Skip to main content
Log in

Efficient Direct Decomposition of NO over La0.8A0.2NiO3 (A=K, Ba, Y) Catalysts under Microwave Irradiation

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

La0.8A0.2NiO3 (A=K, Ba, Y) catalysts supported on the microwave-absorbing ceramic heating carrier were prepared by the sol-gel method. The crystalline phase and the catalytic activity of the La0.8A0.2NiO3 catalysts were characterized by XRD and H2 temperature-programmed reduction (TPR). The effects of reaction temperature, oxygen concentration, and gas flow rate on the direct decomposition of nitric oxide over the synthesized catalysts were studied under microwave irradiation (2.45 GHz). The XRD results indicated that the La0.8A0.2NiO3 catalysts formed an ABO3 perovskite structure, and the H2-TPR results revealed that the relative reducibility of the catalysts increased in the order of La0.8K0.2NiO3 > La0.8Ba0.2NiO3 > La0.8Y0.2NiO3. Under microwave irradiation, the highest NO conversion amounted to 98.9%, which was obtained with the La0.8K0.2NiO3 catalyst at 400 °C. The oxygen concentration did not inhibit the NO decomposition on the La0.8A0.2NiO3 catalysts, thus the N2 selectivity exceeded 99.8% under excess oxygen at 550 °C. The NO conversion of the La0.8A0.2NiO3 catalysts decreased linearly with the increase in the gas flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kampa M, Castanas E. Human Health Effects of Air Pollution[J]. Environmental Pollution, 2008, 151(2): 362–367

    Article  CAS  Google Scholar 

  2. Liu X, Zhang B, Zhao W, et al. Comparative Effects of Sulfuric and Nitric Acid Rain on Litter Decomposition and Soil Microbial Community in Subtropical Plantation of Yangtze River Delta Region[J]. Science of the Total Environment, 2017, 601–602: 669–678

    Article  Google Scholar 

  3. Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions[J]. Science, 2008, 320(5878): 889–892

    Article  CAS  Google Scholar 

  4. Balat M. Influence of Coal as an Energy Source on Environmental Pollution[J]. Energy Sources, Part A. Recovery, Utilization, and Environmental Effects, 2007, 29(7): 581–589

    Article  CAS  Google Scholar 

  5. Chen L, Si Z, Wu X, et al. Rare Earth Containing Catalysts for Selective Catalytic Reduction of NOx with Ammonia: A Review[J]. Journal of Rare Earths, 2014, 32(10): 907–917

    Article  CAS  Google Scholar 

  6. Liu Z, Yu F, Ma C, et al. A Critical Review of Recent Progress and Perspective in Practical Denitration Application[J]. Catalysts, 2019, 9(9): 771

    Article  CAS  Google Scholar 

  7. Imanaka N, Masui T. Advances in Direct NOx Decomposition Catalysts[J]. Applied Catalysis A: General, 2012, 431–432: 1–8

    Article  Google Scholar 

  8. Zhang Y, Cao G, Yang X. Advances in De-NOx Methods and Catalysts for Direct Catalytic Decomposition of NO: A Review[J]. Energy & Fuels, 2021, 35(8): 6 443–6 464

    Article  CAS  Google Scholar 

  9. Roy S, Hegde M S, Madras G. Catalysis for NOx Abatement[J]. Applied Energy, 2009, 86(11): 2 283–2 297

    Article  CAS  Google Scholar 

  10. Shen Q, Dong S, Li S, et al. A Review on the Catalytic Decomposition of NO by Perovskite-Type Oxides[J]. Catalysts, 2021, 11(5): 622

    Article  CAS  Google Scholar 

  11. Wu R J, Chou T Y, Yeh C T. Enhancement Effect of Gold and Silver on Nitric Oxide Decomposition over Pd/Al2O3 Catalysts[J]. Applied Catalysis B: Environmental, 1995, 6(2): 105–116

    Article  CAS  Google Scholar 

  12. Haneda M, Kintaichi Y, Nakamura I, et al. Comprehensive Study Combining Surface Science and Real Catalyst for NO Direct Decomposition[J]. Chemical Communications, 2002, 2(23): 2 816–2 817

    Article  Google Scholar 

  13. Iwamoto M, Yokoo S, Sakai K, et al. Catalytic Decomposition of Nitric Oxide over Copper(II)-exchanged, Y-type Zeolites[J]. Journal of the Chemical Society, 1981, 77(7): 1 629–1 638

    CAS  Google Scholar 

  14. Iwamoto M, Furukawa H, Mine Y, et al. Copper(II) Ion-Exchanged ZSM-5 Zeolites as Highly Active Catalysts for Direct and Continuous Decomposition of Nitrogen Monoxide[J]. Journal of the Chemical Society, Chemical communications, 1986, (16): 1 272–1 273

  15. Iwamoto S, Takahashi R, Inoue M. Direct Decomposition of Nitric Oxide over Ba Catalysts Supported on CeO2-based Mixed Oxides[J]. Applied Catalysis B: Environmental, 2007, 70(1): 146–150

    Article  CAS  Google Scholar 

  16. Winter E R S. The Catalytic Decomposition of Nitric Oxide by Metallic Oxides[J]. Journal of Catalysis, 1971, 22(2): 158–170

    Article  CAS  Google Scholar 

  17. Winter E R S. The Catalytic Decomposition of Nitric Oxide by Metallic Oxides: II, The Effect of Oxygen[J]. Journal of Catalysis, 1974, 34(3): 440–444

    Article  CAS  Google Scholar 

  18. Pârvulescu V I, Centeno M A, Grange P, et al. NO Decomposition over Cu − Sm − ZSM-5 Zeolites Containing Low-Exchanged Copper[J]. Journal of Catalysis, 2000, 191(2): 445–455

    Article  Google Scholar 

  19. Amirnazmi A, Benson J E, Boudart M. Oxygen Inhibition in the Decomposition of NO on Metal Oxides and Platinum[J]. Journal of Catalysis, 1973, 30(1): 55–65

    Article  CAS  Google Scholar 

  20. Zhu J, Li H, Zhong L, et al. Perovskite Oxides: Preparation, Characterizations, and Applications in Heterogeneous Catalysis[J]. ACS Catalysis, 2014, 4(9): 2 917–2 940

    Article  CAS  Google Scholar 

  21. Zhu J, Thomas A. Perovskite-Type Mixed Oxides as Catalytic Material for NO Removal[J]. Applied Catalysis B: Environmental, 2009, 92(3–4): 225–233

    Article  CAS  Google Scholar 

  22. Tofan C, Klvana D, Kirchnerova J. Direct Decomposition of Nitric Oxide over Perovskite-Type Catalysts: Part I, Activity When No Oxygen Is Added to the Feed[J]. Applied Catalysis A: General, 2002, 223(1): 275–286

    Article  CAS  Google Scholar 

  23. Tofan C, Klvana D, Kirchnerova J. Direct Decomposition of Nitric Oxide over Perovskite-Type Catalysts: Part II. Effect of Oxygen in the Feed on the Activity of Three Selected Compositions[J]. Applied Catalysis A: General, 2002, 226(1): 225–240

    Article  CAS  Google Scholar 

  24. Chemat-Djenni Z, Hamada B, Chemat F. Atmospheric Pressure Microwave Assisted Heterogeneous Catalytic Reactions[J]. Molecules, 2007, 12(7): 1 399–1 409

    Article  CAS  Google Scholar 

  25. Crosswhite M, Hunt J, Southworth T, et al. Development of Magnetic Nanoparticles as Microwave-Specific Catalysts for the Rapid, Low-Temperature Synthesis of Formalin Solutions[J]. ACS Catalysis, 2013, 3(6): 1 318–1 323

    Article  CAS  Google Scholar 

  26. Kappe C O, Pieber B, Dallinger D. Microwave Effects in Organic Synthesis: Myth or Reality?[J]. Angewandte Chemie International Edition, 2013, 52(4): 1 088–1 094

    Article  CAS  Google Scholar 

  27. Xu L, Fan L, Hou C, et al. Effect of Adding Microwave Absorber on Structures and Properties of Hypercoal-Based Activated Carbons[J]. Journal of Wuhan University of Technology -Materials Science Edition, 2020, 35(3): 488–494

    Article  CAS  Google Scholar 

  28. Ma S, Jin X, Wang M, et al. Experimental Study on Removing NO from Flue Gas Using Microwave Irradiation over Activated Carbon Carried Catalyst[J]. Science China Technological Sciences, 2011, 54(12): 3 431–3 436

    Article  CAS  Google Scholar 

  29. Xu W, Zhou J, Li H, et al. Microwave-Assisted Catalytic Reduction of NO into N2 by Activated Carbon Supported Mn2O3 at Low Temperature under O2 Excess[J]. Fuel Processing Technology, 2014, 127: 1–6

    Article  CAS  Google Scholar 

  30. Wei Z, Niu H, Ji Y. Simultaneous Removal of SO2 and NOx by Microwave with Potassium Permanganate over Zeolite[J]. Fuel Processing Technology, 2009, 90(2): 324–329

    Article  CAS  Google Scholar 

  31. Wei Z, Zeng G, Xie Z, et al. Microwave Catalytic NOx and SO2 Removal Using FeCu/zeolite as Catalyst[J]. Fuel, 2011, 90(4): 1 599–1 603

    Article  CAS  Google Scholar 

  32. Tang J, Zhang T, Liang D, et al. Direct Decomposition of NO by Microwave Heating over Fe/NaZSM-5[J]. Applied Catalysis B: Environmental, 2002, 36(1): 1–7

    Article  CAS  Google Scholar 

  33. Xu W, Cai J, Zhou J, et al. Microwave Irradiation Coupled with MeOx/Al2O3 (Me=Cu, Mn, Ce) Catalysts for Nitrogen Monoxide Removal from Flue Gas at Low Temperatures[J]. Energy Technology, 2016, 4(7): 856–863

    Article  CAS  Google Scholar 

  34. Xu W, Shi N, You Z, et al. Low-Temperature NO Decomposition through Microwave Catalysis on BaMnO3-based Catalysts under Excess Oxygen: Effect of A-site Substitution by Ca, K and La[J]. Fuel Processing Technology, 2017, 167: 205–214

    Article  CAS  Google Scholar 

  35. Xu W, Cai J, Zhou J, et al. Highly Effective Direct Decomposition of Nitric Oxide by Microwave Catalysis over BaMeO3 (Me=Mn, Co, Fe) Mixed Oxides at Low Temperature under Excess Oxygen[J]. ChemCatChem, 2016, 8(2): 417–425

    Article  CAS  Google Scholar 

  36. Xu W, Zhou J, Ou Y, et al. Microwave Selective Effect: A New Approach Towards Oxygen Inhibition Removal for Highly-Effective NO Decomposition by Microwave Catalysis over BaMn(x)Mg(1 − x)O3 Mixed Oxides at Low Temperature under Excess Oxygen.[J]. Chemical Communications, 2015, 51(19): 4 073–4 076

    Article  CAS  Google Scholar 

  37. Xu W, Zhou J, You Z, et al. Microwave Irradiation Coupled with Physically Mixed MeOx (Me=Mn, Ni) and Cu-ZSM-5 Catalysts for the Direct Decomposition of Nitric Oxide under Excess Oxygen[J]. ChemCatChem, 2015, 7(3): 450–458

    Article  CAS  Google Scholar 

  38. Cruz R M G D L, Falcón H, Peña M A, et al. Role of Bulk and Surface Structures of La1−xSrxNiO3 Perovskite-Type Oxides in Methane Combustion[J]. Applied Catalysis B: Environmental, 2001, 33(1): 45–55

    Article  Google Scholar 

  39. Arvanitidis I, Siche D, Seetharaman S. A Study of the Thermal Decomposition of BaCO3[J]. Metallurgical and Materials Transactions B, 1996, 27(3): 409–416

    Article  Google Scholar 

  40. Lima S M, Assaf J M, Peña M A, et al. Structural Features of La1−xCex NiO3 Mixed Oxides and Performance for the Dry Reforming of Methane[J]. Applied Catalysis A: General, 2006, 311(1): 94–104

    Article  CAS  Google Scholar 

  41. Zhao B, Wang R, Yang X. Simultaneous Catalytic Removal of NOx and Diesel Soot Particulates over La1−xCexNiO3 Perovskite Oxide Catalysts[J]. Catalysis Communications, 2009, 10(7): 1 029–1 033

    Article  CAS  Google Scholar 

  42. Mousavi M, Nakhaei P A, Gholizadeh M, et al. Dry Reforming of Methane by La0.5Sr0.5NiO3 Perovskite Oxides: Influence of Preparation Method on Performance and Structural Features of the Catalysts[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(11): 2 911–2 920

    Article  CAS  Google Scholar 

  43. Yokoi Y, Uchida H. Catalytic Activity of Perovskite-Type Oxide Catalysts for Direct Decomposition of NO: Correlation between Cluster Model Calculations and Temperature-Programmed Desorption Experiments[J]. Catalysis Today, 1998, 42(1): 167–174

    Article  CAS  Google Scholar 

  44. Datta A K, Rakesh V. Principles of Microwave Combination Heating[J]. Comprehensive Reviews in Food Science and Food Safety, 2013, 12(1): 24–39

    Article  Google Scholar 

  45. Conner W C, Tompsett G A. How Could and Do Microwaves Influence Chemistry at Interfaces?[J]. The Journal of Physical Chemistry B, 2008, 112(7): 2 110–2 118

    Article  CAS  Google Scholar 

  46. Tang J W, Zhang T, Liang D B, et al. Microwave Discharge-Assisted Catalytic Conversion of NO to N2[J]. Chemical Communications, 2000, (19): 1 861–1 862

  47. Ishihara T. Direct Decomposition of NO into N2 and O2 over La(Ba) Mn(In)O3 Perovskite Oxide[J]. Journal of Catalysis, 2003, 220(1): 104–114

    Article  CAS  Google Scholar 

  48. Teraoka Y, Kagawa T H A S. Reaction Mechanism of Direct Decomposition of Nitric Oxide over Co- and Mn-based Perovskite-Type Oxides[J]. Faraday Transactions, 1998, 94(13): 1 887–1 891

    Article  CAS  Google Scholar 

  49. Zhu J, Xiao D, Li J, et al. Recycle—New Possible Mechanism of NO Decomposition over Perovskite(-Like) Oxides[J]. Journal of Molecular Catalysis A: Chemical, 2005, 233(1–2): 29–34

    Article  CAS  Google Scholar 

  50. Wang X, Hou W, Wang X, et al. Preparation, Characterization and Activity of Novel Silica-Pillared Layered Titanoniobate Supported Copper Catalysts for the Direct Decomposition of NO[J]. Applied Catalysis B: Environmental, 2002, 35(3): 185–193

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to EditSprings (https://www.editsprings.cn/) for the expert linguistic services provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang  (王浩).

Ethics declarations

All authors declare that there are no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhao, Z., Duan, X. et al. Efficient Direct Decomposition of NO over La0.8A0.2NiO3 (A=K, Ba, Y) Catalysts under Microwave Irradiation. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 39, 17–23 (2024). https://doi.org/10.1007/s11595-024-2849-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-024-2849-y

Key words

Navigation