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[Abstract] Copper is an essential trace element, and plays a vital role in numerous physiological 
processes within the human body. During normal metabolism, the human body maintains copper 
homeostasis. Copper deficiency or excess can adversely affect cellular function. Therefore, copper 
homeostasis is stringently regulated. Recent studies suggest that copper can trigger a specific form 
of cell death, namely, cuproptosis, which is triggered by excessive levels of intracellular copper. 
Cuproptosis induces the aggregation of mitochondrial lipoylated proteins, and the loss of iron-sulfur 
cluster proteins. In neurodegenerative diseases, the pathogenesis and progression of neurological 
disorders are linked to copper homeostasis. This review summarizes the advances in copper 
homeostasis and cuproptosis in the nervous system and neurodegenerative diseases. This offers 
research perspectives that provide new insights into the targeted treatment of neurodegenerative 
diseases based on cuproptosis.
Key words: cuproptosis; copper metabolism; copper homeostasis; neurodegeneration; neuro-
degenerative disease

Copper was first detected in animal tissues more 
than 100 years ago[1]. Copper participates in significant 
physiological processes, such as energy metabolism, 
mitochondrial respiration, enzyme synthesis, and 
oxidative stress[2]. Copper serves as a safeguard for 
human health. Typically, the body only absorbs a 
minute amount of copper to maintain a stable and 
appropriate level within cells. The disruption of 
copper homeostasis can elevate copper levels, which 
in turn, leads to copper toxicity and cell death, while 
copper deficiency can lead to diseases[3]. Thus, both 
systemic and cellular copper metabolism are tightly 
regulated. Abnormalities in copper homeostasis can be 

caused by genetic mutations, cellular senescence, or 
environmental factors, leading to cancer, inflammation, 
and neurodegenerative diseases[4].

Cell death is an essential process in organism 
development[5–8]. The different forms of cell death 
can be classified into regulatory and non-regulatory 
types[9–13], such as apoptosis, necroptosis, and 
ferroptosis. Apoptosis is a classical cell death that 
results in the removal of injured cells to maintain normal 
physiological activities. Apoptotic cells can form 
apoptosis bodies, which are subsequently phagocytosed 
by macrophages[14]. Necroptosis is also regulated, 
but it is distinct from apoptosis, which contributes 
to defending against viral and bacterial infections, 
multiorgan inflammations, and so on[15]. Ferroptosis is 
an iron-dependent and non-apoptotic cell death that is 
caused by redox imbalance. Ferroptosis mainly occurs 
through transporter-dependent and enzyme-regulated 
pathways[16]. Cuproptosis is a recently discovered 
phenomenon caused by the excess of copper ions. It 
occurs predominantly within the mitochondria, where 
copper binds to lipoylated proteins of the tricarboxylic 
acid (TCA) cycle, leading to protein aggregation, loss 
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of iron-sulfur cluster proteins, proteotoxic stress, and 
ultimately, cell death[17]. The discovery of cuproptosis 
has provided new opportunities for the investigation of 
systemic illnesses and injuries.

The physiological state and function of neurons 
are regulated by copper[4]. An imbalance in copper 
homeostasis can lead to neuronal damage, or even 
degenerative lesions[18]. In addition, astrocytes and 
microglia are crucial for the regulation of copper 
homeostasis within the brain[19]. Various therapeutic 
approaches have been utilized to treat conditions 
associated to disrupted copper homeostasis in the 
brain, including major neurodegenerative disorders[20]. 
Cuproptosis contributes to our understanding of 
disease development, and the management of 
neurodegenerative diseases. The present study 
provides an overview of the functions and mechanisms 
of copper and cuproptosis in the nervous system. In 
addition, the potential for future research and therapy 
based on copper homeostasis and cuproptosis in the 
nervous system and neurodegenerative disorders was 
discussed.

1 SYSTEMIC AND CELLULAR COPPER 
METABOLISM IN THE HUMAN BODY

1.1 Systemic Copper Metabolism in the Human 
Body

Copper is a crucial component of at least 20 
enzymes distributed in various vital tissues[21]. In 1928, 
Hart reported that anemia in rats can only be resolved via 
supplementation with copper combined with iron[22]. In 
the normal human body, 50%–70% of copper is located 
in the muscle and bone, 20% of copper is located in the 
liver, and the remaining 5%–10% of copper is located 
in the blood[23]. Copper is mainly absorbed in the 
small intestines, and is mediated by copper transporter 
protein 1 (CTR1, also known as SLC31A1)[24]. Copper 
is converted from Cu2+ to Cu+ by metal reductases, 
such as duodenal cytochrome b and six-transmembrane 
epithelial antigen of the prostate for absorption[25]. By 
studying patients with Wilson disease characterized by 
copper-overload ATP7B deficiency, researchers have 
discovered that the decrease in transcriptional activity 
and expression of CTR1 may represent an adaptive 
cellular regulation mechanism in response to copper 
disruption. This mechanism prevents excessive copper 
from entering the small intestinal cells[26]. Divalent 
metal transporter 1 (DMT1) also transports divalent 
copper ions[27]. Copper is transported through the 
basolateral membrane of small intestinal epithelial cells 
via the ATP7A protein, and subsequently into the portal 
circulation, where this ultimately reaches the liver[28]. 
ATP7A is predominantly found in the basolateral 
membrane. It plays a crucial role in Menkes disease, 
which is characterized by copper deficiency resulting 

from genetic abnormalities in ATP7A. Defective 
copper transportation in small intestinal epithelial cells 
results in abnormal copper metabolism[29]. 

Regardless of the level of copper in the body, a 
number of regulatory mechanisms are activated to 
maintain normal copper metabolism. Transcription 
factor specificity protein 1 (Sp1) may regulate copper 
metabolism. Sp1 binds to GC boxes located at the 
CTR1 promoter, and its levels are regulated by high 
and low levels of copper. Elevated copper levels inhibit 
the binding of Sp1 to the CTR1 and Sp1 promoters[30].
Metal-binding transcription factor (MTF1) is 
correlated to the regulation of copper homeostasis. 
Excess copper leads to the transcriptional activation 
of metallothionein and the nuclear expression of 
MTF1, resulting in enhanced metallothionein levels. 
Conversely, when copper is deficient, MTF1 promotes 
CTR1B transcription and expression, resulting in 
increased copper uptake, and the maintenance of 
copper homeostasis[31]. Copper ions do not freely 
circulate in the bloodstream. Instead, approximately 
85%–95% of copper ions bind to ceruloplasmin to 
form complexes, which cannot be exchanged. Copper 
ion exchange occurs when these complexes reach 
the organs and tissues, such as the heart, liver, brain, 
kidneys, intestines, lungs, and spleen[32, 33] (fig. 1).

The liver is the primary organ in the body for 
copper storage. The complex and highly organized 
regulation of copper metabolism occurs within 
hepatocytes[34, 35]. Copper is secreted in an ATP7B-
dependent manner for vesicular excretion, or bound 
to ceruloplasmin for release into the circulation, in 
order to reach other organs and tissues. In the liver, the 
primary pathway for eliminating endogenous copper is 
mediated via the secretion of vesicles produced by the 
Golgi apparatus, which transport copper for export to 
the bile via ATP7B, followed by excretion in feces[36]. 
Neurons release copper at the synapse for encapsulation 
in vesicles. Synaptic vesicles contain high levels of 
copper. Following cellular depolarization, copper is 
released into the synaptic gap to modulate various 
membrane receptor functions[37].
1.2 Cellular Copper Metabolism in the Human Body

Hepatocytes transfer copper into cells via CTR1[38]. 
Intracellular copper transportation to primary targets 
is effectively regulated by copper chaperone proteins 
within the cytoplasm (fig. 2).
1.2.1 Chelation             Glutathione binds copper 
for detoxification. This scavenges free radicals, and 
binds to heavy metal ions, such as mercury, cadmium, 
and arsenic, for excretion[39]. Copper is chelated by 
metallothionein1/2, which binds copper ions via 
cysteine residues in a pH-dependent manner[40].
1.2.2 COX17                    Copper chaperone COX17 binds 
copper ions in the space between the mitochondrial 
membranes. Copper is crucial for the synthesis of 
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mitochondrial proteins, including cytochrome c 
oxidase (COX). COX comprises of 11 protein subunits, 
and requires 18 proteins for accurate assembly[41]. The 
catalytic center of COX comprises of COX1/2/3, 
which is encoded by mitochondrial DNA, and includes 
3 copper ions. Two copper ions are situated in the 
CuA center, and one copper ion is located in the CuB 
center[42]. When COX17 binds copper, this transports 
the 2 copper ions to cytochrome c oxidase assembly 
protein 2 (SCO2). Then, SCO2 delivers the copper 
ions to SCO1 in the SCO2-SCO1-COX2 complex. 
Finally, the copper ions are transported to the CuA 
site at the catalytic COX2 center, in order to complete 
the subunit assembly. This process requires COA6[43]. 
COX17 links an additional copper ion to COX11, and 
this copper ion is transferred to the CuB site situated 
in the catalytic center of COX1, thereby concluding 
the COX1 assembly[44]. In addition, COX incorporates 
a heme group during metallization, followed by the 
integration of the remaining subunits, finalizing the 
COX assembly during oxidative phosphorylation[45]. 
Mitochondria generates and transfers a redox signal 
to regulate the transport of copper. Mutations in SCO1 

and SCO2 may impact the integrity of this signaling 
pathway[46]. SCO1 deficiency induces the rapid 
degradation of CTR1, indicating the functional link 
between SCO1 and CTR1[47].
1.2.3 Copper Chaperone of Superoxide Dismutase 
(CCS)                   Copper binds to CCS, and delivers 
copper to SOD1. This promotes the catabolism 
of reactive oxygen species (ROS), reduces ROS 
accumulation, and protects cells from free radical 
damage. The deficiency of SOD1 would increase 
oxidative stress[48]. The expression of CCS is regulated 
by the negative feedback from copper. An increase in 
intracellular copper content would result in elevated 
CCS degradation[49]. Recent studies have suggested 
that copper can directly reach SOD1 from CTR1 via 
copper chaperones by forming the CTR1-CCS-SOD1 
complex[50].
1.2.4 Antioxidant Protein 1 (ATOX1)/ATP7A/B    
ATOX1 binds copper, in order to deliver copper 
to ATP7B on the trans-Golgi network (ATP7A in 
other cells). This promotes the synthesis of copper 
proenzymes, including lysine oxidase, tyrosinase, 
and ceruloplasmin[51]. ATOX1 is a copper-dependent 
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Fig. 1 The pathway of systemic copper (Cu) metabolism and key copper-containing enzymes in different organs
Cu is absorbed through the small intestinal epithelium, and transported into the portal circulation to reach the liver. Then, it is 
distributed to various organs and tissues in the body, including the brain, heart, kidneys, bone, muscle, and blood. Several of the 
listed Cu-containing enzymes are essential to the functions of different organs.
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transcriptional regulator that contributes to cell 
multiplication. Mice that lack the ATOX1 gene may 
encounter perinatal mortality as a result of abnormal 
copper homeostasis[52]. Intracellular ATP7A/B can 
regulate copper levels, and participate in copper 
transport between the cell membrane and various 
intracellular compartments in an ATP-dependent 
manner. ATOX1 interacts with the amino terminus 
of ATP7A/B to regulate its activity during copper 
transport by modulating the rate of ATP hydrolysis. 

In addition, the protein dynamically adjusts copper 
homeostasis, depending on the level of intracellular 
copper, with ATP7A re-localizing to the plasma 
membrane or ATP7B re-localizing to the vesicles, in 
order to facilitate the export of excess copper[34].

Copper binds to ATOX1 or other unidentified 
chaperone proteins to enter the nucleus for the 
regulation of several signal transduction pathways[53]. 
ATOX1 interacts with cysteine-rich protein 2 
(CRIP2), and transfers copper to CRIP2, inducing 
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Fig. 2 The summary of the mechanism for regulating copper homeostasis in hepatocytes
Extracellular Cu2+ is reduced to Cu+ by the reductase (duodenal cytochrome b and six-transmembrane epithelial antigen of 
the prostate). Cu+ is transported into the cell via CTR1, and delivered to different copper chaperones to perform different 
functions. For example, CCS delivers Cu+ to SOD1, ATOX1 delivers Cu+ to the nucleus and Golgi, and COX17 delivers Cu+ 
to the mitochondria for CCO assembly. Meanwhile, intracellular metallothionein 1/2 and glutathione can chelate Cu+. DMT1 
can deliver Cu2+ into the cell. The delivery of Cu+ by COX17 is necessary for the assembly of both the COX1 and COX2 in the 
mitochondria. COX1 comprises of SURF1, COA1, COX11 and COX19, while COX2 comprises of SCO1, SCO2, COX20 and 
COA6. The mature holoenzyme complex comprises of these two parts, and incorporates a heme group during metallization, 
followed by the integration of the remaining subunits, finalizing the COX assembly during oxidative phosphorylation.
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CRIP2 degradation, thereby raising the ROS levels, 
and activating autophagy[54]. In the nucleus, copper 
regulates the gene expression, and the subsequent 
protein synthesis by regulating transcription factors. 
Furthermore, copper regulates key transcription 
factors, including NF-κB. The treatment with different 
concentrations of copper chloride may induce the 
activation or inhibition of NF-κB[55]. Key transcription 
factors, including AP-1 and p53, are activated by 
excess copper[56]. 

2 COPPER HOMEOSTASIS IN THE HUMAN 
BODY

 
Both copper deficiency and copper overload can 

cause cellular damage. Therefore, the amount of copper 
in the body is maintained within a reasonable range, 
which is known as copper homeostasis[57]. Copper plays 
a crucial role in numerous metabolic processes for the 
orderly functioning of daily activities[58]. Evidence 
increasingly suggests that imbalances in copper 
homeostasis are associated with the development of 
several diseases, including Menkes disease[59], Wilson 
disease[60], neurodegenerative disorders, and cancer.
2.1 Copper Homeostasis in the Nervous System

The brain is the second largest copper-accumu-
lating organ[61]. Copper homeostasis is equally important 
in the nervous system, and trace amounts of copper are 
necessary to perform normal brain development and 
function. Studies have elucidated the role of copper in 
the brain. Copper passes through the liver, and enters 
the brain. It serves as a cofactor in copper-dependent 
enzymes with important physiological functions, 
including the following: dopamine β-hydroxylase-
like monooxygenase, which catalyzes norepinephrine 
synthesis[62]; cytochrome c mitochondrial oxidase, 
which has a mitochondrial role[63]; amine oxidases, 
which synthesize neurotransmitters[64]; tyrosinase 
oxidases, which form melanin[65]; sulfhydryl oxidase, 
which maintains the normal structure of hair[66]. 
Furthermore, copper is involved in other regulatory 
pathways in the nervous system, such as the synthesis 
of SOD1, which breaks down superoxide to protect 
cells from oxidative stress damage. Moreover, copper 
regulates the activity of amino acid and purine 
receptors[67]. In addition, copper can regulate synaptic 
transmission and related signaling by regulating ATP7A 
at synapses[68], as well as the calcium or zinc binding, 
and metallothionein expression[69]. It also regulates 
the function of brain-derived neurotrophic factors and 
nerve growth factors[70].

Copper distribution in the brain is uneven, 
with higher concentrations observed in both the 
locus coeruleus and substantia nigra[71]. The copper 
transportation and distribution within the brain remains 
unclear. It was hypothesized that copper crosses the 

blood-brain barrier (BBB) as free copper ions, and is 
released into the brain parenchyma and cerebrospinal 
fluid. The BBB appears as the primary route for 
copper entry into the brain parenchyma, and the BBB 
and blood-cerebrospinal fluid barrier likely maintains 
copper homeostasis in the brain. Furthermore, both 
BBB and blood-cerebrospinal fluid barrier cells 
express proteins involved in copper transport. Cells in 
the BBB express higher levels of copper transporter 
proteins, including CTR1, DMT1 and ATP7B than the 
brain parenchyma. Copper is transported more easily 
to the brain parenchyma via cerebral capillaries, as 
compared with transportation via the choroid plexus[72].

A recent study reported that the concentration 
of copper is higher in glial cells than in neurons[73]. 
Astrocytes, which are the most abundant glial cells 
found in the central nervous system, have been shown 
to have a significant impact on both health and diseases. 
Under typical circumstances, astrocytes participate in 
key physiological functions, including the regulation 
of developmental and functional synapse activity, and 
the BBB, the metabolic support for neurons, and the 
production of neurotrophic factors. Copper signaling 
pathways between neurons and astrocytes potentially 
play a significant role in brain signal processing[74]. 
It has been commonly considered that astrocytes 
absorb copper via CTR1. Additional studies have 
reported the involvement of DMT1 in copper uptake 
through astrocytes[75]. CTR1 and DMT1 facilitate 
the transportation of Cu+. Astrocytes release small-
molecule reductants in vivo, which reduce Cu2+ levels 
to aid the cellular uptake of copper[76]. Furthermore, 
the prion-related protein, which exhibits low-affinity 
binding to copper, may mediate copper uptake through 
astrocytes[77].

Significantly elevated copper levels have been 
identified in patients with Wilson disease[78]. Abnormal 
copper concentrations have been reported in patients 
with other neurodegenerative disorders, indicating the 
existence of specific copper signaling pathways in the 
brain. The complex copper signaling pathways within 
the brain include redox processes, which involve 
unstable copper ions, the release of neurotransmitters 
from synapses, and the cooperation between neuronal 
and glial cells. Regulating molecules, such as 
ATP7A/B[79], CTR1[80], and ATOX1[81], is a key function 
in copper homeostasis in the nervous system. 
2.2 Copper Homeostatic Imbalance in Menkes 
Disease and Wilson Disease

During defective copper homeostasis in the 
body, copper deficiency or copper accumulation can 
lead to substantial damage, which has been linked to 
various diseases[82]. During embryogenesis and early 
development, adequate copper intake is important, 
especially in the central nervous system. Copper 
toxicity, due to excessive copper levels, particularly 
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affects the brain and liver[83].
2.2.1 Menkes Disease                Menkes disease, 
which was first reported by Menkes in 1962[84], is a 
rare genetic disorder characterized by abnormal copper 
metabolism[85]. This disorder is inherited in an X-linked 
recessive manner, and is the result of mutated ATP7A. 
ATP7A gene mutations result in the impaired intestinal 
function of ATP7A, leading to the reduced entry of 
copper into the bloodstream, and accumulation of copper 
in intestinal cells[59]. If copper cannot be transported to 
the different organs of the body, including the liver and 
brain, this would ultimately lead to severe systemic 
copper deficiency, and impaired synthesis of several 
important enzymes[86]. For instance, the impairment 
of dopamine β-hydroxylase-like monooxygenase 
function may result in defective synaptic function and 
axonal growth[87]. The pathology of the tetralogy of 
Fallot is characterized by inborn vascular anomalies 
in newborns[88]. Patients with Menkes disease often 
present with symptoms, such as bone loss, skin laxity, 
aneurysms, and spontaneous fractures[89].

A study of ATP7A gene mutations suggested that 
genetic screening is a reliable diagnostic method for 
Menkes disease[90]. The treatment of Menkes disease 
depends on the copper absorbed through the gut, and the 
amount of circulating copper that reaches the brain[91]. 
For example, the prompt subcutaneous injection of Cu-
histidine complexes to overcome intestinal absorption 
barriers can enhance the treatment outcomes[92].
2.2.2 Wilson Disease            Wilson disease is a 
genetic mutation-causing disease, which features 
the pathological accumulation of copper[60]. The 
pathogenesis of Wilson disease is primarily attributed 
to mutations in the ATP7B gene, which leads to the 
inactivation of the transmembrane copper-transporting 
ATPase, the obstruction of copper excretion from the 
biliary tract, and the eventual disruption of copper 
homeostasis[93]. Furthermore, copper overload in 
hepatocytes leads to cirrhosis and liver fibrosis[94]. The 
copper released from liver cells gradually accumulates 
in other organs, and leads to extrahepatic toxicity[95]. 

Copper concentrations in patients with Wilson 
disease may be 10–15 folds higher than those 
in healthy individuals[96], suggesting the strong 
association between copper levels in the brain and 
neuropathological severity. The toxic effects of copper 
are initially buffered by astrocytes, accompanied by 
its proliferation. The synthesis of metallothionein 
is subsequently upregulated to increase its copper 
storage ability. Eventually, high copper levels would 
lead to astrocyte impairment, BBB dysfunction, and 
diverse brain tissue pathologies[97]. Morphological and 
functional abnormalities of the retina in Wilson disease 
are correlated to the severity of brain pathology and 
neurological impairment[98].

The diagnosis of Wilson disease is based on clini-

cal symptoms, the measurement of copper metabolism, 
and the analysis of ATP7B genes. Copper overload 
can be reversed via chelation therapies and oral zinc. 
D-penicillamine and trientine can increase urinary 
copper excretion, while oral zinc can reduce copper 
absorption in the digestive tract[99]. Accurate and early 
pharmacological treatment can lead to improved liver 
function and transaminases within 2–6 months, and 
neurological improvements can be observed in 50%–
60% of patients within 1–3 years[100].
2.3 Copper Homeostasis and Neurodegenerative 
Diseases

Numerous studies have reported that changes 
in copper homeostasis occur during progressive 
neurodegenerative diseases[73]. Both the increase and 
decrease in copper levels may play a distinct role in 
neurodegenerative diseases.
2.3.1 Alzheimer’s Disease (AD) and Copper 
Homeostasis              AD is a prevalent neurode-
generative disorder that may stem from diverse factors, 
such as age, environment, and genetics. The increase in 
human life expectancy in the coming years would likely 
result in a growth in the number of patients with AD[101]. 
According to the conventional “amyloid cascade 
hypothesis”, AD pathology is primarily mediated 
via the accumulation of amyloid-β (Aβ) peptide and 
tau proteins. Subsequently, this defective processing 
would result in the formation of amyloid plaques and 
downstream neurofibrillary tangles in the grey matter, 
accompanied by cellular oxidative stress, vascular 
injury, neuroinflammation, and neurodegenerative 
lesions[102, 103].

Copper homeostasis plays a pivotal role in the 
pathogenesis of AD. Copper potentially interacts with 
several key pathological factors, including Aβ and tau. 
Aβ binds to copper ions with high affinity[104]. Copper 
ions can induce Aβ precipitation in vitro. However, 
isolated copper ions stimulate Aβ degradation, and 
impair the production of hydroxyl radicals and oxi-
dative damage, ultimately reducing cell death[105]. 
Excessive copper can impair the brain’s capacity to 
eliminate Aβ. Furthermore, the Aβ-copper complex 
inhibits the expression of lipoprotein receptor-related 
protein-1, thereby diminishing the removal of neurotoxic 
Aβ[106]. Copper has been identified to be significantly 
enriched in age spots of patients with AD, indicating 
that this may play a role in triggering plaque formation 
in the brain[107]. Furthermore, copper enhances the 
phosphorylation of tau proteins and the neurotoxicity 
of tau protein aggregates. The tau proteins that are 
bound to copper promote brain damage by inducing 
redox activity[108]. Chronic exposure to systemic copper 
leads to the dysregulation of tau-related kinase CDK5 
and synaptic protein complexin1/2[109]. Studies have 
reported conflicting findings on brain copper levels 
in AD. However, elevated levels of labile copper may 
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contribute to oxidative tissue damage in the brain of 
patients with AD[110].

In cases of neuroinflammation, copper exacerbates 
the impact of Aβ on microglial activation, followed by 
neurotoxicity. Copper-Aβ complexes activate microglia, 
and facilitate the release of TNF-α and NO in an NF-
κB-dependent manner[111]. Furthermore, copper-Aβ 
complexes participate in the TNF-α signaling pathway 
and concurrent caspase-3 activation that results from 
oxidative stress, leading to neuroinflammation[112]. 
It has been proposed that copper modifies the pro-
inflammatory and anti-inflammatory phenotypes of 
microglia by regulating the NO and S-nitrosothiol 
signaling pathways[113]. In addition, neuronal death can 
drive inflammation in AD. Different types of neuronal 
death affect inflammation via different mechanisms, 
such as neuronal apoptosis, leading to the disruption 
of normal microglial homeostasis[114–118]. Necroptosis, 
pyroptosis, and ferroptosis represent soluble cell death 
characterized by the release of DAMPs, including 
HMGB1, heat shock proteins, and nucleic acid[119–122]. 
This causes sustained neuroinflammatory damage, 
and triggers aberrant microglial activation[123]. 
Interventions against neuronal death may improve the 
neuroinflammatory environment in AD. Furthermore, 
the timing and mechanism of neuronal death may 
provide insights into the treatment of neurodegenerative 
diseases.

Astrocytes store significant amounts of copper. In 
vitro evidence has revealed that astrocytes with impaired 
function accumulate copper via a CTR1-dependent 
mechanism or DMT1, and the ZIP family of proteins[124]. 
Free copper may induce degenerative neuronal 
lesions[125]. The enrichment of copper chaperone 
proteins in astrocytes may impair copper transport 
from astrocytes to neurons[126]. In vitro experiments 
have indicated that Aβ plaques and protofibrils act as 
endogenous stimuli, leading to astrocyte activation 
or reactive astrocyte proliferation[127]. Astrocytes can 
impede the microglia-mediated clearance of Aβ plaques 
by secreting glycosaminoglycan-sensitive molecules, 
indirectly promoting Aβ accumulation in the AD 
brain[128]. In addition, the administration of CuⅡ(atsm) 
can substantially decrease the secretion of NO, MCP-
1, and IL-6 in astrocytes, which may be linked to the 
amplification of cellular copper and metallothionein-1 
in astrocytes[129].

The antioxidant glutathione is critical in AD. 
This is frequently used to demonstrate mild cognitive 
impairment and AD pathology[130]. It has been 
considered that elevating glutathione levels may 
impede or decelerate the progression of AD. High 
levels of copper have been considered to decrease 
the production of glutathione, leading to an excess of 
oxidative free radicals, and consequent oxidative stress 
damage, which may contribute to the pathogenesis of 

AD[131]. Another significant protein involved in AD 
is SOD1, in which the Cu2+ binding site is similar to 
that of Aβ. As a result, Aβ may impair the structural 
integrity of SOD1, leading to defective cellular metal 
scavenging[104].

AD has been managed with some small molecules, 
including donepezil, galantamine, rivastigmine, and 
memantine. However, no permanent cure exists for AD. 
These drugs are potential antioxidants, which can be used 
to decrease Aβ aggregation, and improve neurological 
symptoms[132]. An experimental drug, clioquinol, was 
identified to decrease Aβ deposition after 3 months of 
oral administration in animal models[133]. In one clinical 
trial, 36 patients with moderate AD experienced relief 
in cognitive decline with chloroquine[134]. A number 
of clinical trials associated with neurodegenerative 
diseases are undergoing (table 1).
2.3.2 Huntington’s Disease (HD) and Copper 
Homeostasis             HD is an autosomal dominant 
disorder of the nervous system[135]. Abnormal 
repeats of the N-terminal polyglutamine sequence 
of Huntingtin protein is the molecular mechanism 
underlying HD pathogenesis. The mutated Huntingtin 
proteins aggregate, and result in oxidative stress and 
neurodegenerative symptoms[136].

In both people and animals with HD, the striatum 
has been shown to have increased levels of copper 
ions[137]. Some studies have indicated that copper 
buildup enhances the deleterious functions of mutant 
proteins[138]. In addition, copper binds to histidine 
residues located at the N-terminal end of Huntingtin 
proteins[139]. Remarkably, merely copper exhibits 
a binding affinity towards Huntingtin proteins that 
comprise of 17–68 glutamine residues. The use of 
copper chelators hinders the formation of clusters of 
mutant Huntingtin proteins, while amplified copper 
consumption facilitates the creation of clusters[140]. 
Copper might also contribute to advanced HD by 
obstructing enzymes associated with mitochondrial 
respiration[141]. A decrease in lactate removal occurs in 
the striatum of patients with HD[142], and research has 
shown that the use of lactate dehydrogenase inhibitors 
can induce neurodegeneration in mice[143].

Copper chelators, such as clioquinol, tetra-
thiomolybdate, and bathocuproine disulfonate, can 
alleviate HD[144]. The use of these chelators in mouse 
models of HD significantly attenuated the pathological 
and behavioral abnormalities, and enhanced the 
survival rates in Drosophila models of HD[139].
2.3.3 Amyotrophic Lateral Sclerosis (ALS) and 
Copper Homeostasis          ALS leads to selective
motor neuron degeneration and subsequent death[145]. Its 
primary clinical feature is progressive muscle atrophy 
and weakness, leading to respiratory failure and death 
in patients[146]. The cause of ALS remains uncertain. A 
genetic etiology has been suggested in 20% of cases, 
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while environmental factors, neurotoxin accumulation, 
oxidative stress damage, and inadequate growth factors 
may account for 80% of patients with ALS[147].

The mutant SOD1 protein may play a role in 
familial ALS pathogenesis. During the progression 
of ALS, CCS erroneously binds to mutant SOD1, 
thereby decreasing the copper delivery to mitochondria, 
and leading to the buildup of abnormal SOD1[148]. In 
turn, this generates motor neuronal toxicity[149]. The 
overexpression of CCS in the SOD1G93A mutant mouse 
model expedites neurological deficits, and shortens the 
survival time of mice, while the administration of copper 
ionophore ameliorates the symptoms[150]. The increased 
expression of CCS alters cytochrome c oxidase activity 
in SOD1 mutation[151]. The additional toxicity induced 
by the CCS overexpression increases the delivery of 
copper to SOD1, but decreases other deliveries, thereby 
affecting the normal function of other enzymes[152]. 
Thus, the dysregulation of copper homeostasis and 
impairment of copper-dependent enzyme function may 
contribute to the acquired toxicity in patients with mutant 
SOD1, and the development of ALS. Elevated copper 
concentrations in skeletal muscle and the spinal cord 
were identified to accompany disease progression during 
the pre-symptomatic phase in SOD1G93A mutant mice[153]. 

Excess copper was detected in the cerebrospinal fluid 
in people and animals with ALS[154]. The expression 
of human copper transporter 1 augmented the copper 
concentrations within the spinal cord, thereby reinstating 
SOD1 and ceruloplasmin activity[155]. The more severe 
the copper deficiency in mutant SOD1, the more severe 
the clinical symptoms of ALS[156].

Several copper chelators, including D-penicil-
lamine[157] and tetrathiomolybdate[158], have demon-
strated a palliative effect on ALS. In addition, diacetyl-
bis (4-methylthiosemicarbazonato) copper (Ⅱ) 
[CuⅡ(atsm)], which is a copper ionophore, has been 
identified as a significant drug for treating ALS[159]. 
CuⅡ(atsm) has been shown to enhance motor function 
and improve livability in SOD1G93A and SOD1G37R 
mutant mouse models[160]. In the SOD1G93A mutant 
mouse model, the treatment with tetrathiomolybdate 
has been shown to extend survival, alleviate muscle 
atrophy, and reduce motor neuron loss, while inhibiting 
the activity of SOD1 mutant proteins, and diminishing 
mutant protein aggregation[161].
2.3.4 Parkinson’s Disease and Copper Homeostais                      
The primary clinical manifestations of PD include 
resting tremors, muscle tone modifica-tions, brady-
kinesia, and postural instability[162]. The disease 

Table 1 Clinical trials in copper-related neurodegenerative diseases (data obtained from ClinicalTrials.gov)

Interventions Condition Study 
phases Results Location

GE180 PET Scan AD Ⅱ GE180 was used to analyze the regional and global 
inflammation in the brain of patients with AD and PD, and 
greater whole brain GE180 was found to be correlated to 
poorer cognitive function, including the frontal/cingulate/
parietal/temporal lobe.

Nevada, USA

Gastro-retentive zinc 
cysteine tablet

AD Ⅱ The orally administered active comparator material was 
associated with better tolerability, when compared to oral 
zinc acetate, and it induced a reduction in serum non-
ceruloplasmin bound copper levels, and an elevation in 
serum zinc levels

Florida, USA

8 mg/day of copper AD Ⅱ Changes were found in cognitive function, beta-amyloid in 
the CSF, and volumetric in the brain.

University Hospital, Saarland

2 mg/day of copper ALS Ⅱ No posted Arizona, United States
CuⅡ(atsm) ALS Ⅱ No posted New South Wales/Victoria, 

Australia
CuⅡ(atsm) MS Ⅰ No posted
CuⅡ(atsm) PD Ⅰ The drug dose was 12 mg/day, which was well-tolerated in 

the ALS study.
Coconut oil-
epigallocatechin 
gallate

MS Ⅱ No posted Valencia, Spain

Multimodal exercise 
program

PD No No posted Chang Gung Memorial 
Hospital

Observational study: 
copper exposure

PD No posted Isernia/Napoli, Italy

Managing fatigue: 
The Individual 
program (MFIP)

PD No No posted Nova Scotia, Canada

Not researched HD
AD: Alzheimer’s disease; ALS: amyotrophic lateral sclerosis; MS: multiple sclerosis; PD: Parkinson’s disease; HD: Huntington’s disease
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pathology is characterized by the reduction of 
dopaminergic neurons, and the formation of protein 
aggregates that comprise of α-synuclein protofibrils[163]. 
Several genetic mutations of α-synuclein may exist 
in hereditary PD[164]. PD occurs in both inherited and 
sporadic forms. Various factors, such as aging and 
the environment, may affect PD development[165]. 
It has been widely considered that the combination 
of genetic susceptibility and environmental factors 
triggers PD[166]. Furthermore, oxidative stress injury 
and mitochondrial dysfunction were considered to 
promote PD progression[167].

Autopsies have shown that the brains of patients 
with PD carry higher levels of oxidative damage to 
proteins, DNA, and lipids than healthy brains[168]. In 
addition, glutathione levels in the substantia nigra 
of patients with PD decreased by 40%–90%[169]. 
Alpha-synuclein oligomers form a toxic amyloid 
conformation[170]. Initial in vitro experiments have 
revealed that millimolar concentrations of copper 
facilitate the development of partially-folded amyloid 
heterodimers, rendering them increasingly vulnerable to 
aggregation[171]. The N-terminal domain of α-synuclein 
contains a copper-binding site[172]. This process is 
enhanced by reducing the electrostatic repulsion of 
negative charges[173]. N-terminal acetylated α-synuclein 
was recently discovered in the brain[174]. This 
modification promotes the protein’s helical folding, 
and decreases protein aggregation[175]. Although this 
modification did not affect the ability of α-synuclein 
to bind Cu+, this interfered with its binding to Cu2+[176]. 
Copper ions act as a double-edged sword, and reduced 
copper levels may be involved in PD progression[177]. 
Copper levels are lower in brain regions with the most 
damage in patients with PD, including the substantia 
nigra and locus coeruleus, with a reduction of 35%–
50%, when compared to healthy brains[178]. 

The mechanism of copper metabolism in PD 
suggests that PD can be alleviated via copper reduction 
or supplementation. A compound 8-hydroxyquinoline-
2-carboxaldehyde isonicotinoyl hydrazone can cross 
the BBB, and competitively bind to Cu+ or Cu2+, 
effectively inhibiting the protein aggregation in 
vitro[179]. Clinical trials on CuⅡ(atsm) have suggested its 
accumulation in the striatum of patients with PD during 
disease progression[180]. Furthermore, it was found that 
CuⅡ(atsm) can be used to restore copper-deficient 
SOD1 function, and rescue neuronal loss. In addition, 
the testing results for the genetic mouse model of PD 
revealed that CuⅡ(atsm) rescued the dopaminergic cell 
loss, and improved motor dysfunction[151].

3 CUPROPTOSIS IN THE HUMAN BODY

3.1 Definition of Cuproptosis
A 2022 study investigated the mechanisms of 

copper homeostasis, and reported that copper binds to 
the lipoylated proteins of the TCA cycle[14], inducing 
lipoylated protein aggregation, and resulting in 
proteotoxic stress and cell death. For the first time, 
cuproptosis was proposed, which is regulated by 
copper during mitochondrial respiration. This form of 
death contrasts with all other recognized forms of cell 
death[181–184].

Copper ionophore elesclomol binds copper to 
facilitate its transportation into cells[185]. This can be 
used to investigate copper toxicity. Further studies 
have demonstrated that cell death induced by copper 
ionophore is merely contingent on high levels of 
copper[186]. Elesclomol triggers ROS-dependent 
apoptosis[187], although caspase 3, an apoptotic marker, 
remains inactive during elesclomol-induced cell 
death. The involvement of multiple death inhibitors, 
or the removal of BAX and BAK1 did not alter the 
probability of death, suggesting that this may be a 
new type of cell death. Cells that are dependent on 
mitochondrial respiration are approximately 1000 
folds more responsive to copper ionophore than 
glycolysis-dependent cells[188]. This implies that copper 
ionophore-induced cell death is potentially linked to 
mitochondrial respiration. A genome-wide CRISPR/
Cas9 loss-of-function screening revealed 7 genes that 
successfully rescued copper ionophore-induced cell 
death, including FDX1, which is the direct target of 
elesclomol[189]. FDX1 encodes a reductase that reduces 
Cu2+ to Cu+. LIPT1, LIAS, and DLD encode the lipoic 
acid pathway, while DLAT, PDHA1, and PDHB are 
responsible for protein lipoylation[190]. The knockdown 
of FDX1 and LIAS leads to the resistance against 
copper-induced cell death. The concurrent screening of 
databases and immunohistochemical studies revealed a 
high degree of correlation between FDX1 and proteins 
in the lipoic acid pathway, suggesting that FDX1 
might serve as an upstream regulator of proteolipid 
acylation. Toxic gain of function may occur due to 
copper binding to lipoylated TCA proteins, which is 
potentially induced by the abnormal oligomerization 
of lipoylated proteins. Mass spectrometry analysis 
has demonstrated that copper toxicity can lead to the 
loss of FDX1-dependent iron-sulfur cluster proteins 
and proteotoxic stress. However, this remains to be 
explored. Finally, the conclusions of this study were 
validated using a cellular model that overexpressed 
the SLC31A1 protein, and an aged ATP7B–/– animal 
model[191] (fig. 3).

The determination of the regulatory mechanisms 
of diseases induced by the imbalance in copper 
homeostasis remains challenging. Oxidative stress 
damage has been investigated in a significant number 
of studies[192]. Copper ionophore NSC319726[193] 
activates copper, promoting the production of ROS[194]. 
The activation of autophagy was observed to protect 
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Fig. 3 The initial discovery process and mechanism of cuproptosis
The experiments suggest that the cell death induced by elesclomol might be a novel cell death type. Cells cultured with serum 
exhibited higher sensitivity towards elesclomol. After the depletion of glutathione via BSO, the cells exhibited heightened 
sensitivity to elesclomol. However, the chelation of copper ions through the TTM rescued the elesclomol-induced cell death. 
After the 2-h pulse treatment with elesclomol, DSF and NSC319726, the intracellular copper levels increased by 5–10 times. 
Cell death occurred for more than 24 h following treatment. The use of several cell death inhibitors did not affect the onset of 
copper-induced death. The treatment with mitochondrial antioxidants, fatty acids, and inhibitors of mitochondrial function had 
a significant impact on cell viability. However, mitochondrial uncoupler FCCP did not affect the cell survival. A genome-wide 
CRISPR/Cas9 loss-of-function screening identified 7 genes that rescued the copper ionophore-induced cell death. Mitochondrial 
respiration regulated this novel copper ionophore death, and a key regulator, FDX1, was identified. Copper binds to the lipoylated 
components of the TCA cycle, inducing lipoylated protein aggregation, and resulting in the loss of iron-sulfur cluster proteins, 
proteotoxic stress, and ultimately, cell death. BSO: buthionine sulfoximine; DSF: disulfiram; NSC319726: copper ionophore; 
TTM: tetrathiomolybdate
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hepatocytes from copper-induced death in liver 
tissues of individuals with Wilson disease, and in 
ATP7B-deficient animals[195]. In another study, copper 
stimulated the development of tumors by activating 
the PI3K-AKT signaling pathway. Reducing CTR1 
or inhibiting the CTR1-Cu axis with copper chelators 
can reduce tumor development and AKT signaling. 
Furthermore, CTR1 is negatively regulated by Nedd4l. 
These results established a link between Nedd4l-
CTR1-Cu and PDK1-AKT oncogenic signaling[196]. 
MTF1 is a classic metal-binding transcription factor 
that plays a key role in cuproptosis[197]. Furthermore, 
p53, which is a widely expressed oncogene, 
regulates iron-sulfur cluster proteins and glutathione 
synthesis[198]. Cuproptosis-induced inflammation is 
also under investigation, with HMGB1 as a significant 
immune mediator[199]. In addition, cuproptosis may be 
associated with autophagy[200].

Cuproptosis is considered as a potential therapeutic 
target in cancer. Numerous recently published studies 
have investigated cuproptosis using cancer databases 
and bioinformatics approaches. Different models 
have been used to study the risk of cancer, and 
investigate tumor immunity, treatment, and prognosis. 
For instance, in glioblastoma, epigenetic regulatory 
proteins may regulate cuproptosis by altering the 
expression of PD-L1 and FDX1[201]. In uveal melanoma, 
copper is translocated to the mitochondria, generating 
large amounts of ROS, and inducing cancer cell 
migration[202]. The LIPT1, PDHA1, and SLC31A1 linked 
to cuproptosis were upregulated in melanoma[203]. A 
total of 10 cuproptosis-associated lncRNAs exhibited 
higher diagnostic efficiency in clear cell renal cell 
carcinoma[204]. The FDX1 expression was significantly 
downregulated in hepatocellular carcinoma (HCC), 
while its elevated expression was linked to extended 
survival[205]. LIPT1 may stimulate the growth, 
infiltration, and movement of HCC cells[206]. In low-
grade gliomas, an accurate prognostic model based on 
5 genes related to cuproptosis[207] was built, and it was 
found that the expression of ATP7B decreased, while 
the expression of SLC31A1, FDX1, DLAT, and LIAS 
increased[208]. 

The study of cuproptosis has been increasingly 
utilized for therapeutic purposes. A ROS-sensitive 
polymer was developed to encapsulate elesclomol and 
copper in nanoparticles, which in turn, are activated by 
excessive intracellular ROS upon entry into cancer cells. 
The elesclomol and copper complexes synergistically 
act against cancer cells and induce cuproptosis[209]. 
The glucose oxidase-engineered nonporous copper 
(I) 1,2,4-triazole coordination polymer nanoplatform, 
which is also known as GOx@[Cu(tz)], was engineered 
in bladder cancer. This can make cancer cells more 
susceptive to cuproptosis when glucose and glutathione 
are depleted[210]. A hollow amorphous bimetal organic 

framework can be developed to leverage the synergistic 
effects of cuproptosis and ferroptosis against cancer[211]. 
3.2 Link Between Cuproptosis and Ferroptosis

Copper and iron have similar structures, and are 
both essential for the functioning of an organism[212, 213].
The imbalance in copper and iron levels typically 
leads to the generation of detrimental oxidative free 
radicals. Similar to copper homeostasis, the body 
tightly regulates iron homeostasis[214]. Defective 
iron homeostasis can lead to ferroptosis, which is a 
regulatory cell death identified in 2012[215]. The main 
mechanism involves the catalysis of highly unsaturated 
fatty acids on the cell membrane in the presence 
of divalent iron or lipoxygenase, resulting in lipid 
peroxidation and cell death[216]. An overlap between 
copper and iron homeostasis has been observed, and 
the mechanisms that regulate iron and copper have 
been identified. Copper has a positive impact on iron 
homeostasis, while iron hinders copper metabolism. 
For instance, following the depletion of iron stores 
in the body, copper is redistributed to tissues crucial 
for maintaining iron homeostasis, thereby facilitating 
iron absorption with the help of the divalent metal ion 
transporter DMT1[217]. In addition, gut-based copper 
may enhance iron transportation, with hepatic copper 
promoting the synthesis of ceruloplasmin, thereby 
enabling the oxidation of iron after its release[218]. 
During iron deficiency, hypoxia-inducible transcription 
factor (HIF) transactivates numerous intestinal genes 
that are linked to iron absorption[219]. Copper increases 
the DNA-binding activity of HIF, suggesting a possible 
link between the HIF signaling pathway, and both iron 
and copper homeostasis[220]. Studies have revealed that 
excess iron can affect normal copper metabolism[221]. 
Thus, it is necessary to emphasize the influence of iron 
consumption on copper homeostasis. 

Studies have revealed that the chelation of copper 
ions by cuprizone results in the rapid release of iron ions 
from the storage protein, ferritin, which leads to iron-
induced lipid peroxidation and ferroptosis, and results 
in the loss of oligodendrocytes[222]. A recent study 
revealed that copper homeostatic regulator COMMD10 
regulates the onset of ferroptosis[223]. The disulfiram-
copper complex can trigger ferroptosis in cancer. 
This significantly activates p62 phosphorylation, and 
promotes the competitive binding of Keap1, thereby 
prolonging the half-life of NRF2, and inducing the 
compensatory elevation of NRF2[224]. Copper stimulates 
ferroptosis by inducing the autophagic degradation of 
GPX4. TAX1BP1 acts as an autophagy receptor for 
GPX4 degradation or copper-induced ferroptosis[225]. 
Various studies have identified the correlation between 
cuproptosis and ferroptosis in different tumors, such 
as lung adenocarcinoma, in which 3 Cu-Fe clusters 
associated with cuproptosis and ferroptosis were 
identified[226]. In colorectal cancer, patients with 
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low expression of genes linked to cuproptosis and 
ferroptosis had higher survival rates[227]. In HCC, 7 
key genes that linked cuproptosis and ferroptosis were 
identified as biomarkers of poorer prognosis[228]. 
3.3 Cuproptosis and Neurodegenerative Diseases

A number of studies have revealed the correlation 
between changes in copper homeostasis and the 
progression of various neurodegenerative disorders[229]. 
In AD, the key pathology protein Aβ has high affinity 
for binding to copper ions, and excess copper interferes 
with the removal of Aβ. High levels of copper ions 
have been detected in the striatum of HD patients. In 
ALS, CCS erroneously binds to mutant SOD1 proteins, 
resulting in incorrect copper delivery and anomalous 
SOD1 accumulation, and subsequently triggering 
the toxicity of motor neurons. For patients with PD, 
copper may accelerate the disease progression through 
multiple mechanisms mediated via increased or reduced 
copper levels. The precise mechanism of copper in 
advanced neurodegenerative disorders requires further 
investigation[230]. Recent studies have established 
a connection between the dysregulation of copper 
homeostasis in patients with Menkes disease, and the 
UCHL1/PARK5 pathogenic pathway in PD. UCHL1/
PARK5 is located downstream or parallel to ATP7A, 
indicating that the inhibition of UCHL1/PARK5 
protects ATP7A mutants against the dysregulation of 
copper homeostasis[231]. A novel ATP7A substitution 
variant, p.Met1311Val, was identified in individuals 
with ALS, which increased copper accumulation 
in fibroblasts, decreased survival, and induced 
motor defects in Drosophila motor neurons[232]. A 
study that investigated Menkes disease and Wilson 
disease reported a novel method of regulating copper 
homeostasis. The findings suggested that ATP7 proteins 
and the conserved oligomeric Golgi complex together 
stabilize the copper levels, thereby contributing to the 
maintenance of mitochondrial function and synaptic 
integrity[233].

Since copper excess induces cuproptosis, which 
mainly occurs in mitochondria, and triggers oxidative 
stress injury, it is plausible that a potential pathogenic 
mechanism underlying various neurological disorders 
is mediated via cuproptosis. Notably, studies that used 
clioquinol have reported positive therapeutic outcomes 
for PD and AD, including decreased activation of 
microglia in the spinal cord with encephalomyelitis, 
leading to enhanced clinical symptoms[234]. A study that 
investigated the progression of neurological diseases 
based on the association between cuproptosis and 
ferroptosis reported that copper triggers ferroptosis. 
This induces oligodendrocyte loss in multiple sclerosis, 
and leads to cell death in other neurological diseases[222]. 
Cuproptosis-related genes have been reported in AD, 
and significant immune heterogeneity in patients with 
AD across various subgroups of cuproptosis has also 

been reported. In addition, MYT1L, PDE4D, SNAP91, 
NPTN, and KCNC2 have been identified as unique 
genes with predictive capabilities in the AD analysis[235] 
(table 2).

4 DISCUSSION
 
Copper-based nanoparticles have been widely 

used in production life due to their outstanding 
properties[236]. In the biomedical field, CuO 
nanoparticles can be used as biosensors for the detection 
of disease markers[237]. Recently, CuO nanoparticles 
have been developed as antiviral surface coatings to 
inhibit viral transmission[238]. However, excess copper 
has adverse effects. A study revealed that prolonged 
exposure to copper may cause cognitive decline, and 
the occurrence of AD[239]. Similarly, the widespread use 
of high doses of copper in agriculture and livestock 
can lead to serious environmental pollution, ultimately 
endangering human health[240]. Therefore, it is crucial 
to establish rational laws for copper emission, and 
reduce copper use in organic agriculture.

Cuproptosis depends on the imbalance in 
copper homeostasis, suggesting the need for further 
investigation into the underlying mechanisms, such 
as additional regulators associated with membrane 
transport, and the distribution of varying levels of 
copper. A possible hypothesis is that the structure of 
copper transporters may be altered, or oligomeric 
modifications may be induced to regulate the transport 
pathway upon the binding of copper[241]. COMMD1 is 
the only identified membrane transport regulator that 
has copper binding capacity, and is a direct regulator 
of cellular copper homeostasis[242]. It has been reported 
that mice with liver-specific defects that involved 
COMMD1, COMMD6, and COMMD9 induce similar 
copper accumulation in the liver. COMMD6 and 
COMMD9 may play a role similar to COMMD1[243], 
suggesting the presence of other unknown modulators 
that specifically regulate copper transport. Therefore, 
the following questions remain to be addressed: (1) 
How do transport mechanisms sense copper levels 
to regulate the distribution of copper transporters? 
(2) Is there a copper-specific regulatory mechanism 
responsible for regulating the membrane transport of 
copper? (3) What is the intracellular copper homeostatic 
mechanism between organelles? (4) What are the 
differences in copper transport between neuronal and 
non-neuronal cells? A suitable neuronal model is 
required to revisit the mechanism of copper transport. 
Several key regulators involved in cuproptosis 
have revealed a connection between ferroptosis and 
autophagy. For example, in glioblastoma, FDX1 with 
other related genes is linked to the expression of 
autophagy markers[200]. Copper can bind with related 
proteins to trigger autophagy[54]. In ATP7B mutants, the 
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activation of autophagy can protect hepatocytes from 
copper-induced death[195]. The interaction between 
cuproptosis and ferroptosis generally occurs after the 
imbalance of copper homeostasis and iron homeostasis. 
COMMD10, which is a copper homeostatic regulator, 
can regulate the occurrence of ferroptosis[223]. Present 
research on these cell deaths is focused on cancer. The 
disulfiram-Cu complex triggers ferroptosis, and copper 
stimulates ferroptosis by inducing the degradation of 
GPX4, which is a key regulator in autophagy[225]. High 
levels of ROS, oxidative stress, and inflammation may 
be the common features of these cell deaths. Based on 
its similarity and previous studies, it is reasonable to 
presume that there is a regulatory complex that acts as 
a common mechanism of cell death, which is similar to 
the PANoptosome in PANoptosis[244].

Given the important functions of microglia 
and astrocytes in the nervous system[245], it is critical 
to research the function of copper on microglia 
and astrocytes in disease states associated with the 
recognition and clearance of abnormal Aβ peptides 
and tau proteins by the immune system[246]. The role 
of microglia and reactive astrocyte proliferation in 
copper toxicity response remains to be elucidated. 
Guidelines for astrocyte-mediated intervention and 
unstable copper ions based on neuronal activity in 
astrocyte-neuron metabolism have been proposed[247]. 
Although the focus of the present research was on 
the nervous system, it is important to recognize the 
heterogeneity of neurodegenerative diseases, with 
detrimental effects observed in the whole body. Copper 
intake can be controlled through precision medicine, 
and individualized treatment plans based on genetics, 
diet, lifestyle, culture, and access to resources, given 
the long-term pathological effects of abnormal copper 
metabolism in AD.

Early detection through advanced approaches, and 
treatment with various strategies for neurodegenerative 
diseases are very important. For disease investigation, 
neurons derived from human embryonic stem cells 
have been shown to faithfully recapitulate the 
specific neural development of an individual[248]. 
Single-molecule localization microscopy allows for 
the formation, assembly, and dissociation of protein 
complexes in real time[249]. The use of CRISPR gene 
editing in vitro[250] can contribute to the study of cellular 
functions and signaling pathways. In addition, studies 
should be based on complex models in vivo. Novel 
research directions are ideally guided by one animal 
model with the same category of neurodegenerative 
pathology, in order to compare the similarities and 
differences of various diseases. Copper chelators 
and ionophores represent the main drug therapies for 
impaired copper homeostasis in the brain[251]. Chelators 
should be designed to safely cross the BBB, and 
target specific neural networks, without interfering 

with the normal physiological functions of peripheral 
nerves and the brain. Furthermore, a “combination 
drug-multitarget” therapeutic strategy would be 
appropriate for controlling AD. The present strategy of 
medicinal chemists in combating AD is to design and 
investigate multifunctional drugs with anti-Aβ effects, 
acetylcholinesterase inhibition, antioxidants, and metal 
chelator activities[252]. Chinese herbal medicines have 
exhibited promising therapeutic potential[253]. China 
has constructed a large library of traditional medicines. 
One of the ancient anticancer drugs recorded is 
curcumin, which is derived from the rhizomes of plants. 
Curcumin has been shown to be protective against 
AD[254]. Furthermore, flavonoids, which are important 
antioxidants and signaling molecules, may slow the 
disease process, and improve neurocognition in AD 
patients[255]. Pharmacological treatments may need to 
consider the following: (1) the use of multifunctional 
compounds or single-molecule drugs to delay the onset 
of the disease; (2) the ideal dose when administering 
the drug; (3) the optimal time of administration. 

5 CONCLUSION

Copper is involved in key biochemical pathways, 
such as mitochondrial respiration, antioxidant 
mechanisms, and death initiation. Excess copper in 
cells induces redox activity, and generates hydroxyl 
radicals, which induce oxidative stress and cellular 
damage. Copper has been implicated in deleterious 
protein aggregation or neuroinflammation, leading to 
the progression of various diseases within the nervous 
system. Therefore, intracellular copper must be tightly 
regulated to maintain copper homeostasis in the body, 
especially in the brain. Copper homeostasis has been 
identified as a key target for delineating the link 
between astrocyte copper metabolism and neuronal 
metabolism, and for the treatment of neurodegenerative 
diseases. It is critical to ensure that copper is ingested 
in appropriate amounts to support normal living 
activities, but without the deleterious effects of copper 
toxicity. The mechanisms of copper homeostasis 
provide potential therapeutic insights into genetic 
disorders of copper metabolism and neurodegenerative 
diseases, such as Wilson disease, Menkes disease, AD, 
PD, ALS, and HD. However, a number of unanswered 
questions on the cellular mechanisms of copper uptake, 
transport, and utilization remain. Ongoing studies that 
investigate copper transporters, metallochaperones, 
and copper proteases in a wide range of pathological 
conditions continue to broaden the field of existing 
treatments, and provide additional therapeutic targets.
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