Skip to main content
Log in

Splenectomy suppresses growth and metastasis of hepatocellular carcinoma through decreasing myeloid-derived suppressor cells in vivo

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Abstract

The function of the spleen in tumor development has been investigated for years. The relationship of the spleen with hepatocellular carcinoma (HCC), a huge health burden worldwide, however, remains unknown. The present study aimed to examine the effect of splenectomy on the development of HCC and the possible mechanism. Mouse hepatic carcinoma lines H22 and Hepa1-6 as well as BALB/c and C57 mice were used to establish orthotopic and metastatic mouse models of liver cancer. Mice were divided into four groups, including control group, splenectomy control group (S group), tumor group (T group) and tumor plus splenectomy group (T+S group). Tumor growth, metastases and overall survival were assessed at determined time points. Meanwhile, myeloid-derived suppressor cells (MDSCs) were isolated from the peripheral blood (PB), the spleen and liver tumors, and then measured by flow cytometery. It was found that liver cancer led to splenomegaly, and increased the percentage of MDSCs in the PB and spleen in the mouse models. Splenectomy inhibited the growth and progression of liver cancer and prolonged the overall survival time of orthotopic and metastatic models, which was accompanied by decreased proportion of MDSCs in the PB and tumors of liver cancer-bearing mouse. It was suggested that splenectomy could be considered an adjuvant therapy to treat liver cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet, 2012,379(9822):1245–1255

    Article  PubMed  Google Scholar 

  2. Yong KJ, Gao C, Lim JS, et al. Oncofetal gene SALL4 in aggressive hepatocellular carcinoma. N Engl J Med, 2013,368(24):2266–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Flores A, Marrero JA. Emerging trends in hepatocellular carcinoma: focus on diagnosis and therapeutics. Clin Med Insights Oncol, 2014,8:71–76

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wei KR, Yu X, Zheng RS, et al. Incidence and mortality of liver cancer in China, 2010. Chin J Cancer, 2014,33(8):388–394

    PubMed  PubMed Central  Google Scholar 

  5. Wei S, Hao X, Zhan D, et al. Are surgical indications of Barcelona Clinic Liver Cancer staging classification justified? J Huazhong Univ Sci Technolog Med Sci, 2011,31(5):637–641

  6. Wei S, Xiong M, Zhan DQ, et al. Ku80 functions as a tumor suppressor in hepatocellular carcinoma by inducing S-phase arrest through a p53-dependent pathway. Carcinogenesis, 2012,33(3):538–547

    Article  CAS  PubMed  Google Scholar 

  7. Colovai AI, Giatzikis C, Ho EK, et al. Flow cytometric analysis of normal and reactive spleen. Mod Pathol, 2004,17(8):918–927

    Article  PubMed  Google Scholar 

  8. Mebius RE. Kraal G. Structure and function of the spleen. Nat Rev Immunol, 2005,5(8):606–616

    Article  CAS  PubMed  Google Scholar 

  9. Dieguez-Acuna FJ, Gygi SP, Davis M, et al. Splenectomy: a new treatment option for ALL tumors expressing Hox-11 and a means to test the stem cell hypothesis of cancer in humans. Leukemia, 2007,21(10):2192–2194

    Article  CAS  PubMed  Google Scholar 

  10. Cortez-Retamozo, V, Etzrodt M, Newton A, et al. Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci USA, 2012,109(7):2491–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ugel S, Peranzoni E, Desantis G, et al. Immune tolerance to tumor antigens occurs in a specialized environment of the spleen. Cell Rep, 2012,2(3):628–639

    Article  CAS  PubMed  Google Scholar 

  12. Xia S, Li X, Cheng L, et al. Chronic intake of high fish oil diet induces myeloid-derived suppressor cells to promote tumor growth. Cancer Immunol Immunother, 2014,63(7):663–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shaked Y, Cervi D, Neuman M, et al. The splenic microenvironment is a source of proangiogenesis/inflammatory mediators accelerating the expansion of murine erythroleukemic cells. Blood, 2005,105(11):4500–4507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Prehn RT. The paradoxical effects of splenectomy on tumor growth. Theor Biol Med Model, 2006,3:23

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sonoda K, Izumi K, Matsui Y, et al. Decreased growth rate of lung metastatic lesions after splenectomy in mice. Eur Surg Res, 2006,38(5):469–475

    Article  PubMed  Google Scholar 

  16. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell, 2011,144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  17. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol, 2009,9(3):162–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Damuzzo V, Pinton L, Desantis G, et al. Complexity and challenges in defining myeloid-derived suppressor cells. Cytometry B Clin Cytom, 2015,88(2):77–91

    Article  CAS  PubMed  Google Scholar 

  19. Chi N, Tan Z, Ma K, et al. Increased circulating myeloid-derived suppressor cells correlate with cancer stages, interleukin-8 and -6 in prostate cancer. Int J Clin Exp Med, 2014,7(10):3181–3192

    PubMed  PubMed Central  Google Scholar 

  20. Li RJ, Liu L, Gao W, et al. Cyclooxygenase-2 blockade inhibits accumulation and function of myeloid-derived suppressor cells and restores T cell response after traumatic stress. J Huazhong Univ Sci Technolog Med Sci, 2014,34(2):234–240

    Article  PubMed  Google Scholar 

  21. Zhu XJ, Hu J, Sun L, et al. Amplification of functional myeloid-derived suppressor cells during stem cell mobilization induced by granulocyte colony-stimulationfactor. J Huazhong Univ Sci Technolog Med Sci, 2013,33(6):817–821

    Article  CAS  PubMed  Google Scholar 

  22. Schmid M, Zimara N, Wege AK, et al. Myeloid-derived suppressor cell functionality and interaction with Leishmania major parasites differ in C57BL/6 and BALB/c mice. Eur J Immunol, 2014,44(11):3295–3306

    Article  CAS  PubMed  Google Scholar 

  23. Movahedi K, Guilliams M, Van den Bossche J, et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cellsuppressive activity. Blood, 2008,111(8):4233–4244

    Article  CAS  PubMed  Google Scholar 

  24. Youn JI, Nagaraj S, Collazo M, et al. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol, 2008,181(8):5791–5802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Condamine T, Ramachandran I, Youn JI, et al. Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu Rev Med, 2015,66:97–110

    Article  CAS  PubMed  Google Scholar 

  26. Youn, JI, Collazo M, Shalova IN, et al. Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol, 2012,91(1):167–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Murdoc, C, Muthana M, Coffelt SB, et al. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer, 2008,8(8):618–631

    Article  Google Scholar 

  28. Skabytska Y, Wolbing F, Gunther C, et al. Cutaneous innate immune sensing of toll-like receptor 2-6 ligands suppresses T cell immunity by inducing myeloid-derived suppressor cells. Immunity, 2014,41(5):762–775

    Article  CAS  PubMed  Google Scholar 

  29. Diaz-Montero CM, Salem ML, Nishimura MI, et al. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother, 2009,58(1):49–59

    Article  CAS  PubMed  Google Scholar 

  30. Ren M, Ye L, Hao X, et al. Polysaccharides from Tricholoma matsutake and Lentinus edodes enhance 5-fluorouracil-mediated H22 cell growth inhibition. J Tradit Chin Med, 2014,34(3):309–316

    Article  PubMed  Google Scholar 

  31. Li P, Feng Z, Zhang G, et al. Inhibitory effect of recombinant endostatin on angiogenesis and tumor growth of hepatoma. J Huazhong Univ Sci Technolog Med Sci, 2003,23(3):223–226

    Article  PubMed  Google Scholar 

  32. Qin L, Wang X, Duan Q, et al. Inhibitory effect of melatonin on the growth of H22 hepatocarcinoma cells by inducing apoptosis. J Huazhong Univ Sci Technolog Med Sci, 2004,24(1):19–21, 31

    Article  CAS  PubMed  Google Scholar 

  33. Zhang B, Halder SK, Zhang S, et al. Targeting transforming growth factor-beta signaling in liver metastasis of colon cancer. Cancer Lett, 2009,277(1):114–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ding ZY, Jin, GN. Wang W, et al. Reduced expression of transcriptional intermediary factor 1 gamma promotes metastasis and indicates poor prognosis of hepatocellular carcinoma. Hepatology, 2014,60(5):1620–1636

    Article  CAS  PubMed  Google Scholar 

  35. Schwarz RE, Hiserodt JC. Effects of splenectomy on the development of tumor-specific immunity. J Surg Res, 1990,48(5):448–453

    Article  CAS  PubMed  Google Scholar 

  36. Brooks SP, Rich GA, Huh YS, et al. Lymphoid cell populations in splenectomized and nonsplenectomized SJL/J mice bearing Hodgkin’s disease-like reticulum cell sarcoma. J Pediatr Surg, 1986,21(12):1114–1118

    Article  CAS  PubMed  Google Scholar 

  37. Miwa H, Kojima K, Kobayashi T, et al. The tumor—immunological significance of splenectomy for cancer therapy. Nihon Geka Gakkai Zasshi, 1983,84(9):970–973

    CAS  PubMed  Google Scholar 

  38. Jing-Shi W, Yi-Ni W, Lin W, et al. Splenectomy as a treatment for adults with relapsed hemophagocytic lymphohistiocytosis of unknown cause. Ann Hematol, 2015,94(5):753–760

    Article  PubMed  Google Scholar 

  39. Derlatka P, Grabowska-Derlatka L, Sienko J, et al. Splenectomy as a part of debulking surgery in patients with advanced ovarian cancer. Ginekol Pol, 2014,85(8):605–608

    PubMed  Google Scholar 

  40. Santos FP, Tam CS, Kantarjian H, et al. Splenectomy in patients with myeloproliferative neoplasms: efficacy, complications and impact on survival and transformation. Leuk Lymphoma, 2014,55(1):121–127

    Article  PubMed  Google Scholar 

  41. Chen XP, Wu ZD, Huang ZY, et al. Use of hepatectomy and splenectomy to treat hepatocellular carcinoma with cirrhotic hypersplenism. Br J Surg, 2005,92(3):334–339

    Article  PubMed  Google Scholar 

  42. Solito S, Marigo I, Pinton L, et al. Myeloid-derived suppressor cell heterogeneity in human cancers. Ann N Y Acad Sci, 2014,1319:47–65

    Article  CAS  PubMed  Google Scholar 

  43. Hochst B, Schildberg FA, Sauerborn P, et al. Activated human hepatic stellate cells induce myeloid derived suppressor cells from peripheral blood monocytes in a CD44-dependent fashion. J Hepatol, 2013,59(3):528–535

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bi-xiang Zhang  (张必翔).

Additional information

This project was supported by the National Natural Science Foundation of China (No. 81001305, No. 81372495, No. 81202300, and No. 81372327).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, X., Wang, J., Zhao, Jp. et al. Splenectomy suppresses growth and metastasis of hepatocellular carcinoma through decreasing myeloid-derived suppressor cells in vivo . J. Huazhong Univ. Sci. Technol. [Med. Sci.] 36, 667–676 (2016). https://doi.org/10.1007/s11596-016-1643-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-016-1643-2

Keywords

Navigation