accentuates gross errors. Com-

parison between the performance of M1–M6 WT models

and non-WT M7 and M8 models clearly demonstrates the

superiority of ANN models employing WT pre-processed

input variables.

Fig. 6 Flowchart for model creation
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Fig. 7 Scatter plots of M1–M8 models in the testing period
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Discussion

As shown by the results, it is possible to effectively predict

water levels using ANN and WT in small post-glacial

lakes. As already mentioned at the outset, up until now

knowledge about predicting the water level of lakes has

focused on areas of large surface area and volume. This

study focused on a different case—a small lake; it was thus

possible to compare the obtained results with previous

studies on larger lakes. It was particularly interesting to

examine the meaning of individual variables in the context

of the accuracy of the WLF forecast. Small lakes are much

faster and more responsive to changing volume and vertical

exchange than large lakes. The present analysis did not

unequivocally indicate the importance of meteorological

variables in WLF forecasting; however, it should be noted

that in the present study mean or cumulative monthly

values of individual variables were used. Consequently, a

situation might have arisen in which intense precipitation

occurred toward the end of the month, leading to an

increased water level in the following month, which then

stabilized due to outflow. Another important issue is the
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delay in water supply from the catchment; a relatively low

terrain gradient leads to minimal surface water supply.

These factors directly affect the relationship between

meteorological parameters and water level. These conclu-

sions, however, cannot be generalized to all lakes with

similar morphometry, because the decisive factor here is

the character of the catchment. The size of the basin, its

shape (longitudinal, circular), the type of land cover, land

morphology (including land denivelation) and the density

of the watercourse and channel networks determine the

surface supply of lakes. In the present case, the afore-

mentioned factors resulted in the low significance of

meteorological variables in WLF forecasting. In creating a

1-month-ahead WLF forecast (as in this study), the most

important input variable is water levels from previous

periods. Water levels are the principal variable determining

the forecast’s accuracy; the remaining variables only

slightly modify the forecasted value. This conclusion is in

accordance with most of the studies on WLF forecasting in

lakes. In the large lake studies mentioned earlier (Table 1),

the multitude of forecasting performance measures render

it almost impossible, as noted by Armstrong and Fildes

(1995), to compare two models created for different time

series. In this study, WLF forecasting via ANNs based on

data transformed with wavelets was determined to be more

effective than using raw data in ANNs. This confirms the

conclusions presented by Noury et al. (2014).

Knowledge about WLF may be used in the construc-

tion of small hydropower plants, which are a source of

renewable energy. In Poland, the construction of small

hydropower plants has been a very popular topic for over

a dozen years. Knowledge about WLF in lakes is also

useful for sustainable water resources management, as

well as in fisheries, agriculture, industry, tourism and

recreation. The activities of these components of the

economy are often based on lake water resources. Their

excessive exploitation, which is often associated with a

lack of knowledge regarding water levels in lakes, may

lead to irreversible changes and degradation of aquatic

ecosystems. This study points to an additional practical

aspect of WLF forecasting of lakes—the protection of

archaeological sites associated with aquatic environments.

As mentioned earlier, submerged archaeological sites

often require maintaining an appropriate level of water in

the lake, ensuring the permanent preservation of the

submerged artefacts.

The research described in this paper focused on fore-

casting WLF in a single lake, which was an approach used

by most of the studies that have explored the same topic.

The focus on one lake ensures the possibility of detailed

tracking of any conditions that may affect the WLF fore-

casting process. However, the possibility of extrapolating

the obtained methods and results to other lakes is limited.

One question is whether it is possible to create one uni-

versal model that allows for forecasting the water level in

different lakes (including in terms of morphometry,

catchment size, hydrological type, and climatic condi-

tions)? Because there is such a wide variety of local con-

ditions that determine WLF in lakes, this task is difficult or

even impossible. One solution would be to focus on lakes

that are homogeneous in some respects (e.g. size, supply or

climate).

Conclusions

Research conducted on small surface area lakes is not

common; however, numerous arguments presented in this

paper make it clear that there is a pressing need to inves-

tigate the characteristics of these small water ecosystems,

particularly with regard to water-level fluctuations and

changes in water resources. Small post-glacial lakes are not

a frequent object of scientific analysis due to their rela-

tively small significance in terms of global transformations

of the natural environment. However, their role in the local

water ecosystem is very large. As a result, they are a useful

study site to monitor climate fluctuations on a smaller scale

(catchment areas, physical geographic regions). The main

goal of this paper was to explore whether it is possible to

accurately forecast water levels in relatively small lakes. In

the case of this study, this was achieved by means of a

hybrid WT-ANN model. Wavelet transform pre-processing

of input data led to better forecasts. The contribution of this

study lies in the confirmation of the two hypothesis of the

study, namely that: (1) it is possible to accurately forecast

water levels of relatively small lakes, and (2) the applica-

tion of different wavelets to the artificial intelligence

method of ANNs yields better predictions than simple

ANNs.

There are several interesting directions for future

research, including: (1) a detailed analysis of the optimal

level of wavelet decomposition and selection of wavelet

input sets (approximations and details); (2) the application

of WT not only to water-level data, but also to meteoro-

logical parameters; (3) WLF forecasting in a relatively

homogenous group of lakes; and (4) WLF forecasting

without taking into account the water-level variable from

the previous period.
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Toruń, pp 215–235

Noury M, Sedghi H, Babazedeh H, Fahmi H (2014) Urmia lake water

level fluctuation hydro informatics modeling using support

vector machine and conjunction of wavelet and neural network.

Water Resour 41(3):261–269. https://doi.org/10.1134/

S0097807814030129

Nowlin WH, Davies JM, Nordin RN, Mazumder A (2004) Effects of

water level fluctuation and short-term climate variation on

thermal and stratification regimes of a British Columbia

Reservoir and Lake. Lake Reserv Manag 20:91–109. https://

doi.org/10.1080/07438140409354354

Ondimu S, Murase H (2007) Reservoir level forecasting using neural

networks: lake Naivasha. Biosyst Eng 96(1):135–138. https://

doi.org/10.1016/j.biosystemseng.2006.09.003

Piasecki A, Marszelewski W (2014) Dynamics and consequences of

water levels fluctuations of selected lakes in the catchment of the

Ostrowo-Gopło Channel. Limnol Rev 14(4):187–194. https://

doi.org/10.1515/limre-2015-0009

Piasecki A, Jurasz J, Marszelewski W (2016) Application of

multilayer perceptron artificial neural networks to mid-term

water consumption forecasting—a case study. Ochr Środowiska
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