Skip to main content
Log in

Lactate Promotes Cancer Stem-like Property of Oral Sequamous Cell Carcinoma

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

Accumulation of lactate in tumor has been linked to poor prognosis of oral squamous cell carcinoma (OSCC), but the underlying mechanism remained largely uncertain. Previous studies have suggested that presence of cancer stem cells (CSCs) closely correlated with cellular malignancy of OSCC. Here, using 3D organoid culture model, we investigated whether lactate promoted CSCs phenotype in primary OSCC cells. We generated organoids using fresh OSCC specimens and verified that organoids recapitulated histopathology and cellular heterogeneity of parental tumor. Organoids were then transfected with a Wnt reporter to visualize Wnt activity. The sphere forming assay demonstrated that high Wnt activity functionally designated CSCs population in OSCC cells. Further investigations indicated that lactate treatment promoted Wnt activity and increased the expression of CSCs (i.e. CD133+ cells) in organoids. Moreover, silencing monocarboxylate transporter 1 (MCT1), the prominent path for lactate uptake in human tumor with siRNA significantly impaired organoid forming capacity of OSCC cells. Together, our study demonstrated that lactate can promote CSCs phenotype of OSCC, and MCT1 may be a therapeutic target against OSCC growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science, 2009,324(5930):1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Doherty JR, Cleveland JL. Targeting lactate metabolism for cancer therapeutics. J Clin Invest, 2013,123(9):3685–3692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Faubert B, Li KY, Cai L, et al. Lactate Metabolism in Human Lung Tumors. Cell, 2017,171:358–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wilde L, Roche M, Domingo-Vidal M, et al. Metabolic Coupling and the Reverse Warburg Effect in Cancer, implications for novel biomarker and anticancer agent development. Semin Oncol, 2017,44(3):198–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sattler UG, Meyer SS, Quennet V, et al. Glycolytic metabolism and tumour response to fractionated irradiation. Radiother Oncol, 2010,94(1):102–109

    Article  CAS  PubMed  Google Scholar 

  6. González-Moles MA, Scully C, Ruiz-Ávila I, et al. The cancer stem cell hypothesis applied to oral carcinoma. Oral Oncol, 2013,49(8):738–746

    Article  CAS  PubMed  Google Scholar 

  7. Sun S, Liu S, Duan SZ, et al. Targeting the c-Met/FZD8 signaling axis eliminates patient-derived cancer stem-like cells in head and neck squamous carcinomas. Cancer Res, 2014,74(24):7546–7559

    Article  CAS  PubMed  Google Scholar 

  8. Simple M, Suresh A, Das D, et al. Cancer stem cells and field cancerization of oral squamous cell carcinoma. Oral Oncol, 2015,51(7):643–651

    Article  CAS  PubMed  Google Scholar 

  9. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med, 2017,23(10):1124–1134

    Article  CAS  PubMed  Google Scholar 

  10. Mitra A, Mishra L, Li S. Technologies for deriving primary tumor cells for use in personalized cancer therapy. Trends Biotechnol, 2013,31(6):347–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Centenera MM, Raj GV, Knudsen KE, et al. Ex vivo culture of human prostate tissue and drug development. Nat Rev Urol, 2013,10(8):483–487

    Article  CAS  PubMed  Google Scholar 

  12. Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer, 2018,18(7):407–418

    Article  CAS  PubMed  Google Scholar 

  13. Shah AT, Heaster TM, Skala MC. Metabolic Imaging of Head and Neck Cancer Organoids. PloS One, 2017,12(1):e0170415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qu Y, Han B, Gao B, et al. Differentiation of Human Induced Pluripotent Stem Cells to Mammary-like Organoids. Stem Cell Report, 2017,8(2):201–215

    Article  CAS  Google Scholar 

  15. Sonveaux P, Végran F, Schroeder T, et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest, 2008,118(12):3930–3942

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang Q, Shi S, Yen Y, et al. A subpopulation of CD133+ cancer stem-like cells characterized in human oral squamous cell carcinoma confer resistance to chemotherapy. Cancer Lett, 2010,289(2):151–160

    Article  CAS  PubMed  Google Scholar 

  17. Nanda KD, Ranganathan K, Devi U, et al. Increased expression of CK8 and CK18 in leukoplakia, oral submucous fibrosis, and oral squamous cell carcinoma: An immunohistochemistry study. Oral Surg Oral Med Oral Pathol Oral Radiol, 2012,113(2):245–253

    Article  PubMed  Google Scholar 

  18. Vermeulen L, De Sousa E Melo F, van der Heijden M, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol, 2010,12(5):468–476

    Article  CAS  PubMed  Google Scholar 

  19. Xie SL, Fan S, Zhang SY, et al. SOX8 regulates cancer stem-like properties and cisplatin-induced EMT in tongue squamous cell carcinoma by acting on the Wnt/β-catenin pathway. Int J Cancer, 2018,142(6):1252- 1265

    Google Scholar 

  20. Tassone P, Domingo-Vidal M, Whitaker-Menezes D, et al. Metformin Effects on Metabolic Coupling and Tumor Growth in Oral Cavity Squamous Cell Carcinoma Coinjection Xenografts. Otolaryngol Head Neck Surg, 2018,158(5):867–877

    Article  PubMed  Google Scholar 

  21. Sachs N, Clevers H. Organoid cultures for the analysis of cancer phenotypes. Curr Opin Genet Dev, 2014,24:68–73

    Article  CAS  PubMed  Google Scholar 

  22. Li L, Li C, Wang S, et al. Exosomes Derived from Hypoxic Oral Squamous Cell Carcinoma Cells Deliver miR-21 to Normoxic Cells to Elicit a Prometastatic Phenotype. Cancer Res, 2016,76(7):1770–1780

    Article  CAS  PubMed  Google Scholar 

  23. Martinez-Outschoorn UE, Peiris-Pagès M, Pestell RG, et al. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol, 2017,14:11–31

    Article  CAS  PubMed  Google Scholar 

  24. Rodriguez-Colman MJ, Schewe M, Meerlo M, et al. Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature, 2017,543:424–427

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Huang.

Additional information

This project was supported by the National Natural Science Foundation of China (No. 81602742).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Hu, Cy., Chen, Wm. et al. Lactate Promotes Cancer Stem-like Property of Oral Sequamous Cell Carcinoma. CURR MED SCI 39, 403–409 (2019). https://doi.org/10.1007/s11596-019-2050-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-019-2050-2

Key words

Navigation