Skip to main content
Log in

ARID1A Inactivation Increases Expression of circ0008399 and Promotes Cisplatin Resistance in Bladder Cancer

  • Published:
Current Medical Science Aims and scope Submit manuscript

An Erratum to this article was published on 04 December 2023

This article has been updated

Abstract

Objective

Cisplatin (CDDP)-based chemotherapy is a first-line, drug regimen for muscle-invasive bladder cancer (BC) and metastatic bladder cancer. Clinically, resistance to CDDP restricts the clinical benefit of some bladder cancer patients. AT-rich interaction domain 1A (ARID1A) gene mutation occurs frequently in bladder cancer; however, the role of CDDP sensitivity in BC has not been studied.

Methods

We established ARID1A knockout BC cell lines using CRISPR/Cas9 technology. IC50 determination, flow cytometry analysis of apoptosis, and tumor xenograft assays were performed to verify changes in the CDDP sensitivity of BC cells losing ARID1A. qRT-PCR, Western blotting, RNA interference, bioinformatic analysis, and ChIP-qPCR analysis were performed to further explore the potential mechanism of ARID1A inactivation in CDDP sensitivity in BC.

Results

It was found that ARID1A inactivation was associated with CDDP resistance in BC cells. Mechanically, loss of ARID1A promoted the expression of eukaryotic translation initiation factor 4A3 (EIF4A3) through epigenetic regulation. Increased expression of EIF4A3 promoted the expression of hsa_circ_0008399 (circ0008399), a novel circular RNA (circRNA) identified in our previous study, which, to some extent, showed that ARID1A deletion caused CDDP resistance through the inhibitory effect of circ0008399 on the apoptosis of BC cells. Importantly, EIF4A3-IN-2 specifically inhibited the activity of EIF4A3 to reduce circ0008399 production and restored the sensitivity of ARID1A inactivated BC cells to CDDP.

Conclusion

Our research deepens the understanding of the mechanisms of CDDP resistance in BC and elucidates a potential strategy to improve the efficacy of CDDP in BC patients with ARID1A deletion through combination therapy targeting EIF4A3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021,71(3):209–249

    Article  PubMed  Google Scholar 

  2. Tavora F, Epstein JI. Bladder cancer, pathological classification and staging. BJU Int, 2008,102(9 Pt B):1216–1220

    Article  PubMed  Google Scholar 

  3. Millan-Rodriguez F, Chechile-Toniolo G, Salvador-Bayarri J, et al. Multivariate analysis of the prognostic factors of primary superficial bladder cancer. J Urol, 2000,163(1):73–78

    Article  CAS  PubMed  Google Scholar 

  4. Kamoun A, de Reynies A, Allory Y, et al. A Consensus Molecular Classification of Muscle-invasive Bladder Cancer. Eur Urol, 2020,77(4):420–433

    Article  PubMed  Google Scholar 

  5. Kamat AM, Hegarty PK, Gee JR, et al. ICUD-EAU International Consultation on Bladder Cancer 2012: Screening, diagnosis, and molecular markers. Eur Urol, 2013,63(1):4–15

    Article  PubMed  Google Scholar 

  6. Witjes JA, Bruins HM, Cathomas R, et al. European Association of Urology Guidelines on Muscle-invasive and Metastatic Bladder Cancer: Summary of the 2020 Guidelines. Eur Urol, 2021,79(1):82–104

    Article  CAS  PubMed  Google Scholar 

  7. Galluzzi L, Senovilla L, Vitale I, et al. Molecular mechanisms of cisplatin resistance. Oncogene, 2012, 31(15):1869–83

    Article  CAS  PubMed  Google Scholar 

  8. Valle JW, Lamarca A, Goyal L, et al. New Horizons for Precision Medicine in Biliary Tract Cancers. Cancer Discov, 2017,7(9):943–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lu C, Allis CD. SWI/SNF complex in cancer. Nat Genet, 2017,49(2):178–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu JN, Roberts CW. ARID1A mutations in cancer: another epigenetic tumor suppressor? Cancer Discov, 2013,3(1):35–43

    Article  CAS  PubMed  Google Scholar 

  11. Mathur R, Alver BH, San Roman AK, et al. ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice. Nat Genet, 2017,49(2):296–302

    Article  CAS  PubMed  Google Scholar 

  12. Wu RC, Wang TL, Shih Ie M. The emerging roles of ARID1A in tumor suppression. Cancer Biol Ther, 2014,15(6):655–664

    Article  PubMed  PubMed Central  Google Scholar 

  13. Megino-Luque C, Siso P, Mota-Martorell N, et al. ARID1A-deficient cells require HDAC6 for progression of endometrial carcinoma. Mol Oncol, 2022,16(11):2235–2259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Elkhadragy L, Dasteh Goli K, Totura WM, et al. Effect of CRISPR Knockout of AXIN1 or ARID1A on Proliferation and Migration of Porcine Hepatocellular Carcinoma. Front Oncol, 2022,12:904031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shang XY, Shi Y, He DD, et al. ARID1A deficiency weakens BRG1-RAD21 interaction that jeopardizes chromatin compactness and drives liver cancer cell metastasis. Cell Death Dis, 2021,12(11):990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu X, Dai SK, Liu PP, et al. Arid1a regulates neural stem/progenitor cell proliferation and differentiation during cortical development. Cell Prolif, 2021,54(11):e13124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang FK, Ni QZ, Wang K, et al. Targeting USP9X-AMPK Axis in ARID1A-Deficient Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol, 2022,14(1):101–127

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lyu C, Zhang Y, Zhou X, et al. ARID1A gene silencing reduces the sensitivity of ovarian clear cell carcinoma to cisplatin. Exp Ther Med, 2016,12(6):4067–4071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nigro JM, Cho KR, Fearon ER, et al. Scrambled exons. Cell, 1991,64(3):607–613

    Article  CAS  PubMed  Google Scholar 

  20. Goodall GJ, Wickramasinghe VO. RNA in cancer. Nat Rev Cancer, 2021,21(1):22–36

    Article  CAS  PubMed  Google Scholar 

  21. Li Y, Zheng F, Xiao X, et al. CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Rep, 2017,18(9):1646–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xie F, Li Y, Wang M, et al. Circular RNA BCRC-3 suppresses bladder cancer proliferation through miR-182-5p/p27 axis. Mol Cancer, 2018,17(1):144

    Article  PubMed  PubMed Central  Google Scholar 

  23. Xie F, Xiao X, Tao D, et al. circNR3C1 Suppresses Bladder Cancer Progression through Acting as an Endogenous Blocker of BRD4/C-myc Complex. Mol Ther Nucleic Acids, 2020,22:510–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu F, Zhang H, Xie F, et al. Correction: Hsa_circ_0001361 promotes bladder cancer invasion and metastasis through miR-491-5p/MMP9 axis. Oncogene, 2022,41(35):4183

    Article  CAS  PubMed  Google Scholar 

  25. Zhang H, Xiao X, Wei W, et al. CircLIFR synergizes with MSH2 to attenuate chemoresistance via MutSalpha/ATM-p73 axis in bladder cancer. Mol Cancer, 2021,20(1):70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wei W, Sun J, Zhang H, et al. Circ0008399 Interaction with WTAP Promotes Assembly and Activity of the m(6)A Methyltransferase Complex and Promotes Cisplatin Resistance in Bladder Cancer. Cancer Res, 2021,81(24):6142–6156

    Article  CAS  PubMed  Google Scholar 

  27. Iwatani-Yoshihara M, Ito M, Ishibashi Y, et al. Discovery and Characterization of a Eukaryotic Initiation Factor 4A-3-Selective Inhibitor That Suppresses Nonsense-Mediated mRNA Decay. ACS Chem Biol, 2017,12(7):1760–1768

    Article  CAS  PubMed  Google Scholar 

  28. Xu Y, Zhang S, Liao X, et al. Circular RNA circIKBKB promotes breast cancer bone metastasis through sustaining NF-kappaB/bone remodeling factors signaling. Mol Cancer, 2021,20(1):98

    Article  CAS  PubMed  Google Scholar 

  29. Filippakopoulos P, Qi J, Picaud S, et al. Selective inhibition of BET bromodomains. Nature, 2010, 468 (7327):1067–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tao J, Lu Q, Wu D, et al. microRNA-21 modulates cell proliferation and sensitivity to doxorubicin in bladder cancer cells. Oncol Rep, 2011,25(6):1721–1729

    CAS  PubMed  Google Scholar 

  31. Nagarajan S, Rao SV, Sutton J, et al. ARID1A influences HDAC1/BRD4 activity, intrinsic proliferative capacity and breast cancer treatment response. Nat Genet, 2020,52(2):187–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu X, Li Z, Wang Z, et al. Chromatin Remodeling Induced by ARID1A Loss in Lung Cancer Promotes Glycolysis and Confers JQ1 Vulnerability. Cancer Res, 2022,82(5):791–804

    Article  CAS  PubMed  Google Scholar 

  33. Mei S, Qin Q, Wu Q, et al. Cistrome Data Browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse. Nucleic Acids Res, 2017,45(D1):D658–D662

    Article  CAS  PubMed  Google Scholar 

  34. Iyer G, Rosenberg JE. Novel therapies in urothelial carcinoma: a biomarker-driven approach. Ann Oncol, 2018,29(12):2302–2312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. von der Maase H, Hansen SW, Roberts JT, et al. Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. J Clin Oncol, 2000,18(17):3068–3077

    Article  CAS  PubMed  Google Scholar 

  36. Katagiri A, Nakayama K, Rahman MT, et al. Loss of ARID1A expression is related to shorter progressionfree survival and chemoresistance in ovarian clear cell carcinoma. Mod Pathol, 2012,25(2):282–288

    Article  CAS  PubMed  Google Scholar 

  37. Shi H, Tao T, Abraham BJ, et al. ARID1A loss in neuroblastoma promotes the adrenergic-to-mesenchymal transition by regulating enhancer-mediated gene expression. Sci Adv, 2020,6(29):eaaz3440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang X, Sansam CG, Thom CS, et al. Oncogenesis caused by loss of the SNF5 tumor suppressor is dependent on activity of BRG1, the ATPase of the SWI/SNF chromatin remodeling complex. Cancer Res, 2009,69(20):8094–8101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Garczyk S, Schneider U, Lurje I, et al. ARID1A-deficiency in urothelial bladder cancer: No predictive biomarker for EZH2-inhibitor treatment response? PLoS One, 2018,13(8):e0202965

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li J, Lu S, Lombardo K, et al. ARID1A alteration in aggressive urothelial carcinoma and variants of urothelial carcinoma. Hum Pathol, 2016,55:17–23

    Article  CAS  PubMed  Google Scholar 

  41. Wang F, Dong X, Yang F, et al. Comparative Analysis of Differentially Mutated Genes in Non-Muscle and Muscle-Invasive Bladder Cancer in the Chinese Population by Whole Exome Sequencing. Front Genet, 2022,13:831146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Conde M, Frew IJ. Therapeutic significance of ARID1A mutation in bladder cancer. Neoplasia (New York, NY), 2022,31:100814

    Article  CAS  Google Scholar 

  43. Xu G, Chhangawala S, Cocco E, et al. ARID1A determines luminal identity and therapeutic response in estrogen-receptor-positive breast cancer. Nat Genet, 2020,52(2):198–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu C, Lei X, Chen F, et al. ARID1A loss derepresses a group of human endogenous retrovirus-H loci to modulate BRD4-dependent transcription. Nat Commun, 2022,13(1):3501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell, 2015,160(6):1125–34

    Article  CAS  PubMed  Google Scholar 

  46. Chan CC, Dostie J, Diem MD, et al. eIF4A3 is a novel component of the exon junction complex. RNA, 2004,10(2):200–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen D, Wang Y, Yang F, et al. The circRAB3IPMediated by eIF4A3 and LEF1 Contributes to Enzalutamide Resistance in Prostate Cancer by Targeting miR-133a-3p/miR-133b/SGK1 Pathway. Front Oncol, 2021,11:752573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wei Y, Lu C, Zhou P, et al. EIF4A3-induced circular RNAASAP1 promotes tumorigenesis and temozolomide resistance of glioblastoma via NRAS/MEK1/ERK1-2 signaling. Neuro Oncol, 2021,23(4):611–624

    Article  CAS  PubMed  Google Scholar 

  49. Feng ZH, Zheng L, Yao T, et al. EIF4A3-induced circular RNA PRKAR1B promotes osteosarcoma progression by miR-361-3p-mediated induction of FZD4 expression. Cell Death Dis, 2021,12(11):1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing-yuan Xiao or Guo-song Jiang.

Additional information

Conflict of Interest Statement

The authors declare that they have no conflicts of interest.

This work was supported by grants from the National Natural Science Foundation of China (No. 81974396, No. 81874091, No. 82072840, and No. 82102734), the Natural Science Foundation of Hubei Province (No. 2020CFB829), and the Health Commission of Hubei Province Scientific Research Project (No. WJ2021F081).

Supplementary Data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Yk., Shuai, Yj., Ding, Hm. et al. ARID1A Inactivation Increases Expression of circ0008399 and Promotes Cisplatin Resistance in Bladder Cancer. CURR MED SCI 43, 560–571 (2023). https://doi.org/10.1007/s11596-023-2731-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-023-2731-8

Key words

Navigation