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[Abstract] Atherosclerosis (AS) is characterized by impairment and apoptosis of endothelial cells, 
continuous systemic and focal inflammation and dysfunction of vascular smooth muscle cells, 
which is documented as the traditional cellular paradigm. However, the mechanisms appear much 
more complicated than we thought since a bulk of studies on efferocytosis, transdifferentiation 
and novel cell death forms such as ferroptosis, pyroptosis, and extracellular trap were reported. 
Discovery of novel pathological cellular landscapes provides a large number of therapeutic 
targets. On the other side, the unsatisfactory therapeutic effects of current treatment with lipid-
lowering drugs as the cornerstone also restricts the efforts to reduce global AS burden. Stem cell- 
or nanoparticle-based strategies spurred a lot of attention due to the attractive therapeutic effects 
and minimized adverse effects. Given the complexity of pathological changes of AS, attempts to 
develop an almighty medicine based on single mechanisms could be theoretically challenging. In 
this review, the top stories in the cellular landscapes during the initiation and progression of AS and 
the therapies were summarized in an integrated perspective to facilitate efforts to develop a multi-
targets strategy and fill the gap between mechanism research and clinical translation. The future 
challenges and improvements were also discussed.
Key words: atherosclerosis; transdifferentiation; extracellular traps; efferocytosis; stem cell; 
nanoparticles

As a chronic inflammatory disease of the arterial 
wall, atherosclerosis (AS) is by far the most frequent 
underlying cause of atherosclerotic cardiovascular 
disease (ASCVD), carotid artery disease, and peripheral 
arterial disease. AS alone is rarely fatal; while 
thrombosis superimposed on a ruptured atherosclerotic 
plaque precipitates the life-threatening clinical events, 
accounting for 17.9 million deaths each year[1–3]. AS is 
characterized by dysfunction of endothelial cells (ECs), 
activated vascular smooth muscle cells (VSMCs) and 
a pro-inflammatory and pro-apoptotic niche due to 
evoked leukocytes[4–6]. Recently, plenty of studies 
demonstrated that the mechanisms appeared much 
more complicated than we thought. The recognition 
of roles of efferocytosis, transdifferentiation and novel 
cell death forms such as ferroptosis, pyroptosis, and 
extracellular trap (ET) provides a large number of 

therapeutic targets[7, 8].
In addition to limited understanding of 

mechanisms of AS development, the unsatisfactory 
therapeutic effects of current treatment serve as 
another factor that restricts the efforts to reduce global 
AS burden. Lipid-lowering drugs (e.g., statins) remain 
the cornerstone of the management of atherosclerotic 
disease[9]. Although stent implantation and bypass 
grafting are optional at acute or severe stage, both of 
them are invasive[10]. Therefore, it could be challenging 
to improve the prognosis in individuals with familial 
hypercholesteremia, statin intolerance or surgery 
contraindications[9]. And none of clinical medicine has 
been able to significantly recede plaques yet. Emerging 
evidence revealed that stem cells or nanomaterials 
could be promising strategies[11–13].

In this review, we summarized the advances in 
understanding of molecular and cellular mechanisms 
underlying the initiation and progression of AS and 
current therapeutic strategies of most interest in 
this field in an integrated way (fig. 1). An electronic 
search of PubMed, Web of Science, and Google 
Scholar along with major conference proceedings 
was conducted using the Medical Subject Heading 
and the key word search terms “atherosclerosis”, 
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“programmed cell death”, “ferroptosis”, “pyroptosis”, 
“cuproptosis”, “transdifferentiation”, “extracellular 
traps”, “efferocytosis”, “stem cell”, “nanoparticles” 
and combinations of two or more terms from inception 
through September 2023 with no language restriction. 
The future challenges and improvements that were 
required were also discussed. Previous reviews 
generally focused on a certain cell or molecular 
biological mechanism, and this fragmented perspective 
has limited the efforts to develop a multi-targets 
strategy and fill the gap between mechanism research 
and clinical translation.

1 TRADITIONAL PARADIGM OF THE MAJOR 
CELL PLAYERS AND THERAPIES IN AS

Elevated plasma cholesterol levels could be the 
unique one to be sufficient to drive the development 
of AS, the first of which is low-density lipoprotein 
(LDL)-cholesterol (LDL-C)[14]. Other atherogenic 
stimuli including male gender, hypertension, smoking, 
inflammatory markers and diabetes mellitus (DM) were 
considered critical accelerators[4]. ECs, leukocytes and 
VSMCs are the major players in the development of 
AS.

Dysfunctional ECs under atherogenic stimuli 
are the triggers of AS. AS lesions begin to develop 
under endothelium which is intact but activated and 
dysfunctional. Plasma molecules including lipoprotein 
particles extravasate through the leaky barriers into 
subendothelial space, leading to the modification 
and accumulation of atherogenic lipoproteins such as 
oxidated LDL (ox-LDL), which seems to be mediated 
by myeloperoxidase, arachidonate-15-lipoxygenase 
(ALOX15), and/or nitric oxide synthase (NOS)[4, 15].
Those activated ECs are also characterized by 
upregulated levels of adhesion molecules such as 

intracellular adhesion molecule-1 (ICAM-1), vascular 
cellular adhesion molecule-1 (VCAM-1), E-selection 
and P-selection, which lead to elevated recruitment of 
monocytes and T cells[9, 16–18]. In advanced lesions, de-
endothelialized areas were observed. 

The adhesion to impaired ECs and subsequent 
response to the chemokines enable transendothelial 
migration of the circulating leukocytes. Ox-LDL 
and CC-motif chemokine ligand 2/monocyte-
chemoattractant protein-1 (CCL2/MCP-1) are re-
cognized as the most important atherogenic 
chemoattractants[19]. Both ECs and VMSCs contri-
buted to the elevation of MCP-1, which attracts 
monocytes and T lymphocytes potently[20]. The 
monocytes differentiate into macrophages within 
intima, internalize the atherogenic lipoproteins via 
scavenger receptors such as CD36 and SR-A until 
death[21]. Those cells that were initially recruited to 
clear cytotoxic components transform into foam cells 
and contribute to the formation of destabilizing lipid-
rich core in the plaques. The focal leukocytes are also 
activated, generating proinflammatory factors [e.g., 
interleukin (IL)-1β, IL-6 and tumor necrosis factor 
α (TNF-α)], matrix-degrading proteolytic enzymes 
and more chemokines including MCP-1, leading to 
positive feedback of cell dysfunction and apoptosis, 
and continuous activation of local inflammation[6, 19]. 
Inadequate resolution of focal inflammation results in 
accumulation of necrotic lipid core mainly composed 
of necrotic macrophages and foam cells[22]. The matrix 
proteolytic enzymes [e.g., matrix metalloproteinases 
(MMP)] and tissue factors also possess destabilization, 
rupture and thrombogenic properties[23]. Additionally, 
although granulocytes and T lymphocytes are not 
necessary, several subsets of these cells such as 
neutrophils, T helper 1 (Th1) and regulatory T (Treg) 
cells could modulate the progression of AS; while some 
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type 9 (PCSK9) inhibition using monoclonal antibodies 
or genetical methods is an emerging therapy for 
hypercholesterolemia[32]. Additionally, agents targeting 
glucose metabolism have been of great interest since 
insulin resistance, hyperglycemia and DM participate 
in almost every step of the AS development, including 
secondary lipidemia[33], subendothelial retention of 
atherogenic LPL[34], and evoked pro-inflammatory 
responses through activation of protein kinase C-beta 
and aldose reductase[35]. A bulk of anti-inflammation 
noncoding RNAs or drugs such as Canakinumab (IL-
1β antibody) were also investigated[36, 37].

2 STORY ONE: REASSESSMENT OF NOVEL 
REGULATED CELL DEATH FORMS IN 
PLAQUES

The regulated cell death (RCD), which involves 
tightly structured signal cascades and molecular 
mechanisms, leads to ECs dysfunction, localized 
denudation, and subsequently, thrombus formation 
and the deposition of fibrous elements and lipids[38, 39]. 
Apoptosis was the first discovered and the most deeply 
described type of RCD[40]. However, novel RCD 
forms such as ferroptosis, pyroptosis and cuproptosis, 
and their effects on AS were recognized recently (fig, 
2)[41–43], and the attention has also expanded from ECs 
to other cell types.

subgroups (e.g., eosinophils) seem to be independent 
from the processes[24–26]. The persistence of the cellular 
response of ECs and immune cells underlies the 
occurrence and progression of AS. 

In healthy vasculature, VSMCs are contractile 
and quiescent. VSMCs mediate an excessive and 
dominating fibroproliferative response under chronic 
atherogenic stimuli in the advanced stages of 
plaques[27]. Consequently, the lumen becomes narrow 
and the reduction of blood flow sets in. On the other 
hand, VSMCs and VSMC-derived collagen-rich 
extracellular matrix could be essential to stability 
of plaques and thus, protecting against rupture and 
thrombosis[28]. Plaque rupture generally occurs in 
the areas with the thinnest fibrotic cap and the most 
infiltrated by foam cells, which could be attributed to 
two concurrent mechanisms: gradual loss of VSMCs 
via apoptosis or senescence, and overactivated, 
infiltrating leukocytes[29]. 

The well-established, classic cellular pattern has 
provided insights to the occurrence and progression, 
and management approaches of AS. Achieving and 
maintaining a low cholesterol level is recognized 
as the cornerstone of AS management and thus 
has received the lion’s share of current available 
treatment[30]. Those medicines include statin, fibric 
acid derivatives (fibrates), nicotinic acid (Niacin) and 
ezetimibe[31]. Proprotein convertase subtilisin/kexin 
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2.1 Ferroptosis
Ferroptosis is an RCS induced by the interaction 

of intracellular free iron with reactive oxygen species 
(ROS) via Fenton reaction, which leads to the 
depletion of plasma membrane polyunsaturated fatty 
acids (PUFAs) and impaired membrane integrity[44–46]. 
Ferroptosis is characterized by lipid peroxidation 
and iron retention, and regulated by complicated 
biological processes and molecular mechanisms such 
as glucolipid metabolism, redox homeostasis, iron 
handling and mitochondrial function[47–49]. Those are 
also main features of AS, making it not surprising that 
ferroptosis plays an essential, detrimental role in the 
development of AS. 

The Cysteine/glutathione (GSH)/glutathione per-
oxidase 4 (GPX4) axis, the GTP cyclohydrolase-1 
(GCH1)/tetrahydrobiopterin (BH4)/dihydrofolate re-
ductase (DHFR) system, and the NAD(P)H/ferroptosis 
suppressor protein 1 (FSP1)/CoQ10 system inhibit 
ferroptosis, while P53/glutaminase2 (GLS2) promotes 
ferroptosis[50–52]. GSH (the product of GPX4) and 
CoQ10 are critical anti-oxidative factors that pre-
vent lipid peroxidation[53]. Guo et al indicated that 
overexpression of GPX4 in ApoE–/– mice also 
attenuated the upregulation of adhesion molecules 
and inhibited the development of AS[54]. GPX4 also 
suppressed lipoxygenase (LOX) and cyclooxygenase 
(COX), as well as AS-associated pro-inflammatory 
factors[55]. p53 inhibits synthesis of GSH and increases 
the hydrolysis of GSH by regulating the target genes 
such as glutaminase 2 (GLS2)[56]. Another target gene, 
spermidine/spermine N1-acetyltransferase 1 (SAT1), is 
an important global rate-limiting polyamine catabolic 
enzyme that increases the expression of ALOX15[57]. 
p53 could also activate arachidonate-12-lipoxygenase 
(ALOX12)[58]. ALOX12/15 promote trans-endothelial 
transport of ox-LDL and deposition of ox-LDL in 
the sub-endothelial space[59]. However, p53 seems 
to activate p21, which increases GSH and GPX4[60]; 
p53 also inhibits ferroptosis by blocking dipeptidyl-
peptidase-4 (DPP4) activity in a transcription-
independent manner[61]. Those recent observations 
have given rise to argument on the role of p53 in 
ferroptosis and AS. Nuclear factor erythroid 2-related 
factor 2 (NRF2), an important antioxidant and anti-
inflammatory factor, is also one of the major pathways 
that regulate intracellular defense against ferroptosis, 
partly mediated by regulating iron handling and 
intermediate metabolism[62, 63]. In addition, NRF2 serves 
as an agonist of GPX4 and GSH synthesis proteins [to 
name a few, glutamate cysteine ligase, catalytic subunit 
(GCLC) and modifier subunit (GCLM) expression][64]. 
However, Ruotsalainen et al found that global NRF2 
deficiency also reduced AS lesion size, which may be 
attributed to systemic effects on lipid metabolism[65]. 
NRF2 binds to the promoter of ATP-binding cassette 

B, member 6 (ABCB6) and regulates its expression 
level[66]. Murphy et al indicated that depletion of 
ABCB6 in bone marrow cells resulted in a significant 
increase in oxidative stress and platelet release, which 
promoted arterial deposition of chemokine ligand 5 
(CCL5) and subsequently, AS development[67, 68]. Iron 
overload also promotes pro-inflammatory phenotype 
switch of macrophages, leading to instability of plaques 
via ROS/acetyl-p53 pathway[53, 69, 70]. It’s interesting to 
note that ferroptosis could also occur in other cell types 
such as macrophages and VSMCs[71, 72]. Ferroptosis is 
considered another key mechanism linking DM to AS 
progression since long-term hyperglycemia could lead 
to increased intestine iron absorption and circulating 
iron levels, and impaired iron homeostasis[73, 74]. 
Elevated levels of glucose also increase mitochondrial 
ROS production and subsequently activate lipid 
peroxidation[75, 76].

Several drugs were applied in AS preclinical 
models based on the understanding of mechanisms 
of ferroptosis. For instance, ferrostatin 1 (Fer-
1), an inhibitor of the iron accumulation and lipid 
peroxidation, reverses the expression of SLC7A11 
and GPX4 in ECs in ApoE–/– mice, and attenuates 
the development of AS[77]. ROS is alleviated and 
cell viability is maintained in human umbilical vein 
endothelial cells (HUVECs) treated with ferroptosis 
inducer erastin[78]. Strikingly, Fer-1 alleviates iron 
overload, improves endogenous resistance to lipid 
peroxidation and prevents ferroptosis via E2-related 
factor 2/FSP1 axis rather than classic p53/SLC7A11/
GPX4 pathway[79]. Similarly, another small molecular 
inhibitor, liproxstatin-1, can reverse lipid peroxidation 
and ferroptosis in macrophages, endothelial injury 
and progression of AS in a hyperlipidemic and 
hypererythroemic mice model[80]. Wang et al indicated 
that ferroptotic damage in ECS induced by exposure 
to PM2.5 could be partially rescued by Fer-1 and 
iron chelator deferoxamine mesylate[81]. There is 
accumulating evidence suggesting that ferroptosis is 
regulated by statins, thereby justifying an important 
lipid-independent pleiotropic action of statins including 
atorvastatin and simvastatin in atheroprotection[82, 83].
2.2 Pyroptosis

Pyroptosis is a novel cell death form that mainly 
occurs in macrophages[84]. Ox-LDL, cholesterol 
crystals and other risks [e.g., double-stranded DNA, 
lipopolysaccharide (LPS), extracellular ATP] evoke the 
assembly of inflammasome, a supramolecular complex 
including several types of NOD-like receptor protein 
3 (NLRP3)[85]. NLRP3 recruits apoptosis-associated 
speck-like protein (ASC), which further converts pro-
caspase-1 into caspase-1, followed by the cleavage 
of gasdermin D. One of the products, N-terminal 
gasdermin D, binds to cell membrane and boosts pore 
formation, leading to a release of bioactive IL-1β and 
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IL-18, and subsequent cell swelling and lytic death, 
which is known as pyroptosis[86]. Although pyroptosis 
contributes to prevention of microbial infections, 
excessive activation of pyroptosis contributes to AS 
development[87]. 

A bulk of investigations have discussed the 
mechanisms underlying the occurrence of pyroptosis and 
how pyroptosis contributes to AS. To name a few, ox-
LDL-treated macrophages exhibit elevated endoplasmic 
reticulum (ER) stress [activating transcription factor 
(ATF) 4 and 6][88]. Unfolded protein response (UPR) 
induced by ER stress activates pro-IL-18 and pro-IL-1 by 
p38 mitogen-activated protein kinase (MAPK), which is 
an activator of pyroptosis[89, 90]. As mentioned above, ox-
LDL is able to activate the Toll-like receptor 4 (TLR4) 
directly, increase nuclear factor κB (NF-κB) p65 
phosphorylation and promote the transcription of pro-
IL-1β and pro-caspase-1 in HUVECs[91, 92]. Ca2+ signal 
is required for NLRP3 inflammasome activation[93]. Ox-
LDL also promotes Ca2+ influx by inducing the closure 
of inwardly rectifying K+ channels and upregulating 
calcium-sensing receptor in monocyte/macrophages 
and VSMCs[94, 95]. Subsequent intracellular Ca2+ 
overloading results in mitochondrial disorders, ROS 
production and release and NLRP3 inflammasome 
assembly in ECs[96, 97]. NLRP3 inflammasome induces 
disrupted mitochondrial membrane potential (MMP) 
and ROS generation[98]. Afterwards, ROS could 
promote the cleavage of gasdermin D by stimulating 
cysteine oxidative modification, and induce the 
separation of thioredoxin-interacting protein (TXNIP) 
from thioredoxin (TRX) and combination with and 
further activation of NLRP3 according to a hepatologic 
study[98, 99]. Pyroptosis could be significantly evoked by 
hyperglycemia due to production of ROS and NLRP3 
inflammasome assembly at least partly mediated by a 
series of non-coding RNA including miR-30d, miR-
21-3p, miR-9 and lncRNA MDRL[100–102].

The massive release of pro-inflammatory cytokines 
(IL-1β and IL-18) leads to inflammation, plaque rupture 
and thrombosis[103]. An increased IL-1β level was 
observed among individuals with AS[104]. Those pro-
inflammatory cytokines were reported to contribute to 
AS plaque progression via the upregulation of adhesion 
molecules on ECs and stimulation of VSMCs[104]. 
Inhibition of NLRP3 inflammasome with specific 
inhibitor MCC950 or INF39 abolishes ox-LDL-
induced IL-1β maturation, LDH release and the 
development of AS[105, 106]. Anti-inflammatory therapy 
targeting IL-1β with canakinumab (150 mg every 
3 months) significantly reduced ischemic events 
in patients being treated for secondary prevention, 
according to the CANTOS trial[36]. Pyroptosis was 
also identified as a target of traditional drugs and 
natural medicines such as statins[107, 108], melatonin[109], 
salidroside[110], resveratrol[92], sinapic acid[111] and 

dihydromyricetin[112]. However, it’s noted that Z-VAD-
fmk, an inhibitor of caspase-1, reduces AS plaque 
stability[113].
2.3 Cuproptosis

As another essential catalytic cofactor, copper (Cu) 
regulates a wide range of biologic processes such as 
mitochondrial respiration and energy metabolism[114]. In 
a recent report, excessive cellular copper ions could bind 
to fatty-acylated proteins in the tricarboxylic acid (TCA) 
cycle, leading to proteotoxic stress and subsequently, 
disturbed lipid metabolic homeostasis, oxidative 
stress, mitochondrial damage, and EC dysfunction, 
which is similar to ferroptosis[115–117]. Cellular levels of 
copper and antioxidant-1 (ATOX1), one of the major 
copper chaperone proteins increase in inflammatory 
lesions, including AS plaque[118, 119]. ATOX1 binds to 
tumor necrotic factor α (TNFα) receptor-associated 
factor 4 (TRAF4) and promotes ROS generation in a 
Cu-dependent way[120]. Tetrathiomolybdate (TTM), a 
compound that chelates copper with high specificity, 
could inhibit vascular inflammation and attenuate the 
development of AS, which is independent of oxidative 
stress and iron metabolism[121, 122].

However, research on the phenotype of 
cuproptosis, the effects of Cu homeostasis in AS and 
the regulatory mechanisms of the signaling cascade is 
still in its infancy; and several contrary observations 
have raised doubts about the role of cuproptosis in 
AS. For instance, Cu reduces the occurrence and 
alleviates the development of AS, which could be at 
least partly attributed to inhibited pro-inflammatory 
signals. Cu2+ coordination polymer inhibits the Notch 
pathway, an evolutionarily conserved cellular signaling 
pathway that mediates pro-inflammatory polarization 
of macrophages, and reduces inflammatory events in 
plaques[123, 124]. Li et al found that Cu2+ supplement 
enabled lower cholesterol and phospholipid levels, EC 
mortality in AS lesions and a minimized lesion size[125]. 
Increased copper intake reduced the risk of AS in 
young healthy women, indicating the effect of copper 
might be different in the early and advanced stages of 
AS[126]. However, Notch pathway was also shown to 
play a role in the establishment of anti-atherogenic and 
pro-survival niche, maintenance of EC integrity and 
prevention of activation and harmful transdifferention 
of medial VSMCs[127–129]. Given the aforementioned, 
more studies on the potential effects of cuproptosis and 
Cu supplement are required.

Conclusively, novel cell death forms have 
received extensive attention in the exploration of 
pathophysiologic mechanisms and potential therapeutic 
targets of AS. Many studies have asserted that cell death 
is crucial for AS development and a bulk of relevant 
small molecular inhibitors seemed to be beneficial. 
However, it remains inconclusive how much effects 
those death forms have since apoptosis is considered 
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the major form of programmed cell death[39]. And as 
asked by Dr. Green, how dispensable is something 
that is essential[130]? Additionally, the crosstalk of the 
death forms is also of great interest due to closely 
related pathways involved. Different programmed cell 
deaths share several same pathological processes, for 
instance, ROS production, mitochondrial dysfunction 
and inflammation[42]; and it’s generally found that 
different forms of cell death occur simultaneously. For 
instance, the toxicity of copper oxide nanoparticles 
also activates the NLRP3 inflammasome and promotes 
levels of caspase-1 and IL-1β in macrophages in 
addition to cuproptosis[131].

3 STORY TWO: NOVEL FUNCTIONS OF 
FOCAL MYELOID CELLS

Myeloid cells, including granulocytes, monocytes 
and dendritic cells, are initially recognized as 
inflammatory cells. However, novel functions of 
those cell types have been reported, among which 
efferocytosis and extracellular traps are of the most 
interest[132, 133].
3.1 Efferocytosis

Roughly 200 billion cells die in the human body 
daily, and they are eliminated by phagocytes, including 
those with high phagocytic capacity (macrophages 
and dendritic cells) and those non-professional cells 
with lower phagocytic capacity (for instance, ECs 
and fibroblasts)[132]. Aside from the cell death forms 
mentioned above, AS lesions are characterized 
by a pro-apoptotic niche due to accumulation of 
intracellular lipid and cholesterol, high levels of 
inflammatory factors, angiotensin Ⅱ, ROS production 
and hypoxia[40, 134–136]. A quick phagocytic clearance 
and highly effective turnover of apoptotic cells, 
which is termed “efferocytosis”, is essential for tissue 
homeostasis and restructuring, embryonic development 
and inflammation resolution[132, 137, 138]. Efferocytosis 
is considered a multistep process-the recognition and 
location phase, the eating phase and the digestion 
phase[132]. Phagocytes migrate towards the dying cells 
where the concentration of chemokines and other soluble 
signals (e.g., ATP and lysophosphatidylcholine) is 
higher[139, 140], and recognize the pro-phagocytic signals 
(“eat-me”) exposed on the outer plasma membrane 
of dying or dead cells[141]. Well-established “eat-
me” factors include externalized phosphatidylserine, 
annexin 1, ox-LDL, and modified ICAM-3[142–144]; 
conversely, CD47 and CD31 act as “don’t-eat-me” 
signal by binding to signal regulatory protein α (Sirpα, 
CD172a) and CD300a and suppress the phagocytic 
function[145, 146]. The components of dead cells were 
mainly processed in a phagosome-dependent manner 
(canonical phagocytosis); additional pathway entails 
microtubule-associated protein 1A/1B light chain 3 

(LC3)-related phagocytosis[147, 148]. 
Accumulating evidence indicated that defective 

removal of dead cells participated in the development 
of AS, mainly mediated by upregulation of “don’t-
eat-me” signals, downregulation and modification 
of “eat-me” signals. As described previously, pro-
inflammatory niche in plaques suppressed the levels of 
active efferocytic molecules such as milk fat globule 
epidermal growth factor (EGF)-factor Ⅷ (MFG-E8) 
and MerTK[149, 150]. To be specific, TLRs stimulated 
by the inflammatory microenvironment suppress the 
MFG-E8-mediated clearance of apoptotic cells[150]. The 
expression of ADAM17 increases in AS lesions, which 
leads to an increased degradation of MerTK[151, 152].
Carriers of the risk allele at the chromosome 9p21 
genome-wide association study (GWAS) locus have 
a significant decreased intraplaque expression of 
Calreticulin, another key “eat-me” ligand, according 
to studies investigating the heritable component of 
ASCVD[153, 154]. Besides, “don’t-eat-me” signals CD47 
and its receptor Sirpα are also upregulated in human 
AS arteries, resulting in secondary necrosis and further 
exacerbating lesion inflammation[155]. Ox-LDL also 
inhibits efferocytosis by competing with apoptotic
bodies for scavenger receptors and masking oxidized 
“eat-me” ligands with ox-LDL-induced autoan-
tibodies[156, 157]. Impaired removal of dying cells 
contributes to the size of necrotic core, reduction 
of luminal flow, and continuous stimulation of 
inflammation secondary to the release of previously-
sequestered intracellular contents[158, 159]. Besides, 
efferocytosis was reported to prevent from the formation 
of foam cells, and promote reverse cholesterol transport 
pathways and the secretion of beneficial factors such 
as IL-10 and TGF-β, which could also explain the 
detrimental role of defective efferocytosis in the 
progression of AS[160–163].
It’s interesting to note that impaired efferocytosis 
unequivocally contributes to the destabilization and 
rupture of plaques due to uncontrolled necrosis and 
subsequent necrotic core expansion, as demonstrated 
in several studies[164]. Plaques in mice expressing 
a cleavage-resistant form of MerTK had elevated 
efferocytosis and smaller necrotic cores[165]; while 
deficiency of MFG-E8 in hematopoietic cells 
increased necrotic core areas[166]. The role of miRNAs 
in impairment of efferocytosis has also been reported, 
for instance, miR-155 which downregulates B-cell 
leukemia/lymphoma 6 in advanced AS lesions[167]. 
DM leads to impairment of efferocytosis due to 
reduction of peroxisome proliferator-activated rece-
ptor γ (PPAR-γ) and activated receptor of advanced 
glycation endproducts (RAGE) pathways, which 
partly explains why hyperglycemia contributes to 
AS development[168, 169]. The roles that non-coding 
RNAs play in efferocytosis were preliminarily 
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demonstrated[170]. LncRNA MIAT, which positively 
modulates the expression of CD47 through sponging 
miR-149-5p, is markedly increased in serum of patients 
with vulnerable plaques and macrophages in advanced 
lesions[171]. 

Efferocytosis has been recognized as a promising 
diagnostic and therapeutic target. Antibody against 
CD47 and inhibitor of Sirpα such as Resolvin D1 
reverses this defect in efferocytosis and the clearance 
of dead cells, and ameliorates the development of 
AS[172, 173]. Additionally, CD47 is considered directly 
downstream of TNF-α[174]. The expression of CD47 
significantly decreased after treatment with antibodies 
against TNF-α (Infliximab or Etanercept)[172]. Despite 
comparable plaque burden between the IgG group 
(control) and the Etanercept group, the combination 
of anti-CD47 and anti-TNF-α antibodies displayed a 
mildly increased phagocytic index and alleviation of 
AS over the anti-CD47 treatment alone[172]. Activity 
of RhoA (a member of Rho GTPases family) seems to 
negatively affect basal engulfment in phagocytes[175]. 
Statins, the cornerstone of ASCVD, could enhance 
efferocytosis by inhibiting RhoA isoprenylation[175]; 
fasudil, another inhibitor of Rho-associated coiled-coil 
kinase (ROCK), the downstream of RhoA, also reduces 
plaque area, arterial intima-medial thickness (IMT) and 
maximal flow velocity[176]. In addition, single-walled 
carbon nanotubes (SWNTs) modified with an inhibitor 
of SH2 domain-containing phosphatase-1 (SHP-1), the 
downstream of Sirpα, allows increased phagocytosis 
and plaque regression as well as reduced expression of 
the inflammatory genes[177].
3.2 Extracellular Traps 

Extracellular traps (ETs) are large web-like 
structures composed of decondensed DNA and 
neutrophil-derived nuclear, cytoplasmatic, and 
granular proteins[178]. The process of ET formation 
is also known as ETosis, which is initially used to 
describe a new form of neutrophil death, but ETs 
derived from macrophages, eosinophils, basophils, 
mast cells and dendritic cells have also been reported 

(table 1). There are 3 major pathways of ETosis: (1) 
“vital ETosis”, which refers to a TLR2-dependent 
process that is stimulated by bacterium[179, 180]; (2) 
“suicidal ETosis”, which refers to a TLR7-dependent 
process that is stimulated by activated platelets, 
antineutrophil cytoplasmic antibodies (ANCA) and 
cytokines such as TNF-α and IL-8 and characterized 
by activation of protein kinase C (PKC) and Raf-MEK-
ERK pathway[181–183]; (3) caspase-dependent ETosis, 
which is induced by cytosolic LPS and characterized 
by caspase-11 activation and GSDMD cleavage[184]. 

In general, ETs are capable of ensnaring and 
killing pathogens; however, there is increasing interest 
in the role of ETs in AS nowadays[185, 186]. MMP9 and 
MMP2 in ETs directly induce ECs dysfunction[187]. 
Döring et al demonstrated that the released DNA and 
neutrophil-derived granule proteins (e.g., cathelicidin) 
stimulate a strong type Ⅰ interferon (IFN-Ⅰ) response by 
vascular plasmacytoid dendritic cells[188]. IFN-Ⅰ affects 
plaque-residing macrophages, potentiates foam cells 
and further promotes extracellular trap formation[189]. 
Besides, experimental data also have attested that IFN-
Ⅰ induced production of CXC chemokines (CXCL) 9, 
CXCL10 and CXCL11, which mediate recruitment 
of leukocytes, activity of pro-apoptotic pathways 
and enhancement of the toxicity of ILs and B cell 
activating factor (BAFF), leading to impairment of 
ECs and endothelial progenitor cells (EPCs)[190]. 
Consistently, positive associations of NETs and their 
components with risks of AS severity and ASCVD 
indicate a detrimental role of NETs in AS. Findings 
by Borissoff et al revealed that double-stranded DNA, 
nucleosomes, and myeloperoxidase-DNA complexes 
serve as biomarkers predicting ASCVD, prothrombotic 
state, and adverse cardiac events[191]. Very few data are 
available on the effects of ETosis derived from other cell 
types, however, macrophage traps seem to dominate 
numerically in late (organizing) thrombosis[133]. 
According to a recent report, CD68+ macrophage-like 
cells transdifferentiated from VSMCs in plaque also 
generate ETs as indicated by VSMCs-lineage tracing 

Table 1  Innate extracellular traps
ET type Stimuli ET constituents
Neutrophil ETs (NETs) Bacterium (LPS)[179, 180], GM-CSF, C5a[204], PMA, 

IL-8, activated platelets[182], ANCA[183], TNF-α[205], 
cytosolic LPS[184]

Nuclear DNA, mtDNA, histones, MPO, proteinase 3, 
Cathelicidin, Cathepsin G, α-defensins[206, 207]

Macrophage ETs (METs) H. influenzae, E. coli, C. albicans[208, 209], PMA, 
LPS, hydrogen peroxide, cigarette[210] 

Nuclear  DNA, mtDNA, histones,  MPO[211], 
MMP9/12[208], Citrullinate[210]

Mast cell ETs (MCETs) S. pyogenes, S. aureus, Streptococcus, protozoa, 
fungi[212, 213], PMA, hydrogen peroxide[214, 215]

Nuclear DNA, mtDNA, histones, Cathelicidins, 
tryptase, β defensins, Piscidins, IL-17[133, 214–216]

Eosinophil ETs (EETs) E. coli, IL-5, IFN-γ, LPS and C5a[217], IgG, IgA, 
PMA, GM-CSF(+PAF)[218]

mtDNA, MBP, ECP[217, 218]

Basophil ETs (BETs) E. coli, S. aureus, IL-3[219] Nuclear DNA, mtDNA, histones, ROS[219]

Dendritic cell ETs (DCETs) A. fumigatus[220] DNA, histones[220]

ECP: eosinophil cationic protein; GM-CSF: granulocyte-macrophage colony stimulating factor; IFN: interferon; IL: interleukin; 
LPS: lipopolysaccharide; MBP: myelin basic protein; MPO: myeloperoxidase; mtDNA: mitochondrial DNA; PAF: platelet 
activating factor; PMA: phorbol 12-myristate 13-acetate; ROS: reactive oxygen species 
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technology and single-cell RNA sequencing (scRNA-
seq), which further regulates the direction of VSMC 
transdifferentiation via stimulator of interferon genes 
(STING)/suppressors of cytokine signaling molecules 1 
(SOCS1) or TLR4 signaling pathways[192]. It’s revealed 
that miR-146a is upregulated in serum of AS patients 
and macrophages-derived exosomes under exposure to 
ox-LDL; miR-146a promotes the generation of ROS 
and release of NETs by targeting superoxide dismutase 
2 (SOD2), a radical scavenger and pivotal component 
of endogenous antioxidant defense barrier[193, 194]. 
Similarly, miR-505/Sirtuin 3 axis also induces NET 
formation in a ROS-dependent manner[195]. Therapeutic 
targeting of ETosis has been well explored in multiple 
diseases. In another elegant study, Apoe–/– mice 
lacking neutrophil-specific proteases neutrophil 
elastase (NE) and proteinase 3 (PR3; Apoe–/–Elane–/–
Prtn3–/– mice) were utilized to assess the effects 
of NETosis in AS[196]. Genetic abrogation of NET 
formation diminishes plaque growth, at least partly 
mediated by suppressed IL-1β/Th17 response[196]. 
DNase Ⅰ is the most commonly used enzyme to disrupt 
NETs after formation, which is well tolerated and 
readily poised for clinical translation[197, 198]. However, 
the benefit of DNase Ⅰ in the progression of AS 
remains unclear. Peptidyl arginase deiminases (PADs) 
are an essential series of enzyme to citrullinate histones 
and subsequently, induce chromatin decondensation 
and facilitate the expulsion of nuclear DNA[199]. PAD4 
and PAD2 are largely associated with NETosis and 
macrophage ETosis (METosis), respectively. Knight 
et al reported that NETosis was significantly inhibited 
by cholarmidine, an irreversible inhibitor of PAD, in 
Apoe–/– mice, where the plaque size was reduced, 
and the carotid artery thrombosis was prevented[200]. 
Simvastatin was reported to reduce neutrophilic 
inflammation and NETosis by reducing PAD4 
expression in mice with asthma or untreated thermal 
injury; however, the effects remain unclear in AS 
preclinical models and patients[201, 202]. Future studies 
should pay more attention to the differences among 
ETosis derived from different cell types. Besides, more 
efforts are required to develop a specific approach to 
target ETosis in lesions since ET is also required to 
reduce potential infection[203].

4 STORY THREE: THE UNDERESTIMATED 
CONTRIBUTION OF VSMCS 
TRANSFORMATION

Initially, the dysfunctional ECs and infiltrated 
immune cells are considered the primary features of 
AS plaques[5, 6, 221]. Despite VSMCs are a major cell 
type in plaques, the main effect of VSMCs is thought 
to be phenotypic conversion to proliferative synthetic 
cells and produce extracellular matrix (ECM)[221].

The ECM forms the fibrous cap and stabilize 
plaques, and as a result, VSMCs play a positive role 
during the development of AS[1]. As an initial step, 
dedifferentiation of VSMCs occurs under exposure to 
atherogenic factors. Those synthetic dedifferentiated 
VSMCs are characterized by calcification genes 
(e.g., osteopontin and osteocalcin), gap junction 
proteins (e.g., connexin 43), transcription factors (e.g., 
KLF4), and collagenase enzymes (e.g., collagenase 
Ⅳ)[222]. Although the precise molecular mechanisms 
underlying this event are still not well understood, 
Rho/Rho-associated coiled coil containing protein 
kinase (ROCK), a prominent regulator of cytoskeletal 
dynamics in VSMCs, is positioned to play a key 
role during VSMC dedifferentiation[222]. Rho/ROCK 
signaling can modulate the expression of a set of genes 
that maintain VSMC contractile status by promoting 
actin cytoskeleton polymerization and stimulating 
myocardin/serum response factor (SRF)-mediated 
gene transcription[223, 224]. However, accumulating 
evidence revealed that the role of VSMCs had been 
simplified and underestimated for a long period[1, 221]. 
For instance, VSMCs in AS lesions exhibit greater 
phenotypic plasticity than generally believed and 
multiple phenotypic switching of VSMC to other 
cell types has been reported in recent genetic lineage 
tracing studies.
4.1 Transdifferentiation of VSMCs to Foam Cells

Foam cells are the major cellular components of 
AS plaque where LDL is ingested, which participates 
in plaque development and rupture[225]. Although 
at first, macrophages are found to contribute to 
foam cells by uptaking lipid via acidified lysosomal 
synapse, VSMCs also transform into foam cells under 
exposure to lipid overload, ox-LDL, inflammation 
and oxidative stress in the intima and media in both 
mice and human, and the major source of foam cells 
seems to be transdifferentiated VSMCs[226–228]. Lipid 
excess is probably attributed to the reduced level of 
the ATP-binding cassette transporter A1 (ABCA1), 
a cholesterol exporter that binds free apolipoprotein 
A-Ⅰ (ApoA-I) to the lipids[228]. The internalization and 
overloading of cholesterol, mainly mediated by LDL 
receptor-related protein 1 (LRP1), downregulates the 
expression of SMC-specific markers [α-smooth muscle 
actin (SMA), smooth muscle 22 α (SM22α), Calponin 
1 (CNN1) and myosin heavy chain 11 (MYH11)] and 
upregulates macrophage-specific genes (CD68 and 
Galectin 3)[227–229]. Ox-LDL activates TLR4 thereby 
reducing NF-κB/acetyl coenzyme A acetyltransferase 
1 (ACAT1), Src and Sirtuin1/3 pathways, which also 
promote the formation of foam cells[230, 231]. IL-1β 
increases LDL uptake and promotes the conversion to 
foam cells. On the contrary, IL-19 inhibits expression 
of LRP1 and ox-LDL uptake[232]. Macrophage 
migration inhibitory factor (MIF), a critical pro-
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inflammatory mediator, inhibits the expression of p68 
and SRF, which induces VSMC dedifferentiation[233]. A 
key regulator in this process is Kruppel-like factor 4 
(KLF-4). Shankman et al developed mice with SMC-
specific conditional KLF4-knockout and a marked 
reduction in lesion size and increase in plaque stability 
were observed[234]. Nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase (NOX) that depends on 
NOX activator 1 (NOXA1) plays an essential role in 
augmenting VSMC proliferation and migration and 
KLF4-mediated transition to macrophage-like cells, 
plaque inflammation, and expansion during AS[235]. 
The NOX and KLF4-dependent process is inhibited by 
SMC Drebrin, a F-actin-binding protein[236]. In a series 
of recent studies, patients with coronary diseases or 
type 2 DM have elevated levels of miR-320a, which 
is considered a key factor aggravating AS progression 
by promoting migration and proliferation of ox-LDL-
stimulated VSMCs via targeting regulators of G protein 
signaling (RGS5)[237–239]. 

Dendritic cells, ECs and stem/progenitor cells 
are also sources of foam cells in AS lesions[240–242]. All 
foam cells have similar features, defective lipoprotein 
efflux and activated influx machinery[225]. However, 
it’s important to investigate the differences between 
VSMC- converted foam cells and those from other 
sources and develop direct interventions to prevent 
phenotypic switching.
4.2 Transdifferentiation of VSMCs to Osteoblast- or 
Chondroblast-like Cells

Under some circumstances such as cholesterol 
excess and oxidant stress, VSMCs could express 
some markers of osteoblast cells rather than SMC-
specific genes[243, 244]. KLF4 seems to participate in 
the osteochondrogenic transformation to generate 
Lgals3+ osteogenic cells[245]. Ox-LDL induces the 
transformation by nuclear factor of activated T cells 
(NFAT) signal pathway, which could be inhibited by 
high-density lipoprotein cholesterol (HDL-C)[244, 246]. 
Chronic high glucose alone or combined with ox-
LDL also induces expression levels of BMP2, alkaline 
phosphatase and secret phosphoprotein (SPP1) in 
VSMCs[247]. VSMCs that are exposed to high levels 
of phosphate and calcium or ROS have activated Wnt 
pathway and bone morphogenetic proteins (BMPs), at 
least partly mediated by upregulation of Runt-related 
transcription factor 2 (RUNX2) and msh homeobox 
2 (MSX2) transcription factors[243, 248–250]. Badi et al 
indicated that the process of high phosphate-induced 
phenotype switching could be dampened by Sirtuin 
1[251]. The expression of miR-34a, which targets 
Sirtuin 1, is associated with RUNX2 and induces 
vascular calcification. The osteogenic transformation 
and vascular calcification are inhibited by calcium 
and osteoprotegerin via insulin-like growth factor 1 
receptor (IGF-1R)[252]. Kanno et al revealed that NO 

prevents differentiation of VSMCs into osteoblastic 
cells by inhibiting TGF-beta signaling in a cyclic 
guanosine phosphate (cGMP)-dependent manner[253]. 
In a rat model of chronic kidney disease, secreted 
Frizzled related protein 5 (SFRP5) was found to be 
negatively associated with VSMC transformation 
to osteoblast-like cells and vascular calcification by 
regulating RhoA/ROCK and c-Jun N-terminal kinase 
(JNK) pathways[254]. Vascular calcification could occur 
in the media, which also promotes arterial stiffness. It’s 
suggested that a phenotypic transformation of VSMCs 
to chondrocytes rather than osteoblasts, is responsible 
for mid-layer calcification[249].

Lineage-tracing studies in mice show that 98% of 
all osteochondrogenic cells in AS lesions are VSMC-
derived[255]. Those cells contribute to AS calcification, 
which is well-accepted synonymous with coronary AS 
plaque[256]. There has not been a consensus on whether 
calcification is benign or ominous. Some researchers 
believe that calcification has a reparative and stabilizing 
effect on the plaque[257, 258]. However, a greater fragility, 
increased stiffness and impaired EC function were 
also observed in calcified vessels[259–261]. Therefore, 
the dialectical idea that some forms of calcification 
[e.g., micro-calcified deposits (<50 μm)] may serve 
as a marker of inflammation and vulnerability of 
plaque whereas other forms [e.g., macrocalcification 
(>200 μm)] might identify stable lesions was 
increasingly recognized[262, 263]. As a result, more 
efforts on the opposites effects of osteochondrogenic 
transformation and vascular calcification are necessary 
for the development and clinical transition of novel 
therapeutics.
4.3 Other VMSC-derived Cells in AS Plaques

Using single-cell RNA sequencing, Wirka et al 
demonstrated the myofibroblast-like or fibromyocyte 
transformation of VSMCs in both mice and human[264]. 
Those myofibroblast-like VSMCs have decreased 
smoothelin level (a typical VSMC marker) as well 
as elevated expression levels of fibronectin 1, 
osteoprotegerin, collagen type 1a1, and an induction 
of fibroblast-specific pathways. TCF21, a casual 
cardiovascular disease gene, is essential to the 
transdifferentiation, and the knockout of TCF21 
in VSMCs leads to reduced fibromyocytes in the 
protective fibrous cap of the lesions and increased risks 
of cardiovascular diseases[265]. In addition, contractile 
VSMCs cultured in vitro exhibit induced expression of 
EC markers, including CD31, von Willebrand factor, 
and VE-cadherin following laminar shear stress[266]. 
Hong et al developed an indirect approach to promote 
the transdifferention in vitro by reprogramming 
(using Yamanaka factors[267]) and regulation of Notch 
pathway[268]. It’s important to note that the VSMC-
derived ECs have not only typical endothelial markers 
expression, but also endothelial functions in vitro 
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and in vivo, implying that the EC subpopulation may 
also contribute to intraplaque neovascularisation 
and haemorrhage, which are associated with plaque 
rupture[268]. Lipid-containing VSMCs with elevated 
adipsin and lipogenesis gene expression levels were 
observed in human AS lesions[269]. However, exposure 
to adipocyte-conditioned medium leads to activation 
of pathways related to inflammation and fibrosis, but 
it remains unclear whether adipogenic transformation 
is induced[270]. Few studies reported the role and 
abundance of VSMCs-derived adipocytes in AS lesions. 
In response to environmental cues, the capability of 
medial VSMCs to convert to mesenchymal stem cell 
(MSC)-like cells has also been revealed and those 
MSC-like cells may further develop into adipocyte-
like and osteoblast-like, and chondroblast-like cells[271]. 
However, robust evidence on the pluripotency of the 
VSMC-derived MSC-like cells is lacking. 

Conclusively, VSMCs have been undervalued and 
mischaracterized for a long period, and accumulating 
studies emphasized the high plasticity of VSMCs, 
which offers the challenge to understand the full 
role of VSMCs in AS lesions and the opportunity to 
develop new drugs simultaneously[249]. However, the 
clinical transition of those studies is limited before 
several questions are addressed. Firstly, despite that 
altered expression levels of related specific genes were 
observed, direct evidence of those VSMC-derived cell 
subpopulations in human lesions is currently lacking. 
Secondly, unlike the intuitive role of ECs, the causal 
association between VSMC transdifferentiation and 
AS has not yet been fully elucidated. What’s more, 
it’s upset that few efficient and specific regulators that 
dampen the detrimental transformation and reverse 
the phenotype of VSMCs to protective cell types 
were discovered for further evaluation and potential 
transition due to inadequate current knowledge of the 
mechanisms of VSMC fate maps. Actin polymerization 
mediated by Rho/ROCK, the key pathway maintaining 
healthy phenotype, could also suppress the expression 
of VSMC contractile proteins, an integral step 
for VSMC dedifferentiation under induction of 
angiotensin Ⅱ[224]. Interestingly, the contrary roles 
of miRNAs have been paid attention to recently. For 
instance, miR-21-3p/phosphatase and tensin homolog 
deleted on chromosome 10 (PTEN) axis promotes 
VSMC migration and proliferation and accelerates 
AS plaque development[27]. miR-143/145 are regarded 
as global regulators of VSMC phenotype switching. 
KLF2-expressing EC-derived exosomal miR-143/145 
promotes atheroprotective transformation of VSMCs 
and reduces AS lesion formation in the aorta of ApoE–/–
mice[272]. LncRNA CARMN, which was annotated 
as the host gene of the miR-143/145 cluster, was 
also reported to maintain the contractile phenotype 
of VSMCs and the loss of CARMN primes VSMCs 

towards an atherogenic phenotype[273]. However, the 
discordance of key regulators and the dynamic and 
complicated effects of hundreds of types of noncoding 
RNAs hinder a clear and definitive identification. 
Finally, several stimuli were applied to induce 
transdifferentiation in previous in vitro and in vivo 
studies; however, the real and combined effects in the 
pathogenesis of AS in human remain unexplored. 

5 STORY FOUR: IMPROVEMENTS OF STEM 
CELL-BASED THERAPY

Currently blood lipid regulation is still the 
cornerstone of AS therapy in human. Although drugs 
such as statins could be efficient to lower blood lipid 
and/or cholesterol, potential adverse reactions and 
residual risks make them hard to be called a panacea. 
And it’s generally considered that current medicine 
fails to reverse or eliminate plaques, leaving a large 
number of AS patients progressing to arterial stenosis 
or occlusion[31]. For those individuals with moderate- 
or severe artery stenosis, endarterectomy, endovascular 
stenting and other revascularization approaches are 
also commonly used; however, those interventions 
are limited due to invasiveness and the incidence 
of stent restenosis and thrombosis is pretty high[274]. 
Those limitations give rise to the development of novel 
therapies, such as stem cells and nanomedicine. 
5.1 Current Knowledge of Stem Cell-based Therapy 
for AS

There are 3 major types of stem cells based on 
the origin: embryonal stem cells, induced pluripotent 
stem cells and adult stem cells (ASCs). ASCs include 
mesenchymal stem cells (MSCs) derived from 
bone marrow (BMSC), adipose tissue (AMSC) and 
umbilical cord (UCMSC), endothelial progenitor cells 
(EPCs), smooth muscle progenitor cells (SPCs) and 
hematopoietic stem cells (HSCs)[275]. Most of studies 
focused on stem cell transplantation therapy for AS 
utilized MSCs because the MSCs could be isolated easily 
and have unique properties of efficient self-renewing, 
releases of paracrine molecules, immune-tolerance, and 
multipotent differentiation potential[276, 277]. Although 
the beneficial effects on myocardial ischemia are 
convincing, only a few studies focused on the role in 
AS (table 2)[278–280].

The immunoregulation effects of MSCs have 
been extensively studied. Chronic systemic and local 
inflammation is one of the most pronounced features 
of AS. Decreased levels of serum C reactive protein 
(CRP), TNF-α and IL-6 as well as increased levels 
of IL-10 and TGF-β have been widely observed 
regardless of cell types and origins[281–285], which could 
be attributed to inhibition of pro-inflammatory cells 
and stimulation of anti-inflammatory cells according 
to a series of mechanistic studies. To be specific, 
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transplantation of BMSC dramatically decreased 
the levels of serum CCL2, IFN-γ and circulating 
monocytes, and promoted differentiation of T cells into 
Tregs rather than pro-inflammatory subpopulations 
(namely, Th1, Th2 and Th17)[286, 287]. Human gingival 
MSCs also alleviated AS in ApoE–/– mice by 
reducing the level of pro-inflammatory Ly-6Chigh 
monocytes; macrophage foam cell formation was also 
inhibited by modulating the expression of scavenger 
receptors (CD36, SR-A1, ABCA1)[288]. In an in vitro 
investigation, adipose tissue-derived MSCs exerted 
greater advantageous anti-inflammatory capabilities 
than BMSCs[289]. Inhibited inflammatory niche by 
MSCs could also stabilize and mend plaques to avoid 
rupture and superimposed thrombosis, which lead to 
acute coronary syndromes, strokes and sudden death. 
In a vulnerable atherosclerotic rabbit model, injection 
of allogeneic BMSCs downregulated NF-κB, MMP-
1, -2, -9 and upregulated TNF-α stimulated gene/
protein 6[285]. As a result, plaques from the MSC group 
had more stable morphological structure and a larger 
fibrous cap/lipid core ratio. 

Whether transplanted stem cells can regulate 
blood lipids or directly repair the damaged ECs 
remains controversial. Cholesterol disorder is a 
critical factor of cardiovascular homeostasis and AS 
development. In a study where gingival MSCs were 
injected to ApoE–/– mice, the levels of serum LDL and 
TC as well as cholesterol accumulation in the plaque 
significantly decreased[288, 290]. Similarly, Frodermann 
et al also reported injection of BMSCs reduced 
serum cholesterol, mainly mediated by a reduced de 
novo hepatic lipogenesis[286]. High concentration of 
IL-10 and activation of Tregs have the capability of 
lowering serum cholesterol[291]. However, inconsistent 
findings were also observed[292, 293]. Besides, although a 
study reported that BMSCs injected from donor mice 
could engraft on recipient arteries in areas at risk for 
atherosclerotic injury to replace the senescent ECs, 
it’s generally recognized that EPCs and SPCs, rather 
than transplanted stem cells, are major sources of 
regeneration and repair in AS lesions[294, 295]. However, 
a combined injection of BMSCs and platelet derived 
growth factor-BB (PDGF-BB)-loaded injectable 
hydrogel seems to exert an improved survival and EC 
differentiation of BMSCs and an accelerated wound 
healing by improving epithelialization and collagen 
deposition[296].
5.2 Problems and Future Directions of Stem Cells 
Transplantation

Firstly, it could be a priority to investigate how 
and where the injected MSCs play a role. Homing 
and migration of stem cells are dependent on ICAM-
1/leukocyte function-associated antigen-1, VCAM-
1/very late antigen (VLA)-4 and CXC Chemokine 
receptor 4 (CXCR4)/stromal cell-derived factor 1α 

(SDF-1α) axis. Although it’s well documented that 
lesional inflammation upregulates ICAM-1, VCAM-
1 and SDF-1α which could potentially promote the 
recruitment of stem cells[301–305], only one article has 
proven that stem cells can reach plaques yet[284]. 

Secondly, the wide range of tested cell injection 
strategies has been plagued by poor engraftment 
and survival of the transplanted cells due to pro-
inflammatory and pro-apoptotic niche, which limits 
clinical translation. Besides, the therapeutic effects of 
natural, unmodified MSCs were far from satisfactory. 
With the development of enhancement strategies, 
pretreated or genetically modified MSCs provide a 
better choice. Although the efficacy of genetically 
modified stem cells has been verified in many other 
diseases, such as myocardial infarction and tumor, there 
are only a few studies on their role in vascular injury 
and AS[306]. The suppression of SMC proliferation 
was more pronounced when BMSCs were transfected 
with let-7a than unmodified BMSCs[307]. Tao et 
al genetically modified MSCs with high mobility 
group box 1 (HMGB1) and found that the infusion 
of engineered MSCs significantly alleviated vascular 
inflammation and promoted ECs regeneration by 
CXCR4/SDF-1 axis-mediated migration and multiple 
signaling pathway (p53 and MAPK)[308]. Combinatorial 
pretreatment with hypoxia and Tongxinluo, a traditional 
Chinese medicine, markedly enhanced the CXCR4 
level of MSCs and promoted the retention in infarcted 
myocardium[279]; pretreatment with atorvastatin exerts 
similar benefits[309]. However, the therapeutic effects of 
both approaches remained unexplored in AS models.

Another obstacle of stem cell injection is potential 
embolism, carcinogenicity and immunogenicity, 
although no severe adverse effects were observed 
yet; in contrast, plenty of studies indicated the great 
biocompatibility, especially of the MSCs[310, 311]. 
However, with the development of bio-nanomedicine, 
it’s increasingly recognized that extracellular vesicles 
(EVs) secreted by stem cells act as a major mediator 
of the benefits which could influence multiple aspects 
of AS progression. miR-233 in microvesicles (MVs) 
derived from BMSCs could bind directly to NLRP3 
and inhibits pyroptosis and inflammation in plaques[312]. 
Mice treated with BMSC-MVs had a lower vulnerability 
index of plaques and intima-media thickness. Small 
EVs, also known as exosomes, that were derived 
from human umbilical cord MSCs and rich in miR-
100-5p significantly reduced atherosclerotic plaque 
size and inflammation response in ApoE–/–mice via 
frizzled 5/Wnt/β-catenin pathway[313]. In another study, 
exosomal miR-21a-5p promoted polarization towards 
anti-inflammatory macrophages (M2) and reduced 
macrophage infiltration in lesions by targeting kruppel-
like factor 6 (KLF6) or extracellular signal-regulated 
protein kinases 2 (ERK2)[314]. miR-145/Junction 
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adhesion molecule A (JAM-A) and miR-146a/Src 
pathways were also reported in AS models[315, 316]. 
Exosomes serve as a bulk of therapeutics, and could be 
an alternative choice of stem cell therapy.

Finally, a significant heterogeneity of the studies 
on stem cell transplantation for AS in terms of cells 
(type, origin and characteristics of donors), animal 
models (model methods, duration, concentration of 
cholesterol in diet), administration approach (injection 
method, dose and frequency) and evaluation parameters, 
is giving rise to a requirement of normalizing the 
protocols. It’s worth mentioning that the difference 
between stem cells from female and male donors, 
young and older donors should be further identified 
and explained mechanistically since protective effects 
were only observed in mice receiving stem cells from 
young individuals or female individuals[295, 299]. Two 
models were theoretically recommended: ApoE–/–
mice, for its widespread application, and high 
cholesterol-fed rabbit, for recapitulation of features 
of human AS[317]. In most reports, 5×105–5×106 cells 
were injected intravenously, weekly or biweekly 
(table 2). A comprehensive assessment of serum 
inflammatory indicators and major cellular biological 
processes in plaques mentioned above (growth and 
transdifferentiation of VMSCs, cell death of ECs and 
phenotype switching of inflammatory cells), as well as 
safety are necessary.

6 STORY FIVE: CLINICAL TRANSLATION OF 
NANOMEDICINE

Nanoparticles (NPs) are considered as another 
promising candidates for prevention, alleviation and 
regression of AS[318]. A multitude of NP types are 
currently under investigation, including lipid-based 
NPs, polymeric NPs, micelles, inorganic NPs, and 
exosomes. The application of those nanoscale particles 
improves the therapeutic effects and minimizes the 
adverse effects of traditional or novel therapies due 
to prolonged half-life period, attractive targeting 
capability and physical properties (table 3)[318].

Primary prevention refers to controlling risk 
factors of AS, one of which is hypertension[339]. 
Recent efforts revealed that encapsulation in poly-ε-
caprolactone/Pluronic® F127 nanocarriers renders 
application of anandamide viable, which was once 
limited due to unfavorable physicochemical properties 
and psychoactive effects[322, 340]. Anandamide-
loaded NPs could lower the blood pressure and 
LV hypertrophy in rats. Similarly, small hairpin 
RNA targeting angiotensinogen and Aliskiren were 
delivered efficiently by polymeric NPs and attenuated 
hypertension in rat models[319, 320]. Besides, poly lactic-
co-glycolic acid (PLGA) NPs carrying propylene 
glycol alginate sodium sulfate, sirolimus or paclitaxel 

alleviated the detrimental effects of ischemia and 
glucose metabolic disorder[325, 326]. NPs may also help 
to make more drugs available and improve patient 
compliance which was limited by the requirement of 
frequent injection, by improving pharmacokinetic 
characteristics and providing a sustained drug release 
over a time course. In general, exendin-4 is injected 
subcutaneously; while exendin-4-loaded low molecular 
weight chitosan NPs enable a higher oral bioavailability 
and lower glucose in mice[327]. Another risk factor of 
AS is hyperglycemia. NPs have act as promising tools 
to develop orally administered insulin system, whose 
use was hampered by digestion by gastrointestinal 
enzymes, low absorption by the intestine, and protein 
modification by the acidic or basic environment in the 
last two decades[341, 342]. Metformin and glucagon-like 
peptide-1 (GLP-1) receptor agonists were also loaded 
into NPs, which have been summarized in a previous 
review[343].

Stimulated by the idea that targeting lesional 
macrophages in ApoE–/– mice lessens burden in 
plaque, Tom et al utilized HDL NPs, an atheroprotective 
bio-nanomaterial, to deliver an inhibitor of CD40/TNF 
receptor-associated factor 6 (TRAF6). Recruitment 
of leukocytes and activation of macrophages were 
suppressed[330]. Upon pathologic status, activated ECs 
express more adhesion molecules like selectins than 
normal, which may provide potential targets employed 
in atherosclerotic nanomedicine. In an elegant study, 
5 adhesion molecules associated with recruitment of 
leukocyte into plaques were simultaneously inhibited 
by a siRNA-loaded poly(ethyleneimine) NPs and 
lesional inflammation waned in a post-MI ApoE–/– 
mouse model[333]. It’s interesting to note that the activity 
of matrix-degrading plaque protease was reduced, 
which is an indicator of plaque stabilization. Ma et al 
developed a polyethylene glycol-polyethyleneimine 
(PEG/PEI)-based E-selectin-targeting multistage ve-
ctor for delivery of miR-146a and miR-181b[329]. The 
plaques in ApoE–/– mice treated with the nanocarriers 
had a smaller size and a higher stabilization. Aside from 
these approaches, avoiding rupture and thrombosis 
could be another strategy once plaque forms. 
Nakashiro et al developed bioabsorbable, pioglitazone-
incorporated PLGA NPs, and demonstrated its effects 
of inhibiting the activity of matrix metalloproteinases 
and cathepsins in the brachiocephalic arteries, as well 
as the expression of inflammatory cytokines[344]. NPs 
carrying siRNA targeting c-Jun N-terminal kinase 
(JNK2), which evokes macrophage uptake and 
internalization of ox-LDL and promotes the formation 
of resident foam cells by phosphorylating scavenger 
receptors, also restore endothelial barrier integrity and 
reduce thrombotic risk[332]. Conclusively, NPs enable 
delivery of therapeutic agents to target sites with high 
spatial and temporal resolution, thus increasing the 
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likelihood that they can be successfully translated to 
clinical settings[318].

Currently, the potential of NPs for AS prevention 
and treatment has not been fully realized and there is a 
huge gap between the research on NP and the in-depth, 
mechanistic investigations summarized above. For 
instance, it remains unexplored whether an NP system 
could regulate the fate of VSMCs directionally, or 
prevent ECs from ferroptosis, or inhibit “don’t-eat-me” 
signals and promote efferoptosis. The major concerns 
of application of NPs are the biocompatibility. There 
are a few studies reporting NP-associated acute and 
chronic hazards in medicine applications, although 
some observations could be contentious. NP-
associated toxicity is mainly mediated by oxidative 
stress injury, pro-inflammatory and pro-apoptotic 
effects secondary to production of  ROS, phagocytic 
cell response and lack of anti-oxidants[345]. Potential 
off-target organs damage induced by NP accumulation 
should also be evaluated, especially for those NPs with 
poor degradability and slow clearance[346]. A general 
consensus is that toxicity of NPs depends on many 
parameters, comprising material composition, shape, 
size, surface charges and doses. For instance, organic 
NPs such as silica NPs could induce vascular ECs 
dysfunction and promote the release of procoagulant 
and pro-inflammatory factors via miR-451a/IL-6R/
STAT pathway[347–349]. Exposure to gold (Au) NPs 
caused a potential nephrotoxicity[350]; cationic AuNPs 
seem to be more toxic than anionic AuNPs[351]. Nermar 
et al found that superparamagnetic iron oxide NPs led 
to cardiac oxidative stress and thrombosis[352]. Given the 
results, a recommendation for the development of NP-
based AS therapy is comprehensive safety assessment. 
Exosomes and most of polymeric NPs are favored due 
to great biocompatibility[353]. Another well-recognized 
strategy is optimization of the physicochemical 
properties such as functionalization with nontoxic 
surface molecules[318]. What’s more, novel mechanism-
based NPs and advanced strategies in studies of tumor 
or ischemia models have not been introduced to AS 
models. These approaches include curroptosis-related 
NPs[354], ROS or inflammation responsive NPs[355, 356], 
and hybrid NPs[357]. 

7 CONCLUSIONS AND AN INTEGRATED 
PERSPECTIVE

In this comprehensive review, we listed 5 top 
research directions of AS based on the current popularity 
and prospect: (1) transdifferentiation of VSMCs; (2) 
novel cell death forms of ECs (and other cells); (3) novel 
functions of immunocytes, efferocytosis and ETosis; 
(4) stem cell-based therapy; (5) nanomedicine for AS. 
Present review provides a detailed update on those 
cellular and biomolecular mechanisms and therapies, (C
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along with the future research directions and the points 
that require special attention. There is an urgent need 
on further studies on the biomolecular mechanisms 
and the roles in AS to improve the understanding of 
the stories since our knowledge is apparently not yet 
comprehensive. For instance, Liang et al identified 
phospholipid-modifying enzymes MBOAT1 and 
MBOAT2 as ferroptosis suppressors with a surveillance 
function independent of GPX4 in a recent study[358]. 
Yalcinkaya et al demonstrated that IL-1β derived from 
macrophages with cholesterol accumulation appeared 
to increase NETosis both by increasing neutrophil 
recruitment to plaques and by promoting neutrophil 
NLRP3 inflammasome activation, providing another 
evidence of the interaction between different pathogenic 
processes[359]. Those advances enable the likelihood 
to develop potential therapies. Given the fact that the 
majority of AS-related deaths occur following rupture 
of plaques and subsequent thrombogenesis, studies on 
the effects of the novel mechanisms reviewed in the 
current report on plaque stabilization is lacking. 

Besides, it has been emphasized for a long time that 
single-target monotherapies have intrinsic limitations 
with respect to the maximum benefits; while given the 
complexity of cellular and biomolecular landscapes 
of AS and many other diseases, attempts to develop 
an almighty medicine based on single mechanisms 
could be theoretically challenging[360, 361]. Inspired 
by the idea, two or more antibiotics with multiple 
antimicrobial mechanism have been combined to lower 
risk of resistance development and improve outcomes 
in clinical practice[362]. AS actually shares a similar 
story with drug-resistant bacteria infection, thus next-
generation strategies for AS are recommended here. 
Future efforts on this topic are also supposed to focus 
on either combined medication with multiple targets, 
or the key triggers those mechanisms share, including 
elevated production of ROS, evoked inflammatory 
response and internalization and interaction with ox-
LDL (fig. 1), rather than merely preventing apoptosis 
or inhibiting transcription factors involved in the 
harmful transdifferentiation of VSMCs. Additionally, 
excess cellular cholesterol serves as a common inducer 
of cell death and transdifferentiation. 

Optimized stem cell injection and multi-payload 
NPs serve as two promising all-in-one strategies. 
As living transplants, stem cells could secret a bulk 
of beneficial cytokines and exosomes that regulate 
numerous signals, including oxidative stress, 
inflammation and cholesterol disorders in AS and other 
CVD models (table 2)[278–280]. Nanocarriers loaded with 
multiple payloads targeting complementary signals 
are an alternative option with the advantages of short 
preparation duration, low cost, and high controllability. 
Sager et al have proved the feasibility in a marvelous 
study where 5 targets, all of which are critical adhesion 

molecules, were silenced concurrently by a siRNA/PEI 
NPs[333]. We hope this review could spur more efforts to 
develop an integrated strategy for AS prevention and 
regression.
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