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Summary: Microglia are the major immune cells in the central nervous system and play a key 
role in the normal function of the brain. Microglia exhibit functional diversity, and they control 
the inflammation in central nervous system through releasing inflammatory cytokine, clearing 
apoptotic cells via phagocytosis, regulating synaptic plasticity and the formation of neural network 
by synapse pruning. Recent studies have strongly indicated that the microglial dysfunction is 
associated with a variety of neuropsychiatric diseases such as depression, which have been 
termed as “microgliopathy”. The emergency of advanced technologies and tools has enabled us to 
comprehensively understand the role of microglia in physiology and pathology, and growing studies 
have targetted microglia to explore the treatment of neuropsychiatric diseases. Here, we describe 
the key progress of microglia research, and review the recent developments in the understanding of 
the role of microglia in physiology and etiology of depression.   
Key words: microglia; central nervous system; development; adult; depression

Microglial cells are the immune cells in the central 
nervous system (CNS) and comprise approximately 
10% of the total brain cell population. By interacting 
with other type of cells (including neurons, astrocytes, 
and oligodendrocytes) in the CNS, microglia play a 
vital role in the development of the brain, the formation 
of neural circuits and the proper function of healthy 
brain[1, 2]. The functional and structural characteristics 
of microglia are under exquisite regulation, spatially 
and temporally. While external or internal stimuli 
could cause morphological and functional alterations in 
microglia, which usually involve the transient adaptive 
response under normal circumstances, the pathological 
challenges including chronic infection, trauma, stroke, 
neurodegenerative diseases and chronic psychological 
stress have detrimental impacts on microglia, leading 
to the long-lasting changes. For example, microglia 
are activated, and act as a primary coordinator and 
executor of protection and restoration, or inflammatory 
and toxic effects on neurons and other brain cells[3]. 
Enormous body of evidence has implicated that 
microglia are involved in almost all brain diseases, 
from neurodegenerative diseases, such as Alzheimer’s 
disease (AD), traumatic brain injury (TBI), to mental 

diseases such as major depressive disorder (MDD)[4].
These pathological conditions, which are mainly 
caused by abnormally structural and functional changes 
of microglia, are considered to be “microgliopathy”[5]. 
In this review, we describe the research advances of 
microglia, including their origin, development and 
normal physiological characteristics, and focus on the 
recently identified role of microglia in depression.

1 DISCOVERY OF MICROGLIA

In 1856, the famous German pathologist Rudolf 
Virchow defined a non-neuronal cell population as glia 
in the brain, which is distinct from neurons. However, 
in the next few decades, there has been little progress 
in this field. Until 1919, the Spanish neurologist Pío 
del Río Hortega observed and described microglia 
for the first time, distinguishing them from astrocytes 
and oligodendrocytes. In 1924, Aschoff et al observed 
phagocytosis of microglial cells in gliomas. Subsequent 
decades of researches on microglia were always based 
on the concept that microglia act as inert bystanders of 
the physiology of CNS. Innovative changes occurred in 
2005, when scientists visualized the continuous activity 
of resting microglia in the brain of live mice[6], and 
since then, the advances in the research of microglia 
are progressing by leaps and bounds. In 2007, the study 
found that microglia are independent of circulating 
cells and can self-renew in the brain[7]; in 2010, synaptic 
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pruning process of microglia was discovered[8]. Also, in 
this year, the origin of microglia was revealed and yolk 
nest precursors were identified[9]. The development 
of gene sequencing technology has greatly supported 
the study of microglia. In 2014, Lavin et al revealed 
the transcriptome and epigenome of microglia in adult 
mice[10], which promoted the understanding of the 
molecular characteristics of microglia at the genetic 
level. In 2017, Gosselin et al further elaborated the 
transcriptome and epigenome of human microglia[11]. 
In a recent study, by using single-cell techniques to 
elucidate the single-cell nature of human microglia, the 
presence of microglia subsets of different molecular 
features in the brain was revealed[12, 13]. Throughout 
the research history of microglia, the advances in 
technology have greatly facilitated their research. There 
are several technical nodes, which were non-negligible. 
In 1983, Hume et al firstly used immunohistochemistry 
to detect microglia[14]. In 1986, Giulian et al used flow 
cytometry for the first time to isolate microglia[15]. In 
2000 and 2013, the chemokine c-x3-c-motif chemokine 
receptor 1 (CX3CR1) GFP mice and CX3CR1CreER 
mice were developed, respectively, for the detection 
and targeted intervention of microglia in vivo[16, 17].

2 ONTOGENY OF MICROGLIA

2.1 Origin and Development of Microglia
Like other types of brain cells, microglia have 

long been thought to originate in the neuroectoderm, 
but current studies have demonstrated that microglia 
are a part of the mononuclear phagocytic system[18]. 
Microglia originate from the yolk sac-derived 
primitive macrophage pool that appears on day 8.5 of 
the mouse embryonic stage (E), and at approximately 
E13, microglia precursors appear at the base of the 
fourth ventricle, indicating that microglia precursors 
migrate to the CNS at the early stage of embryo 
and form an independent lineage that is different 
from other hematopoietic stem cells by expressing 
lineage-specific genes (such as Pu.1 and Irf8, which 
are required for the differentiation of microglia), and 
the formation of microglia is even earlier than that 
of other glial cells[19, 20]. Several factors, including 
colony stimulating factor-1 (CSF-1) receptor, TYRO 
protein tyrosine kinase binding protein (Tyrobp) and 
interferon regulatory factor-8 (IRF-8), are crucial 
for the development of microglia[21–23]. Microglia 
are essentially dependent on the continuous CSF-1 
signaling that is mediated by CSF-1 receptor through 
interacting with the alternative ligand interleukin (IL)-
34, but not CSF-1[24]. 
2.2 Maintenance of Microglia

An individual microglial cell has a limited average 
life span, and there has long been controversy about 
the source of microglial replenishment in adult brain. 

Early views suggested that supplementary microglia 
come from the blood system. However, recent studies 
indicated that the maintenance of microglia population 
was not dependent on the circulating monocytes, but 
was supported by the locally self-renewal of microglia 
in the brain. Microglia have a notable self-renewal 
capacity to maintain their densities in specific region, 
and the turnover rate is about 0.05% of cells per hour. 
The turnover of microglia regulates the balance of their 
apoptosis and proliferation in healthy brain[25]. It was 
found that microglia were eliminated by the treatment 
of CSF-1 receptor inhibitors in the brain of mice, and 
microglia repopulation following depletion depended 
on the internal pool of remaining microglia, but not on 
the peripheral macrophages, which required the role of 
IL-1 receptor signaling[26, 27]. 

3 PHYSIOLOGICAL FUNCTION OF MICROG-
LIA

Microglia originate in the brain at the early stage 
of embryonic development and span the developmental 
and adult stages of an individual. Due to the obvious 
differences in the brain circumstances between these 
two stages, the role of microglia in these two stages 
may be different. Actually, microglia in the developing 
brain or in the adult brain have different morphologies, 
roughly showing amoeba cells or branching cells 
respectively, which may indicate different activation 
states of microglia[28]. Consistent with that, the 
transcriptomic analyses of microglia in the embryo, 
early postnatal period and adult CNS have revealed that 
there are highly differential expression of microglial 
characteristics among the three stages[12, 29].
3.1 Role of Microglia in CNS Development

Microglia are the specialized phagocytes in 
the brain, where they rapidly and efficiently clear 
dead or dying cells and debris, and eliminate 
synapses. Furthermore, microglia recognize the cells 
undergoing programmed death and then migrate to 
the corresponding areas to play phagocytic roles[30]. 
In the developing brain, microglia control the fate 
and number of neurons, and like other phagocytes, 
microglia engulf adjacent cells during development, 
in which TNF-α and extracellular matrix factors (such 
as tenascin C) play an important role[31–33]. In addition, 
microglia control the number of neurons by regulating 
neural progenitor cells (NPCs) either through actively 
inducing the apoptosis of NPCs and eliminating 
excess, apoptotic or dead NPCs[34, 35], or positively 
promoting both proliferation/survival of NPCs, and the 
maturation/survival of neurons[36, 37], suggesting that 
activated microglia specifically interact with neurons 
and influence their survival either in a positive or in a 
negative direction during the same period. However, 
how the two processes are coordinated and balanced 
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is not yet known, and further investigation is needed.
Synapses are specialized junctions between 

neurons in brain that connect neurons into millions of 
overlapping and interdigitated neural circuits. Synaptic 
pruning is essential for normal brain development, and 
microglia serve as the “synaptic gardener” by both 
forming and scavenging synapses, in which, several 
immune factors including classical complement 
components and receptors, CX3CL1/CX3CR1, major 
histocompatibility complex (MHC) class I, IL-33 and 
paired immunoglobulin-like receptor B (PirB) are 
involved[38–42]. Complement C3 localizes to immature 
synapses and mediates the developmental pruning of 
retinogeniculate synapses through interacting with C3 
receptors[41]. Li et al recently identified the involvement 
of G protein-coupled receptor (GPR56) in microglial 
synaptic refinement[43]. Moreover, other studies have 
pointed out that microglia not only remove non-
functional synapses, but also may play an active role in 
synaptic circuit remodeling. 

In the developing brain, microglia also support the 
development of the vascular system and other cells such 
as oligodendrocytes and astrocytes[44], and in the white 
matter microglia have been confirmed to be essential 
for normal myelination[45]. In addition, it is reported 
that microglia are required for the formation of new 
blood vessels, but the specific mechanism remains to 
be elucidated[46, 47].
3.2 Role of Microglia in Adult Nervous System

Although previous reports suggest that microglia 
in the adult brain remain in a resting or quiescent 
state until mobilized by a threat, recent studies have 
found that the cell soma of microglia in the adult 
brain is stationary under homeostasis, its processes 
are dynamic and continually survey the surrounding 
environment, whose areas are more than 10-fold 
larger than that of cell body. Microglia constantly 
scan the surrounding brain tissue in a few hours, 
and directly contact neuron and synapse at a certain 
frequency, which is a process called “surveillance” of 
microglia[48, 49]. The factors that modulate this function 
have not been fully elucidated, but ion channels, 
neurotransmitters and purinergic receptors (P2X) may 
be involved[1]. Potassium two-pore domain halothane-
inhibited potassium channel 1 (THIK-1) has been 
demonstrated to conduct the branching and surveillance 
functions of microglia[50]. Microglia continuously 
monitor the changes in microenvironment through 
surveillance function, which is achieved through 
the “sensome” receptors on them, so as to identify 
invading pathogens, misfolded proteins, chemokines 
and cytokines, metabolites, inorganics, as well as the 
changes in pH and extracellular matrix[51]. In addition 
to the intrinsic pathways, microglial surveillance is 
also driven by extracellular signals. Eyo  et al found 
that neuronal activity regulated the microglial process 

surveillance through P2Y12 receptor signaling[52], and 
their recent study showed that noradrenergic signaling 
mediated the response of microglia to neuronal activity 
in a “U- shape” model[53]. Despite that microglia are 
highly dynamic cells that interact with neurons and 
non-neuronal cells via continuous process extension 
and retraction, the dynamic value is not constant under 
physiological conditions. It is found that microglial 
processes are less dynamic and reduced surveillance 
territory in awake brain, while inhibition of neuronal 
activity under general anesthesia dramatically 
increased microglial process surveillance, which is 
mediated by the microglial β2-adrenoceptors[53, 54]. 
Otherwise, the energetic requirements of microglial 
surveillance are supported either by glycolysis under 
resting conditions, or glutaminolysis when adapted to 
glucose deprivation[55].

The microglia in the adult brain are highly 
efficient in clearing dead and surplus cells, and 
the phagocytosis does not seem to require their 
activation, although microglia activation can promote 
phagocytosis[56]. Moreover, microglia-mediated pha-
gocytosis of synapses seems to depend on the changes 
in neuronal activity. In the visual cortex, microglia 
directly interact with axonal terminals and dendritic 
spines, and preferentially phagocytose less active 
presynaptic inputs[4]. The role of phosphatase and 
tensin homologue deleted on chromosome ten (PTEN) 
is recently identified in the regulation of neuronal and 
synaptic engulfment by microglia. Activation of PTEN 
increases the apoptotic signal phosphatidylserine and 
accumulates C1q at synapse, leading to aggrandized 
engulfment of microglia[57].

After acute brain injury, neighboring microglial 
cells migrate to the damaged site within a few minutes 
of the insult, and after a few hours to several days, the 
reactive microglia shrink their processes and transform 
into an amoeboid form, which is called “chemotaxis” 
of microglia[58, 59]. Activation of purinergic receptors 
such as P2Y12 receptors (P2Y12R) in microglia has 
been previously reported to be implicated in microglial 
chemotaxis toward ATP that is released by injured 
neurons and astrocytes at early stages of the response 
to local brain injury[60]. However, the role of P2Y12 
in microglial chemotaxis was challenged by a recent 
study that P2Y12 mediated the random motility of 
microglia induced by the activation of TLR2, but not 
TLR7-stimulated microglial chemotaxis[61].

Microglia are immunocompetent cells that are 
activated in the CNS in response to inflammation 
by releasing immune mediators. Microglia respond 
to damage-associated molecular patterns (DAMPs) 
stimulation, such as pathogenic activated molecular 
patterns, misfolded proteins, by releasing pro-
inflammatory factors, such as IL-6[62]. Microglia 
activation is typically classified into a pro-inflammatory 
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neurotoxic (M1) pattern, which could be induced by 
the stimulation of lipopolysaccharides (LPS) and 
IFN-γ with the following release of pro-inflammatory 
factors such as TNF-α, IL-6 and IL-lβ, and an anti-
inflammatory or neuroprotective (M2) pattern, which 
could be induced by IL-4 and IL-13 stimulation with 
neuroprotective effect[63], although this dichotomous 
division is oversimplified, and now, the concept of 
M1/M2 polarization is challenged[63–65]. The current 
findings reveal that microglia reactivity is a highly 
dynamic process that varies in different pathological 
processes and even in the same pathological process, 
which was also confirmed by the results of genome 
sequencing[66].
3.3 Heterogeneity of Microglia

The temporal heterogeneity of microglia in the 
developing and adult brain has been well illuminated, 
but its spatial heterogeneity remains largely unknown. It 
is found that microglia display a region-specific density 
and morphology, and simultaneously, microglia in 
different brain regions also differ in function[67, 68]. More 
specifically, the regional heterogeneity of microglia in 
the brain is revealed by density distribution, surface 
immune molecules, electrophysiological features, the 
response to the modulators (i.e. IL-34), and clearance 
activity[24, 28, 69–71]. Compared with the striatum and 
cortex, microglia in the cerebellum contribute to the 
growing appreciation of the clearance activity of 
microglia during postnatal development[71], which is 
driven by the CSF-1R ligand CSF-1, and independent 
of the alternative CSF-1R ligand IL-34[72]. A unique 
microglia subpopulation with low expression of purine 
receptors and lack of chemotaxis has been identified 
in the subventricular zone in which adult neurogenesis 
occurs[73]. A recent study found that there are two 
functionally distinct subpopulations of microglia in 
the retina[73]. Furthermore, a latest comprehensively 
analysis of a single-cell resolution has categorized the 
subclasses of microglia in multiple regions in detail[12]. 
The above evidence confirms the spatial heterogeneity 
of microglia, but further studies are needed to illuminate 
the underlying mechanism. 

In addition to spatial heterogeneity, a large number 
of studies have shown that microglia density and 
phenotype vary between male and female rodents in 
several brain areas, indicating the gender heterogeneity 
of microglia. The males have a higher density of 
microglia that show an activated morphological 
phenotype characterized by an increased cell body size 
and decreased branching pattern and length. Moreover, 
various functional consequences resulting from 
microglial gender heterogeneity have been elucidated. 
For example, only the microglia in male affect social 
behavior in adolescent rats via eliminating the spines 
that express dopamine D1 receptors in nucleus 
accumbens[74]. Transcriptome sequencing analysis 

excavates more than 500 differentially expressed genes 
(DEGs) in microglia between male and female mice, 
in which, NF-κB as the transcription factor primarily 
regulates the genes that are highly expressed in 
male[75]. The molecular mechanisms underlying gender 
difference remain elucidated, but the role of estradiol 
during development is involved, since treating females 
with estradiol in the early postnatal period may lead 
to an increased microglial phenotype which was seen 
in males[76, 77]. However, female microglia retain their 
phenotype when the cells were transplanted into 
the male brain, and play their neuroprotective role 
even in male brain, suggesting a hormonal cue in an 
independent manner[75]. 

4 MICROGLIA IN DEPRESSION

MDD is the most common mood disorder in the 
world and has a lifetime prevalence of about 17% in 
the United States. Due to its complex pathological 
mechanism, the diagnosis of MDD is mainly carried out 
by psychiatrists through structured interviews based on 
diagnostic manuals (e.g., DSM-IV)[78]. Growing studies 
have shown that the impairment of the normal structure 
and function of microglia in both development and 
adult brain contributes to the etiology of MDD, and 
therefore, MDD can be regarded as a microgliopathy. 

MDD patients usually suffer from chronic 
inflammation with changes in the central inflammatory 
state. Furthermore, MDD is significantly more 
common in people with inflammatory disease than in 
healthy individuals[79]. Microglia, the brain-resident 
immune cells, are emerging as a central player in 
inflammation in the brain of MDD patients. Previous 
studies have found that significant activation of 
microglia in depression-related brain regions such 
as prefrontal cortex and anterior cingulate cortex has 
been observed during severe episodes of MDD, and 
activation of microglia in anterior cingulate is positively 
correlated with the severity of depressive episode[80]. 
Correspondingly, positron emission tomography (PET) 
scan shows that the decrease in microglia activation is 
along with the improvement of depressive symptoms 
under cognitive-behavioral therapy and supportive 
psychotherapy[81]. Furthermore, in a post-mortem study 
for MDD, the density of microglial cells producing 
quinolinic acid is increased in the subgenual anterior 
cingulate cortex and anterior midcingulate cortex of 
suicide victims who suffered from MDD, indicating 
that microglia have an enhanced response to cytokine 
signals[82]. These clinical studies confirm that the 
occurrence of depression is strongly correlated with 
the increase in microglia-mediated inflammation. 
Nevertheless, another hypothesis indicates that the low 
levels of inflammatory status in the brain may promote 
depressive symptoms in patients[83]. Several clinical 
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evidence supports this hypothesis, including the 
decreased density and number of glial cells in multiple 
brain regions in MDD[84–86], the pro-depression effect 
of non-steroidal anti-inflammatory drugs[87], and 
the induction of depressive or suicidal behaviors by 
TNF-α inhibitor in individuals with enteropathy[88, 89]. 
Therefore, there seems to be a microglial balance in the 
inflammatory status of brain to influence the depressive 
symptoms, but the mechanism remains elucidated.

Relative to clinical data, the consequences from 
preclinical studies have provided more abundant 
evidence. Overactivation of microglia with high 
level of pro-inflammatory cytokines in multiple 
brain regions is observed in various animal models 
of depression[90–94], and the inhibition of microglia-
mediated neuroinflammation alleviates depressive-
like behaviors[95]. Microglia have been recognized as 
a critical component of stress sensitization and innate 
immune challenge[96]. LPS-induced inflammation 
results in depression-like behavior of mice while anti-
inflammation agents effectively correct the depression-
like behaviors by restoring levels of inflammatory 
cytokines[97]. It has been found that activation of 
indoleamine 2,3-dioxygenase (IDO) in microglia 
is indispensable for LPS-induced depression-like 
behaviors, which can be reversed by the microglial 
inhibitor minocycline, suggesting that microglia 
activation and inflammatory responses are crucial 
in LPS-induced depressive-like behaviors[98, 99]. In 
addition, TBI-induced hyperreactivity in microglia 
significantly aggravated the depressive-like symptoms 
induced by LPS, heightening that the microglial 
activity was associated with the development of LPS-
induced anhedonia and despair behavior in mice[100]. 
Convincingly, innovative antidepressant drug ketamine 
has been reported to improve depressive-like symptoms 
in mice induced by LPS via targeting microglial 
production of quinolinic acid, which also is a promising 
biomarker of ketamine response in treatment-resistant 
depression[101]. Another animal model of depression 
is established by chronic social defeat stress, which 
induces the hypertrophy of microglia, increases the 
expression of pro-inflammatory microglia markers, 
and elevates the level of IL-1β in the hypothalamus, 
hippocampus and pituitary gland. The innate immune 
receptors TLR2/4 in microglia have been identified as 
an important mediator of repeated social defeat stress-
induced social avoidance through the activation of 
microglia in mice[102]. Glucocorticoid signaling is also 
involved in the inflammatory response of microglia to 
stress[103–105], and the inhibition of β-adrenergic receptor 
signaling suppresses the effects of chronic social defeat 
stress. Minocycline inhibits the activation of microglia 
and the expression of IL-1β in the hippocampus of mice 
after chronic social defeat stress, thereby improving 
chronic social defeat stress-induced cognitive and 

memory impairment[106]. It is worth noting that the 
alteration of microglia including the unique immune-
related transcriptomic signature induced by repeated 
social defeat stress is persistent, which could maintain a 
long-time period after stress[96], resulting in the following 
changes in other cell types. Typically, repeated social 
defeat stress induces increased neuronal excitability 
and robust inflammatory activation of microglia in 
lateral habenula and basolateral amygdala. Blockade 
of the microglia activation prevents the increase in 
the neuronal excitability and reverses the behavioral 
consequences of stress[107, 108]. Other studies show that 
inhibition of NLR family pyrin domain containing 
protein 3 (NLRP3) in microglia could improve the 
depression-like behavior induced by chronic mild 
stress and chronic restraint stress[109–111]. 

Microglia-neuron communication is reciprocal, 
in which microglia greatly influence multi-aspect of 
neurons, neurons also regulate microglia function 
through soluble factors, including chemokines, 
cytokines, and neurotransmitters. Neuron-derived 
fractalkine (CX3CL1) regulates microglia activation 
through binding to the receptor CX3CR1, which is 
enriched on microglia[112]. In the CX3CR1-deficient 
mice, synapse maturation defects and impairments in 
functional connectivity between the prefrontal cortex 
and hippocampus are accompanied by decreased 
social interactions and induce depressive-like 
behaviors[113, 114]. Besides, microRNAs, the small 
non-coding RNAs, have been reported to mediate 
the influence of neurons on microglia. It is found 
that neuron-derived miR-21-5p, miR-124 and miR-9 
transport to microglia and trigger microglial alterations 
via exosome[115, 116]. Microglial miR-9 has been recently 
considered as a target for depression[117]. The direct 
effects of microglia on neurons in the development of 
depression have been revealed. Recent study has shown 
that abnormalities in microglia-mediated structural 
remodeling of neurons promote synaptic plasticity 
impairment and behavioral deficits induced by repeated 
stress. Exposure to chronic unpredictable stress results 
in an increase in the proportion of engulfed synapses 
and dendritic structures by hippocampal microglia, 
suggesting that microglia act as phagocytic cells, 
engaging in inappropriate phagocytosis of neurons, 
which may be associated with the depressive-like 
behaviors[118]. Moreover, glucocorticoid receptor has 
been found to promote the chronic unpredictable stress-
induced depressive behaviors by enhancing microglia-
mediated neuronal remodeling[119]. These studies show 
that in addition to mediating CNS inflammation, 
microglia also increase the risk of depressive-like 
behavior by causing defects in neural plasticity and 
neurotransmission.

Particularly, there is a handful of evidence 
supporting a new hypothesis on the mechanism 
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of depression, that is, microglial decline in the 
hippocampus is an important inducement of depression 
pathogenesis. Treatment of chronic stress-exposed 
mice with either LPS, endotoxin, macrophage colony-
stimulating factor or granulocyte-macrophage colony-
stimulating factor or amphotericin B liposome, all of 
which stimulate hippocampal microglial proliferation, 
partially or completely reverse the depressive-like 
behavior and dramatically increase hippocampal 
neurogenesis[120–122], suggesting that microglia 
stimulators could serve as fast-acting anti-depressants in 
some forms of depressive and stress-related conditions. 
In addition, the gender heterogeneity of microglia 
contributes to the sex differences in depression. Seney 
et al conducted a cell type-specific analysis of DEGs 
in MDD patients, and found that men with MDD 
exhibited the elevated expression of oligodendrocyte- 
and microglia-related genes, while women with MDD 
exhibited the decreased expression in markers of these 
cell types[123].

5 CONCLUSION

In the past two decades, great progress has been 
made in elucidating the function of microglia, and great 
interest has been generated surrounding microglia as 
indicators of mood disorders. However, there are still 
some questions to be resolved. The interactions of 
microglia with other types of nerve cells, as well as 
their role in depression, are complex and dynamic. 
With the development of in vivo real-time imaging and 
CRISPR-Cas9 technologies and the advent of single-
cell sequencing technologies, we would make new 
insights into the much more complex and fascinating 
biology of microglia, and their interactions with other 
brain cells. In addition, by far the majority of studies 
on microglia are conducted on animals, and microglia 
derived from animals and humans exhibit obvious 
differences in multiple aspects, which may adversely 
impact our understanding of their role in depression. 
However, the emergence of multifunctional stem cell 
induction technology[124], 3D brain tissue culture[125] and 
other technologies will greatly solve the limitations of 
current microglia studies in animal models, providing 
us with the possibility to fully analyze the complex role 
of microglia in human depression.
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