Skip to main content
Log in

NQO1 Mediates Lenvatinib Resistance by Regulating ROS-induced Apoptosis in Hepatocellular Carcinoma

  • Original Article
  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Objective

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated death worldwide. As a first-line drug for advanced HCC treatment, lenvatinib faces a significant hurdle due to the development of both intrinsic and acquired resistance among patients, and the underlying mechanism remains largely unknown. The present study aims to identify the pivotal gene responsible for lenvatinib resistance in HCC, explore the potential molecular mechanism, and propose combinatorial therapeutic targets for HCC management.

Methods

Cell viability and colony formation assays were conducted to evaluate the sensitivity of cells to lenvatinib and dicoumarol. RNA-Seq was used to determine the differences in transcriptome between parental cells and lenvatinib-resistant (LR) cells. The upregulated genes were analyzed by GO and KEGG analyses. Then, qPCR and Western blotting were employed to determine the relative gene expression levels. Afterwards, the intracellular reactive oxygen species (ROS) and apoptosis were detected by flow cytometry.

Results

PLC-LR and Hep3B-LR were established. There was a total of 116 significantly upregulated genes common to both LR cell lines. The GO and KEGG analyses indicated that these genes were involved in oxidoreductase and dehydrogenase activities, and reactive oxygen species pathways. Notably, NAD(P)H:quinone oxidoreductase 1 (NQO1) was highly expressed in LR cells, and was involved in the lenvatinib resistance. The high expression of NQO1 decreased the production of ROS induced by lenvatinib, and subsequently suppressed the apoptosis. The combination of lenvatinib and NQO1 inhibitor, dicoumarol, reversed the resistance of LR cells.

Conclusion

The high NQO1 expression in HCC cells impedes the lenvatinib-induced apoptosis by regulating the ROS levels, thereby promoting lenvatinib resistance in HCC cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021,71(3):209–249

    Article  PubMed  Google Scholar 

  2. Yang JD, Hainaut P, Gores GJ, et al. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol, 2019,16(10):589–604

    Article  PubMed  PubMed Central  Google Scholar 

  3. Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma. Nat Rev Dis Primers, 2021,7(1):6

    Article  PubMed  Google Scholar 

  4. Villanueva A. Hepatocellular Carcinoma. N Engl J Med, 2019,380(15):1450–1462

    Article  CAS  PubMed  Google Scholar 

  5. Vogel A, Meyer T, Sapisochin G, et al. Hepatocellular carcinoma. Lancet, 2022,400(10360):1345–1362

    Article  CAS  PubMed  Google Scholar 

  6. Zhao Y, Zhang YN, Wang KT, et al. Lenvatinib for hepatocellular carcinoma: From preclinical mechanisms to anti-cancer therapy. Biochim Biophys Acta Rev Cancer, 2020,1874(1):188391

    Article  CAS  PubMed  Google Scholar 

  7. Kudo M, Finn RS, Qin S, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet, 2018,391(10126):1163–1173

    Article  CAS  PubMed  Google Scholar 

  8. Llovet JM, Montal R, Sia D, et al. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol, 2018,15(10):599–616

    Article  PubMed  Google Scholar 

  9. Huang A, Yang XR, Chung WY, et al. Targeted therapy for hepatocellular carcinoma. Signal Transduct Target Ther, 2020,5(1):146

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer, 2013,108(3):479–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McGranahan N, Swanton C. Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. Cell, 2017,168(4):613–628

    Article  CAS  PubMed  Google Scholar 

  12. Losic B, Craig AJ, Villacorta-Martin C, et al. Intratumoral heterogeneity and clonal evolution in liver cancer. Nat Commun, 2020,11(1):291

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Zhang K, Chen D, Ma K, et al. NAD(P)H:Quinone Oxidoreductase 1 (NQO1) as a Therapeutic and Diagnostic Target in Cancer. J Med Chem, 2018,61 (16):6983–7003

    Article  CAS  PubMed  Google Scholar 

  14. Li WY, Zhou HZ, Chen Y, et al. NAD(P)H: Quinone oxidoreductase 1 overexpression in hepatocellular carcinoma potentiates apoptosis evasion through regulating stabilization of X-linked inhibitor of apoptosis protein. Cancer Lett, 2019,451:156–167

    Article  CAS  PubMed  Google Scholar 

  15. Lin L, Sun J, Tan Y, et al. Prognostic implication of NQO1 overexpression in hepatocellular carcinoma. Hum Pathol, 2017,69:31–37

    Article  CAS  PubMed  Google Scholar 

  16. Tan W, Zhang K, Chen X, et al. GPX2 is a potential therapeutic target to induce cell apoptosis in lenvatinib against hepatocellular carcinoma. J Adv Res, 2023,44:173–183

    Article  CAS  PubMed  Google Scholar 

  17. Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta, 2016,1863(12):2977–2992

    Article  CAS  PubMed  Google Scholar 

  18. Cui Q, Wang J-Q, Assaraf YG, et al. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist Updat, 2018,41:1–25

    Article  PubMed  Google Scholar 

  19. Calabrese EJ, Bachmann KA, Bailer AJ, et al. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicol Appl Pharmacol, 2007,222(1):122–128

    Article  CAS  PubMed  Google Scholar 

  20. Calabrese EJ, Mattson MP. Hormesis provides a generalized quantitative estimate of biological plasticity. J Cell Commun Signal, 2011,5(1):25–38

    Article  PubMed  PubMed Central  Google Scholar 

  21. Calabrese EJ, Baldwin LA. Inorganics and hormesis. Crit Rev Toxicol, 2003,33(3–4):215–304

    Article  CAS  PubMed  Google Scholar 

  22. Dimri M, Humphries A, Laknaur A, et al. NAD(P)H Quinone Dehydrogenase 1 Ablation Inhibits Activation of the Phosphoinositide 3-Kinase/Akt Serine/Threonine Kinase and Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Pathways and Blocks Metabolic Adaptation in Hepatocellular Carcinoma. Hepatology, 2020,71(2):549–568

    Article  CAS  PubMed  Google Scholar 

  23. Zhou HZ, Zeng HQ, Yuan D, et al. NQO1 potentiates apoptosis evasion and upregulates XIAP via inhibiting proteasome-mediated degradation SIRT6 in hepatocellular carcinoma. Cell Commun Signal, 2019,17(1):168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhu H, Li Y. NAD(P)H: quinone oxidoreductase 1 and its potential protective role in cardiovascular diseases and related conditions. Cardiovasc Toxicol, 2012,12(1):39–45

    Article  CAS  PubMed  Google Scholar 

  25. Dinkova-Kostova AT, Talalay P. NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys, 2010,501(1):116–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Siegel D, Gustafson DL, Dehn DL, et al. NAD(P) H:quinone oxidoreductase 1: role as a superoxide scavenger. Mol Pharmacol, 2004,65(5):1238–1247

    Article  CAS  PubMed  Google Scholar 

  27. Ross D, Siegel D. The diverse functionality of NQOl and its roles in redox control. Redox Biol, 2021,41:101950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Silva VLM, Silva-Reis R, Moreira-Pais A, et al. Dicoumarol: from chemistry to antitumor benefits. Chin Med, 2022,17(1):145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun C, Zhao W, Wang X, et al. A pharmacological review of dicoumarol: An old natural anticoagulant agent. Pharmacol Res, 2020,160:105193

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua-feng Zhang or Wei-dong Jia.

Ethics declarations

All authors declare that they have no conflicts of interest.

Additional information

This work was supported by the Global Select Project (No. DJK-LX-2022001) of the Institute of Health and Medicine, Hefei Comprehensive National Science Center.

Supplementary data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, W., Wang, T., Tian, Wj. et al. NQO1 Mediates Lenvatinib Resistance by Regulating ROS-induced Apoptosis in Hepatocellular Carcinoma. CURR MED SCI 44, 168–179 (2024). https://doi.org/10.1007/s11596-023-2804-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-023-2804-8

Key words

Navigation