
Vol.:(0123456789)

Optimization Letters
https://doi.org/10.1007/s11590-024-02120-1

1 3

ORIGINAL PAPER

Cooperation in combinatorial search

Dániel Gerbner1 · Balázs Keszegh1,2 · Kartal Nagy2  · Balázs Patkós1 ·
Gábor Wiener3

Received: 3 May 2023 / Accepted: 15 April 2024
© The Author(s) 2024

Abstract
In the game theoretical approach of the basic problem in Combinatorial Search an
adversary thinks of a defective element d of an n-element pool X, and the questioner
needs to find x by asking questions of type is d ∈ Q? for certain subsets Q of X. We
study cooperative versions of this problem, where there are multiple questioners, but
not all of them learn the answer to the queries. We consider various models that dif-
fer in how it is decided who gets to ask the next query, who obtains the answer to the
query, and who needs to know the defective element by the end of the process.

Keywords  Cooperative search · Combinatorial search · Search game

1  Introduction

In Combinatorial Search Theory, the basic problem is the following. We are given
an n-element underlying set X that contains an unknown defective element d (we
assume n ≥ 2 , otherwise all search problems are straightforward). We have to iden-
tify the defective element by asking queries of type “is d ∈ Q? ” for certain subsets
Q ⊆ X (we refer to such a query simply as asking Q). Our aim is of course to use as
few queries as possible in order to identify d. What is the minimum number of ques-
tions needed and how can we find the queries corresponding to this minimum?

This basic question is easy to answer if we can ask any subset of X: we need
⌈log n⌉ queries (here and throughout the paper log n denotes log2 n ). There are sev-
eral variants that lead to interesting questions: there might be a restriction on the
query sets (only sets of size at most k are allowed [7], the defective element is one
edge of a graph and edge sets of paths can be queried [2, 8]), some answers can

 *	 Kartal Nagy
	 kartal97@student.elte.hu

1	 Alfréd Rényi Institute of Mathematics, Budapest, Hungary
2	 ELTE Eötvös Loránd University, Budapest, Hungary
3	 Department of Computer Science and Information Theory, Budapest University of Technology

and Economics, Budapest, Hungary

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-024-02120-1&domain=pdf
http://orcid.org/0000-0002-9504-7551

	 D. Gerbner et al.

1 3

be erroneous deliberately [9] or randomly [13], the queries have to be asked at the
same time or in a certain number of batches (non-adaptive and k-round algorithms
[4, 15]), there might be more defectives, and so on; see the monograph [5] for more
details.

Here we introduce a new family of variants, which involve cooperation. Rather
than one participant asking the queries and trying to identify the defective element,
we are dealing with more participants that have to work together. Each participant
receives only some of the information, which is a rather natural assumption. The
participants together receive all the information. However, we do not allow outside
communication, the only allowed action of the players is to ask a query (when it is
their turn) or announce the identification of the defective element. This is another
reasonable assumption, since establishing an additional communication channel
may be costly or insecure.

We consider different models within this framework. It is unclear what model
could be interesting for applications, thus we study basic ones of theoretical interest.
The models differ mainly in the information the participants obtain after a query. We
use the game theoretic approach of Search Theory (see [1]), where the search pro-
cess is considered to be a game between Player A (the adversary) and Player B (the
questioner) and extend it by adding more players.

Our starting point is a nice puzzle by Sándor Róka [3] (motivated by his research
in [10, 11]). Player A picks the defective element and answers the queries, Player B
asks the queries (all at the same time, non-adaptively) and Player C is given the YES
answers (along with the sets to which these answers correspond, of course). In other
words, Player B chooses a family F of subsets of X, and Player A gives the sub-
family F′ to Player C, where F� = {F ∈ F ∶ d ∈ F} . Upon receiving the answers,
Player C has to identify d, which can be done if and only if there exists a unique ele-
ment of X contained in each member of F′.

It is not hard to see that Player C can identify d if and only if F is completely
separating, i.e., F satisfies the following property: for any x, y ∈ X , there exists a set
F ∈ F such that x ∈ F , y ∉ F . The smallest possible size of a completely separat-
ing family was determined by Spencer [12]. As we will use its ideas later, we briefly
describe the simple proof.

The dual of a family F of subsets of X is defined as a family H of cardinality |X|
on the underlying set F as follows. For each x ∈ X , we define a set Hx ∈ H such
that for each F ∈ F we have F ∈ Hx if and only if x ∈ F . It is easy to see that F is
completely separating if and only if its dual is a Sperner system, i.e., there are no Hx
and Hy in H , such that Hx ⊂ Hy . The classical theorem of Sperner [14] states that the
largest possible cardinality of a Sperner system on an m-element underlying set is �

m

⌊m∕2⌋
�

 . This implies that the smallest possible size of a completely separating

family on an n-element underlying set is the smallest m such that
�

m

⌊m∕2⌋
�

≥ n.

Let us now turn to new models. In each of the models, Player A picks the defec-
tive element and answers the queries. Some models will require adaptive, others
require non-adaptive algorithms. Models also differ by numerous other properties,
like

1 3

Cooperation in combinatorial search﻿	

•	 Whether the players can agree in a strategy beforehand,
•	 Whether just one player can ask queries or more, and in the latter case, what is

the order in which the players are allowed to ask their queries,
•	 What information the players obtain after a query,
•	 Which players should be able to identify the defective element.

We assign numbers to the models and say that an algorithm solves Model i if the
required players can always identify the defective element. If such an algorithm
exists, the minimum number of queries needed for the solution (in the worst case, of
course) is denoted by fi(n) . Since all models we consider are harder to solve than the
basic model of search, the trivial lower bound fi(n) ≥ ⌈log n⌉ holds for all i.

We start with some models where Player B asks the queries, and multiple players
obtain different pieces of information from the answers. These models are non-adap-
tive, and we assume that the players other than Player B do not have any information
beforehand about the algorithm: they are only given a family of sets with the infor-
mation whether they contain the defective element.

For each model we state our results and prove these later in the next section.
Model 1
We have four players: A, B, C, D. Player B asks the queries non-adaptively, Player

C obtains the YES answers and Player D obtains the NO answers (together with
the corresponding queries). At least one of C and D have to be able to identify the
defective element.

In order to find the optimum strategy for Model 1, we use the notion of k-Sperner
systems. A family is said to be k-Sperner if it does not contain k + 1 distinct sets
S1,… , Sk+1 such that S1 ⊊ S2 ⊊ ⋯ ⊊ Sk+1 . A theorem of Erdős [6] states that the
largest possible cardinality of a k-Sperner family on an m-element underlying set is
∑k

i=1

�
m

⌊m−k

2
⌋ + i

�
 , from which the second statement of the following Proposition

follows.

Proposition 1.1  A family F solves Model 1 if and only if the dual H of F is a 2-Sperner

family. Therefore, f1(n) = min

�
m ∶

�
m

⌊m∕2⌋
�
+

�
m

⌊m∕2 + 1⌋
�

≥ n

�
.

Our next model is a generalization of Model 1.
Model 2
We have r + 2 players, A,B,C1,… ,Cr with r > 1 . Player B asks a partition of X to

r sets X1,… ,Xr as a query. The defective element is contained in Xi for some i; then
Player Ci is given a YES answer (together with what the query was). We also say
that Xi belongs to Player Ci . The goal is that at least one of Players Cj should be able
to identify the defective element. Note that Model 2 is a generalization of Model 1,
indeed, since a query F of B in Model 1 corresponds to the query (F,X ⧵ F) of B in
Model 2.

It is more convenient to state our result on f2(n) (or, more precisely, on f2(n, r) )
in the following form. Let g2(k, r) denote the largest number of elements such that

	 D. Gerbner et al.

1 3

k queries are enough to solve Model 2 on g2(k, r) elements. Then clearly (as in the
previous models) f2(n, r) is the smallest k such that n ≤ g2(k, r).

Theorem 1.2 
The next model differs from Model 2 only in that Player B can ask r disjoint sets

that do not need to form a partition. This also means that r = 1 makes sense now and
in this case we obtain the original puzzle we have dealt with earlier.

Model 3
We are given r + 2 players, A,B,C1,… ,Cr . Player B asks r disjoint subsets

X1,… ,Xr of X. If the defective element is contained in Xi for some i, then Player Ci
obtains a YES answer (together with what the query was). The goal is that at least
one of Players Ci should be able to identify the defective element.

Theorem 1.3  g3(k, r) = r

�
k

⌊k∕2⌋
�

.

Let us turn our attention to some completely different models. From now on we
will have multiple questioners and the goal is to minimize the total number of que-
ries they ask. This makes sense only if they can affect each other, thus here we deal
with adaptive search. In the sequel we assume that Players B and C can discuss their
(questioning) strategies before asking any queries (but any communication between
them is forbidden during the algorithm, of course). We consider only YES-NO que-
ries, where only the YES answer is shared with some player. We also assume that
this player does not know whether a query with a NO answer was asked (otherwise
they would know that the answer is NO just from hearing no answer). Since such a
player may need to ask the next query, the order in which the players ask the queries
should be hidden from some players. There is an easy way to achieve this: Player A
decides which of the other players will ask the next query.

Model 4
We have three players A, B, C. Player A decides who asks next. Whenever Player

B asks a query, if the answer is YES, Player C obtains what the query was (and that
the answer was YES). Similarly, whenever C asks a query, if the answer is YES,
B obtains what the query was (and that the answer was YES). Note that the player
asking the query does not get any information concerning this particular query. The
goal is that at least one of B and C should be able to identify the defective element.

Theorem 1.4  f4(n) ≤ ⌈log n⌉ + ⌈log log n⌉ + 2.

Model 5
We have three players A, B, C. Player A decides who asks next. Whenever Player

B asks a query, B obtains the answer and if the answer is YES, C also obtains what

g2(k, r) =

⎧
⎪⎪⎨⎪⎪⎩

r

�
k

⌊k∕2⌋
�

if k ≥ 3 and r ≠ 2,
�

k

⌊k∕2⌋
�
+

�
k

⌊k∕2 + 1⌋
�

if r = 2.

2r − 1 if k = 2.

1 3

Cooperation in combinatorial search﻿	

the query was (and that the answer was YES). Similarly, whenever C asks a query,
C obtains the answer and if the answer is YES, Player B also obtains what the query
was (and that the answer was YES). The goal is that at least one of B and C should
be able to identify the defective element. Note that Model 5 differs from Model 4 in
that the player asking the query always obtains the answer.

Proposition 1.5  f5(n) ≤ ⌈log n⌉ + 1.

This upper bound is only one larger than the trivial lower bound. For small val-
ues of n, we determined the exact value of f5(n) , and it turns out that both ⌈log n⌉
and ⌈log n⌉ + 1 might occur as such, but we were not able to recognize a pattern.
It seems to be an interesting question to determine the set of those n’s for which
f5(n) = ⌈log n⌉.

Model 6
This model is the same as Model 5 with only one difference: the goal is that both

B and C should be able to identify the defective element.

Theorem 1.6  f6(n) ≤ ⌈log n⌉ + 2⌈√log n⌉ + 2.

Finally, we introduce a third type of models. In these we handle a problem we
have mentioned earlier in a different way: if a player obtains information about
a query only if the answer is YES, then in the case of a NO answer, they should
not know what the query was. Now we handle this problem by assuming that the
elements are indistinguishable before the start of the algorithm. When the players
discuss their strategy beforehand, in the previous models, they could consider ele-
ments x1,… , xn and choose, say, {x1,… , xn∕2} as the first query of Player B and
{xn∕2+1,… , xn} as the first query of Player C. Now all they know is that there are
n elements in the underlying set. They can still decide that the first query is a set of
order n/2, but they cannot pick, say, complement sets in this model. Basically, we
remove an unfounded assumption about the knowledge the players have concerning
the underlying set. The result of this change is that even if Player B knows that the
answer was NO to a query asked by Player C, this information is much less useful
than before.

Model 7
The elements are indistinguishable. Player B and Player C alternate asking que-

ries. From here we follow Model 4: Whenever Player B asks a query, if the answer
is YES, Player C obtains what the query was. Similarly, whenever Player C asks
a query, if the answer is YES, Player B obtains what the query was. Note that the
player asking the query does not obtain any information. The goal is that at least one
of Player B and Player C should be able to identify the defective element. We remark
that if the answer is NO to a query asked by (say) B, then C finds out that the answer
was NO, since he has to ask the next query without obtaining a YES answer. How-
ever, Player C does not find out what the query of Player B was (this is why in this
model we need indistinguishable elements, otherwise the two players could emulate
the classic non-adaptive search strategy using at most ⌈log n⌉ + 1 steps).

	 D. Gerbner et al.

1 3

Model 8
Model 8 is the same as Model 7, except that the player asking a query also obtains

the answer to the query. Clearly f8(n) ≤ f7(n).
Recall that the golden ratio is � =

1+
√
5

2
.

Theorem 1.7  log� n − O(1) ≤ f8(n) ≤ f7(n) ≤ ⌈log�(n)⌉.

2 � Proofs

Let us start with the proof of Proposition 1.1. Recall that it states that a family F
solves Model 1 if and only if its dual H is 2-Sperner.

Proof of Proposition 1.1  Let us assume that F solves Model 1. If Player C can find
the defective element d, then for every element x ≠ d , there exists a set F ∈ F with
d ∈ F , x ∉ F . If Player D can find the defective element, then for every element
x ≠ d , there is a set F′ with x ∈ F� , d ∉ F� . Since any element y can be defective, we
have for every y that either for every x ≠ y , there is a set F with y ∈ F , x ∉ F , or for
every x ≠ y , there is a set F′ with y ∉ F� , x ∈ F�.

It is equivalent that in the dual family H for every set Hy , we have that either
every other set Hx has the property that there is an F with F ∈ Hy , F ∉ Hx , or every
set Hx has the property that there is an F′ with F� ∉ Hy , F� ∈ Hx . The first prop-
erty means that Hy is not contained in any Hx , and the second property means that
Hy does not contain any Hx . In other words, Hy is either maximal or minimal with
respect to containment. Three distinct sets with H ⊂ H′ ⊂ H′′ in H would mean that
H′ violates this property, thus H is 2-Sperner.

Observe that in each step of the above proof the implications go both ways, giv-
ing us the other direction. Finally, the result on f1(n) follows from the theorem of
Erdős on k-Sperner families, mentioned in the introduction. 	� ◻

We prove Theorems 1.2 and 1.3 together, as parts of their proofs are common.
Observe that by definition we have g3(k) ≥ g2(k).

Proof of Theorems 1.2 and 1.3  Let us start with proving the general upper bound

r

�
k

⌊k∕2⌋
�

 . Observe that if F is a solution to Model 2 or 3, then for every x ∈ X we

have at least one player Ci such that if x is the defective element, then Ci can identify
it. Let Yi be the set of elements that can be identified by Ci.

We claim that �Yi� ≤
�

k

⌊k∕2⌋
�

 . Let x, y ∈ Yi , then there is a query where

x ∈ Xi, y ∉ Xi , otherwise if x is the defective, then both x and y appear in all the sets
Xi where Player Ci obtains any information, thus Player Ci does not know whether x
or y is the defective element. This means that the sets Xi restricted to Yi form a

1 3

Cooperation in combinatorial search﻿	

completely separating family Fi . Therefore, the dual family of Fi is a Sperner family
of cardinality |Yi| on the underlying set Fi with |Fi| = k , completing the proof of the
claim.

Summing this we get that the number of elements is indeed at most
∑�Yi� ≤ r

�
k

⌊k∕2⌋
�

.

Let us continue with the proof of the upper bound in Theorem 1.2 in the case
k = 2 . Assume on the contrary that g2(2, r) = 2r , in this case by the above claim
we must have |Yi| = 2 for each i and these sets are pairwise disjoint. Let X1,… ,Xr
be the first query and X�

1
,… ,X�

r
 be the second query. Let Y1 = {x, y} , then clearly

x ∈ X1, y ∉ X1 and y ∈ X�
1
, x ∉ X�

1
 (or the other way around) because of the com-

pletely separating property. As we deal with Model 2, another set in the first query,
say X2 , contains y. Let Y2 = {u, v} with u ∈ X2 . Then u ≠ y as Y1 ∩ Y2 = � . If u is the
defective, then Player C2 cannot rule out the possibility that y is the defective, since
Player C2 only obtains the information that X2 contains the defective (recall that in
Model 2 and 3 the Players Ci are not aware of the queries of Player B, they only get
some sets that contain the defective element), a contradiction. This completes the
proof of the upper bound g2(2, r) ≤ 2r − 1.

Let us continue with the lower bound r
�

k

⌊k∕2⌋
�

 in the case of Theorem 1.3.

Consider a set X of size r
�

k

⌊k∕2⌋
�

 . Player B first partitions X to r sets Y1,… , Yr ,

each of size
�

k

⌊k∕2⌋
�

 . On each Yi , Player B picks a completely separating family of

order k and let Xi
1
,… ,Xi

k
 be its members. Then as Query Qj , Player B asks the sets

Xi
j
 . If the defective element d belongs to Yi , then Ci can identify d, as any element not

in Yi is distinguished by any Xi
j
 that contains d (and there is at least one such set) and

any y ≠ d in Yi is distinguished from d as Fi is completely separating.
The above family of queries solves Model 3 but it cannot be used for Model 2,

since the queries do not form a partition of the underlying set. Let us prove now the

lower bound r
�

k

⌊k∕2⌋
�

 in the case of Theorem 1.2, r > 2 and k > 2 . Again, on each

Yi Player B picks a completely separating family Fi =
{
Xi
1
,… ,Xi

k

}
 , but now we

specify that the dual of Fi is the family of ⌈k∕2⌉-element sets of the k element base
set. Queries Q1,Q2,… ,Qk obtained as above are still not partitions of X, so we have
to modify them.

There are some elements in Yi that are not in Xi
j
 . Let us first add these elements to

X�

j
 for some � ≠ i . Repeating this for every i, we obtain a new query Q′

j
 that is a par-

tition of X to U1
j
,… ,Ur

j
 . Let us repeat this for every j. Then, as all elements of

Ui
j
⧵ Xi

j
 are not in Yi , the sets Ui

1
,… ,Ui

k
 still form a completely separating family

restricted to Yi . If Player Ci would know that the defective element is in Yi , then he
could identify it. However, it is possible that for some x ∈ Yi and y ∉ Yi , each set
from {Ui

1
,… ,Ui

k
} that contains x also contains y. If that is the case and x is the

defective, then Player Ci cannot rule out the possibility that y is the defective.

	 D. Gerbner et al.

1 3

Observe that each element of Yi appears in ⌈k∕2⌉ sets Xi
j
 by the choice of Fi .

Therefore, such an element x ∈ Yi appears in ⌈k∕2⌉ sets Ui
j
 . If y ∉ Yi , then y ∈ Y

�
 for

some � , thus such a y appears in ⌈k∕2⌉ sets U�

j
 , thus y appears in at most ⌊k∕2⌋ sets

Ui
j
 . Thus, if k is odd, then we cannot have that each set Ui

j
 that contains x also con-

tains y (as ⌊k∕2⌋ < ⌈k∕2⌉ ), which completes the proof if k is odd.
If k is even, then we still want that every element of Y

�
 appears in less than k/2

sets Ui
j
 for every � ≠ i . To do this, we extend the sets Xi

j
 to Ui

j
 more carefully. For

each j, we take the elements of Yi ⧵ Xi
j
 , and add each of them to one of two different

sets U�

j
 and U�

′

j
 in the following way. For each element y ∈ Yi , we first consider the

smallest j such that y ∉ Xi
j
 , and then we add y to U�

j
 . Then we take the second small-

est index j′ such that y ∉ Xi
j�
 , and then we add y to U�

′

j′
 . Adding y to these two sets

alternately this way, any y ∉ Yi appears in less than k/2 sets Ui
j
 . Therefore, we cannot

have that each set Ui
j
 that contains x also contains y, as every x ∈ Yi appears in k/2

sets Ui
j
 . We can execute this plan if r ≥ 3 (to pick i, � and �′ ) and k > 2 (to pick �

and �′ among the ⌈k∕2⌉ sets not containing y).
The case r = 2 is dealt with in Proposition 1.1.
It is left to show that g2(2, r) ≥ 2r − 1 . Let X = {x1,… , x2r−1}.
We define the queries Q1 =

(
X1
1
,X1

2
,… ,X1

r

)
 , Q2 =

(
X2
1
,X2

2
,… ,X2

r

)
 by

X1
i
= {x2i−1},X

2
i
= {x2i} for i ≤ r − 1 , and X1

r
= X⧵ ∪r−1

i=1
X1
i
 , X2

r
= X⧵ ∪r−1

i=1
X2
i
 . If the

defective element is xj with j < 2r − 1 , then it belongs as a singleton to a Player,
thus that Player can identify it. If the defective element is x2r−1 , then Player Cr can
identify it, since x2r−1 is the only element contained in both X1

r
 and X2

r
 . 	� ◻

In multiple proofs next, Players B and C can decide their strategy before the algo-
rithm starts. They will apply modifications of the following strategy that we will
call the Basic Strategy. Let us identify elements of X with 0-1 sequences of length
⌈log n⌉ , and let Si denote the set of sequences whose ith bit is 1. In the Basic Strategy,
the ith query of Player B is Si , and the ith query of Player C is S⌈log n⌉−i+1 . In other
words, Player B asks whether the ith bit is 1, while Player C asks whether the ith bit
from the other direction is 0.

The main advantage of a predetermined strategy is that whenever a YES answer
is obtained to a query of B, then C obtains this answer and also knows what the ear-
lier queries of B were. Since C knows when the answers were YES, he knows the
answer to all the queries of B (and vice versa). The reason that C asks the comple-
ments is that in this way when they ask about the same bit, one of them obtains the
answer YES, thus one of them obtains the information.

Recall that Players B and C are not allowed to communicate during the algorithm.
However, they can send messages to each other via asking certain queries. One sim-
ple way to send such a message is to ask X as a query (which clearly would not serve
any other purpose). Since the answer to this is YES, the other player will obtain this
message in the models studied. One can ask the same query multiple times, thus
any message could be sent. These messages will be added at some points during the
Basic Strategy.

1 3

Cooperation in combinatorial search﻿	

We continue with the proof of Proposition 1.5. Recall that it deals with the model
where Player A decides who asks the next query, the Questioner obtains the answer,
while the other Player obtains the answer (and the query) if the answer is YES. The
statement is that at least one player can identify the defective element after log n + 1
queries.

Proof of Proposition 1.5  Players B and C apply the Basic Strategy. Then at query
log n + 1 they arrive to the same bit i. Let us assume without loss of generality that
the defective element is in Si , thus the answer to the query by Player B is YES. Both
players know this answer. No matter which one of them arrived to the last query,
that player knows the answer to every earlier query, thus can identify the defective
element. Indeed, he knows the answer to his own queries by the properties of Model
5, and knows the answer to the queries asked by the other player, since he knows
that the other player asked the queries till the ith bit, and knows which of those que-
ries were answered YES. 	� ◻

The inequality in this Proposition is not sharp. We determined the exact number
of questions for values of n up to 16. We found no obvious pattern, thus we do not
have any conjecture about the exact value of f5(n).

In the case of 4 elements, two queries are not enough. Both players have to decide
on a query, they ask as their first query Q if they have not gained any information
earlier, i.e., either Q is the very first query, or the other player asked some queries
earlier but they were answered NO. If |Q| ≠ 2 , then the answer could be that there
are at least 3 possible defective elements, thus clearly one more query is not enough
to solve the problem. If both players have a 2-element set as the first query, Player
A let them both ask a query and answers NO, then none of them knows the answer
unless the two queries are complements of each other, in which case Player A can
answer NO to the first query and YES to the second one with both Players B and C
not knowing the defective element.

Next, we show that three queries are enough if there are (at most) six elements.
The first query of Player B is {1, 2, 3} , and the first query of Player C is {1, 4, 5} if
they do not get any information from the queries of the other player. If they still do
not get any other information after this query and the answer is NO, Player B con-
tinues with {4, 6} , and Player C continues with {2, 6} . If the answer is YES, Player B
asks {1, 2} , and Player C asks {1, 4}.

Without loss of generality, the first query is by Player B, thus it is {1, 2, 3} . If the
answer is YES, then Player B and C can finish with 2 more queries, as f5(3) = 2.

f5(n) =

⎧
⎪⎪⎨⎪⎪⎩

1 if n = 2

2 if n = 3

3 if 4 ≤ n ≤ 6

4 if 7 ≤ n ≤ 11

5 if 12 ≤ n ≤ 16.

	 D. Gerbner et al.

1 3

If the answer to {1, 2, 3} is NO and Player B is next, he asks {4, 6} , in the case of
NO, Player B knows the defective; in the case of YES, both players know that 4 or 6
is the defective element and can ask {4}.

If the answer to {1, 2, 3} is NO and Player C is next, he has to ask {1, 4, 5} . If the
answer to that is YES, then Player B knows that the defective is 4 or 5, so he can fin-
ish with one more query if he asks the next query. If Player C asks the third query,
he has to ask {1, 4} , so the YES answer reveals to Player B that 4 is the defective ele-
ment, while the NO answer reveals to Player C that 5 is the defective element.

If the answer to {1, 4, 5} is also NO, we are in a symmetric situation, so we can
assume that Player B is next. He has to ask {4, 6} . A NO answer reveals to Player B
that 5 is the defective element, while a YES answer reveals to Player C that 4 is the
defective element.

Next, we show that 3 queries are not enough if n = 7 . No matter what the first
query is, a possible answer gives at least 4 options for the defective element, thus at
least f5(4) = 3 further queries are needed.

Next, we show that four queries are enough if there are (at most) eleven elements.
We provide a strategy for Players B and C to determine the defective element out

of 11 possibilities with four queries. Let X1 = {1, 2, 3, 4, 5, 6} and X2 = {7, 9, 11} be
the first two queries for Player B if they get to ask them without any knowledge about
queries from Player C. Similarly, let Y1 = {1, 2, 3, 7, 8, 9} and Y2 = {4, 6, 10} be the
first two queries for Player C if they get to ask them without any knowledge about
queries from Player C. Observe that Player A cannot answer all of X1,X2, Y1, Y2 with
NO, as these sets cover all elements. If Player B (or Player C) is allowed to ask a
query after receiving NO answers to X1,X2 (or Y1, Y2 ), then after the next query, {8}
(or {5} ), they will know the defective element. Therefore, we can assume that Player
A answers a query with YES among X1,X2, Y1, Y2 . If X1, Y1 are answered with NO
and X2 with YES, then Player C knows the answer to all the queries (as he received
the answer to X2 , so X1 must have been asked before) and can determine that 11 is
the defective element. If X1,X2 received no answers and Y1 received a YES, then
Player B received all the answers and can determine that 8 is the defective element.
With symmetry, the above cases cover all possibilities when the YES answer came
with two or three NO answers.

If the first answer is YES, then Players B and C follow the strategy above for
six elements with three queries. So we can assume that X1 is the first query and
answered with NO, while Y1 is the second query and answered with YES. Now
Player C must play according to the winning strategy on six elements, as he does
not know about the query X1 . Note that the first two queries for Player C in the above
strategy, in case of a first NO answer, form a disjoint pair of a 3-set and a 2-set. So
Player C picks Y �

2
= {1, 2, 7} and Y �

3
= {3, 9} . On the other hand, Player B can change

his strategy. So if he receives no further information, he asks X�
3
= {7, 8} . If Player

B ever asks X′
3
 and receives a NO answer, he knows that the defective element is 9.

Suppose Player B gets a YES to X′
3
 . If this was the third query, then whoever asks

the fourth query will know the defective element after that. If Y ′
2
 was answered with

NO, and then X′
3
 was answered with YES, then Player C knows that the defective

element is 8. So we can assume that X′
3
 is never queried. If Y ′

2
 is answered with YES,

then Player B knows that the defective element is 7. If Y ′
2
, Y ′

3
 are both answered with

1 3

Cooperation in combinatorial search﻿	

NO, then Player C knows that the defective element is 8. Lastly, if Y ′
2
 is answered

with NO and Y ′
3
 answered with YES, then Player B knows that the defective element

is 9. This finishes the proof of f5(11) ≤ 4.
Finally, we show that in the case of 12 elements, Players B and C need at least

5 queries. Then f5(n) = 5 will follow for 12 ≤ n ≤ 16 since for these values of n,
we have ⌈log n⌉ + 1 = 5 . Suppose, towards a contradiction, that Players B and C
have a strategy to determine the defective element with at most 4 queries. Let
X1,X2 ( Y1, Y2 ) be the first two queries Player B (Player C) asks if he does not
know anything else than the answers to his own queries, i.e., all queries (if any)
of the other Player were answered with NO, and in the case of the second query,
the first answer to their own query was NO. Also, let X′

2
 ( Y ′

2
 ) be the query that

Player B (Player C) asks if all he knows is that the answer to X1 ( Y1 ) was YES,
and so all previous queries of Player C (Player B) were answered with NO.

If X1 or Y1 has a size different from 6, then if Player A lets this query be asked
first, there is a way to answer such that the number of remaining possible defec-
tive elements is at least 7 (in the case this comes with a NO answer, Player A can
additionally reveal this information to all other players). This is a contradiction as
f5(7) = 4 . So from now on, we will assume |X1| = |Y1| = 6.

If |X1 ∩ Y1| ≠ 3 , then one of X1 ∩ Y1 or X1 ∩ Y1 has size at least 4, then Player
A can let X1 be the first query and answer it NO, then let Y1 be the second query
and answer it YES or NO so that there will remain at least 4 possible defective
elements, which is a contradiction as f5(4) = 3 . So from now on, we will assume
|X1 ∩ Y1| = |X1 ∩ Y1| = |X1 ∩ Y1| = |X1 ∩ Y1| = 3 . Similarly, if one of |X1 ∩ X2| or
|X1 ∩ X2| ( |Y1 ∩ Y2| or |Y1 ∩ Y2| ) is at least 4, then Player A can let X1,X2 ( Y1, Y2 )
be the first two queries and answer X1 NO and X2 so that the number of remaining
possible defective elements is at least 4, which is again a contradiction. So from
now on, we assume |X1 ∩ X2| = |X1 ∩ X2| = |Y1 ∩ Y2| = |Y1 ∩ Y2| = 3.

If X2 ⊃ X1 ∩ Y1 ( Y2 ⊃ X1 ∩ Y1 ), then Player A can let X1, Y1,X2 ( X1, Y1, Y2 )
be the first three queries and answer them NO, NO, YES. The number of
remaining possible defective elements is at least 3, which is a contradiction as
f5(3) = 2 . So from now on, we can and will assume that |X2 ∩ X1 ∩ Y1| ≤ 2 and
|Y2 ∩ X1 ∩ Y1| ≤ 2.

By symmetry, we assume X1 = {7, 8,… , 12} and Y1 = {4, 5,… , 9} . Suppose
|X2 ∩ {1, 2, 3}| ≤ 1 , say X2 ∩ {1, 2, 3} is empty or the singleton {1} . Then Player A
can let the first four queries be X1, Y1,X2, Y2 and answer the first three of them NO,
while the answer to Y2 is YES if Y2 contains {2, 3} and NO otherwise. If the answer
was YES, then both Player B and Player C know that the defective element is one
of 2 and 3, but a further query is needed to determine which one. If the answer was
NO, then both Player B and Player C know the answers to their own queries, an they
both have see three possible defectives. Note that knowing all the answers may be
enough to figure out that the defective element (depending on whether X2 ∩ {1, 2, 3}
is empty or not), but none of the players knows all the answers.

In both cases, the strategy needs at least 5 queries. A similar argument shows
that the strategy cannot work if |Y2 ∩ {1, 2, 3}| ≤ 1 , so we can assume that

	 D. Gerbner et al.

1 3

|X2 ∩ {1, 2, 3}| = |Y2 ∩ {1, 2, 3}| = 2 and thus |X2 ∩ Y1 ∩ X1| = |Y2 ∩ X1 ∩ Y1| = 1 .
In particular, we assume X2 = {1, 2, 4}.

We are left with two subcases. Suppose first that |Y1 ∩ Y �
2
| ≥ 5 . Then Player A

lets Player C ask the first two queries and answers YES for both of them. As a con-
sequence, Player C asked Y1 and Y ′

2
 , so after two queries both Players B and C know

that the defective element is in Y1 ∩ Y �
2
 , which is a contradiction as f5(5) = 3 , so

three more queries have to be asked.
Suppose next |Y1 ∩ Y �

2
| ≤ 4 . Then Player A lets Player B ask the first two que-

ries and answers both of them NO (and so the queries are X1,X2 ). Then, Player
A lets Player C ask the next two queries and answers first YES, and so the que-
ries are Y1 and Y ′

2
 . If Y ′

2
⊃ 5, 6 , then Player A answers YES to Y ′

2
 ; otherwise, NO.

Observe first that if Y ′
2
⊅ 5, 6 , then a NO answer is possible since X1 ∪ X2 ∪ Y �

2

does not cover Y1 . If the answer was YES, then both 5 and 6 are possible defective
elements. If the answer is NO, then for Player C, any element in Y1 ⧵ Y ′

2
 is a pos-

sible defective element, and as |Y1 ∩ Y �
2
| ≤ 4 , there are at least two of them. While

Player B only knows the answers to X1,X2 and Y1 and so 5 and 6 are still possible
defective elements for him. This contradiction finishes the proof of f5(12) ≥ 5.

Let us continue with the proof of Theorem 1.6. Recall that Model 6 differs
from Model 5 in that both players should be able to identify the defective ele-
ment. The bound we have to prove is f6(n) ≤ ⌈log n⌉ + 2⌈√log n⌉ + 2.

Proof of Theorem 1.6  Let P be the set of numbers of the form i⌈√log n⌉ for
i ≤ ⌈√log n⌉ . Players B and C follow the Basic Strategy with some additional que-
ries. For simplicity, we describe the strategy for Player B; it is analogous for Player
C. Whenever Player B asks Sp with p ∈ P , the next query of Player B is a special
query. Afterward Player B continues with the Basic Strategy, i.e., her next query is
Sp+1 . The special query is X, thus the answer is always YES, thus Player C obtains
this information. Therefore, Player C also knows which special query this was, thus
Player C knows the answer to each Si with i < p.

Whenever a query corresponding to the ith bit is asked by both players, one of
them obtains a YES answer, thus the other player knows every bit, as in the proof
of Proposition 1.5. Assume now that the special query at p ∈ P is asked by both
players. Then Player B knows the answer to each Si with i ≤ p since he asked those
queries and the answer to each Si with i ≥ p since those were asked by Player C, and
this special query shows this fact. Player C analogously knows each bit, thus the
algorithm is finished.

As there are ⌈√log n⌉ elements in P, there are at most ⌈√log n⌉ + 1 special que-
ries asked. For each i ≤ log n , one of the queries Si and Si is asked, except for the the
values i between two consecutive elements of P. Indeed, if without loss of general-
ity, Player B asks the special query at p first, it is possible that he asks all the queries
between p and the next element p + ⌈√log n⌉ of P before Player C asks the special
query at p. However, if Player B would ask also the special query at p + ⌈√log n⌉ ,
then this special query would be asked by both players before the special query at
p, thus the algorithm would finish before Player C would ask the special query at p,
leading to a contradiction. Therefore, there are at most ⌈√log n⌉ + 1 entries i with

1 3

Cooperation in combinatorial search﻿	

both Si and Si asked, hence there are ⌈log n⌉ + ⌈√log n⌉ + 1 non-special queries
asked. 	� ◻

We remark that we could get rid of the +2 term by making the strategy less
symmetric: Player B would ask the special query at p after asking Sp and Player C
would ask it before asking Sp.

Let us continue with the proof of Theorem 1.4. Recall that the player asking the
query does not get any information, but it is enough if one of Players B and C finds
the defective element. The theorem states that f4(n) ≤ ⌈log n⌉ + ⌈log log n⌉ + 2.

Proof of Theorem 1.4  Players B and C again follow the Basic Strategy with the fol-
lowing alterations. Throughout the process, they maintain a left endpoint � , a right
endpoint r, and a target position t = �+r

2
 . At the beginning, � = 1 and r = ⌈log n⌉ . B

plays along the Basic Strategy unless he is to ask a query Si with i > t , while C plays
along the Basic Strategy unless he is to ask a query Si with i < t . At these moments
B and C ask a special query, for which the answer is always YES and which is of the
form ∩i∈ISi ∩ ∩i∈I�Si . The special query is the smallest set S the questioner knows
the defective element belongs to. Formally, without loss of generality, assume that
it is C who asks the special query Q = Q1 ∩ Q2 , where Q1 is the set that C knows
because of the previous queries of B, and Q2 is the set that C knows about his own
queries. More precisely, if we denote by YESB the set of queries asked by B that were
answered YES, then

Observe that C does know
⋂

S�∈YESB
S� as these are queries of B that were answered

YES, so he received them. He also knows
⋂

∃i�>i∶Si� ∈YESB
Si as the players agreed to

play along the Basic Strategy, so if C did not receive Si but received an Si′ with i < i′ ,
then C knows that the defective element is in Si . An important consequence of ask-
ing the special query Q that has a part Q1 is that B after receiving Q will know the
answers to all of his previous queries. Indeed, as C asks

⋂
S�∈YESB

S� , B knows which
of his queries have been answered YES, and thus all his other queries must have
been answered NO. If before C is asking a special query, there had been special que-
ries from B, then C knows the answers to those of his queries that were asked before
B’s last special query, so C can include these Sj s and Sj s into Q2.

There are two ways how a special query can be asked. The simpler case is if B
asks this instead of asking S⌊t⌋+1 (or similarly C asks this instead of asking S⌈t⌉−1 ). In
this case, � is changed to ⌊t⌋ + 1 and t is changed according to the rule t = �+r

2
 . (If C

was asking the special query, then r becomes ⌈t⌉ − 1 and t is updated accordingly.)
Another possibility is that a Player asked a special query and that moved the target t
“behind” the other player. For example if B is first to reach the bit 1

2
log n , but by that

time C has already asked S 5

8
log n , then t becomes 3

4
log n >

5

8
log n . This situation can

only occur when say, C asks his first query after a special query of B (maybe B has

Q1 =
⋂

S�∈YESB

S� ∩
⋂

∃i�>i∶Si� ∈YESB

Si.

	 D. Gerbner et al.

1 3

asked queries since, but not C), so as mentioned above, at this moment C knows the
answers to all the previous queries by himself. Therefore, the Q2 part of his special
query will reveal his current position i to B, so the two Players can set r to be i and
then update t.

As the value of r − � is at most half of its previous value after each change to t,
we obtain that the number of special queries is at most ⌈log(⌈log n⌉)⌉ . To finish the
proof, we need to analyze the situation when B has asked Si , C has asked Si+1 , so
until this point ⌈log n⌉ normal and at most ⌈log(⌈log n⌉)⌉ special queries have been
asked.

Case I We have t > i + 1 , i.e., that target is behind C.
Then by the above observation, C knows the answers to all his previous queries.

If C is to ask the next query (a special query as t > i + 1 ), then B will learn the
answers to all the bits, and thus, he will know defective element. If B is to ask Si+1 ,
then there are two possibilities. If the answer is YES, then C will receive this, and
will know the defective element, as because of the Basic strategy, C will know all
the YES and thus all NO queries of B. Finally, if the answer to Si+1 would be NO,
then previously the answer to C’s query Si+1 must have been YES and thus received
by B. So B instead of asking Si+1 can ask a special query ensuring that C will know
the defective element.

Case II We have t = i +
1

2
 or t = i + 1.

If C is to ask the next query, then the query is a special one that lets B know the
answers to all his queries and moves the target behind B. So any later query from
B would be a special query letting C know the defective element. If, following C’s
special query, C proceeds to ask the next query, it will be Si . Then the situation is
analogous to the second subcase of Case I: if the answer is YES, B receives this
information and discovers the answers to all queries by C. If the answer is NO, C
already knows this, as B had asked Si , so he can ask a special query instead of Si.

If B is to ask the next query and t = i +
1

2
 , then the roles of B and C are symmet-

ric, so the above paragraph can be applied. Finally, if B is to ask the next query and
t = i + 1 , then after the next query, both players would proceed with a special query,
and we finish as before.

In all cases, we finished with at most 2 extra queries. This completes the proof. 	
� ◻

Let us continue with the proof of Theorem 1.7. Recall that now Players B and
C can agree in a strategy beforehand, but the elements are indistinguishable at that
point. They alternate asking queries, and at least one of them should be able to iden-
tify the defective element.

Proof of Theorem 1.7  Recall first that for the golden ratio we have that
1∕� + 1∕�2 = 1.

Let us start with the upper bound. At each point, one of Players B and C is the
main questioner, the other is the auxiliary questioner. Let us assume that Player B
asks the first query, then he starts as the main questioner. They change roles when-
ever there is a YES answer.

1 3

Cooperation in combinatorial search﻿	

If the answer to the query of the main Questioner is NO, the auxiliary questioner
asks the whole underlying set X. This tells the main Questioner that the answer to
his Query was NO.

The main questioner always maintains the set of possibly defective elements Xi
and asks a subset Yi of Xi of order ⌊�Xi�∕�⌋ as a query. If the answer is YES, the other
player becomes the main questioner, and Xi+1 ∶= Yi is the set of possibly defective
elements. If the answer is NO, then the auxiliary questioner queries X, and the main
Questioner sets the set of possibly defective elements to Xi ⧵ Yi . This way, (omitting
the floor signs) the size of the set of possibly defective elements either decreases
to |Xi|∕� with one query or decreases to |Xi|(1 − 1∕�) = |Xi|∕�2 with two queries.
Clearly this implies the upper bound f7(n) ≤ log� n.

Let us continue with the lower bound. We describe the strategy of the adversary
recursively. Note that usually an adversary strategy means that we pick the answers
so that there is still a possible solution. However, as the elements are indistinguish-
able, we can also control the intersection of the queries by the two players in the
case the second player does not have any information on the query of the first player.
For example, if the first player asks a set of size n/2 and the answer is NO, and the
second player asks a set of size n/2, the adversary can decide that they asked the
same set.

If the first query has size at least ⌊n∕�⌋ , the answer is YES, otherwise NO. If
the first answer is YES, he applies the same strategy starting at the next query. If
the first answer is NO, then note that the complement of the first query has size at
least ⌊n∕�2⌋ . If the second query has size at least ⌊n∕�2⌋ , then the adversary decides
that the intersection of the second query with the complement of the first query has
size at least ⌊n∕�2⌋ and the answer is YES. Moreover, he tells both players all the
answers to the queries. This way after two queries there are at least ⌊n∕�2⌋ possibly
defective elements, and the adversary applies the same strategy starting at the next
query. On the other hand, if the second query has size less than ⌊n∕�2⌋ , the adver-
sary answers NO and decides that the union of the two queries has size at most
⌊n∕�⌋ and tells this information to both players. Again, after two queries there are at
least ⌊n∕�2⌋ possibly defective elements, and the adversary applies the same strategy
starting at the next query. This completes the proof. 	� ◻

3 � Concluding remarks

There are other models that one can obtain by combining the ideas used in the paper.
Some of these do not make much sense, e.g. if player A decides who asks the next
query, and the player asking the query does not get any information, we cannot
require that both players identify the defective, since A can make sure that only one
player asks all the queries, and that player can obviously never identify the defective.

Other models are just not of much interest, because their solution is trivial. E.g.,
one might ask what happens in Model 1 if we require that both players can iden-
tify the defective. This cannot be easier than the simple puzzle we started with,
where Player C has to identify the defective. But the solution to that is a completely

	 D. Gerbner et al.

1 3

separating family, and it is not hard to see that if the queries form a completely sepa-
rating family, then Player D can also identify the defective element, completely solv-
ing this case. Another example is if Players B and C ask queries alternately, the other
player obtains the YES answers and the elements are distinguishable. Then the play-
ers agree on a strategy and each player knows the answer to the queries of the other
player, thus they can always decrease the set of possibly defective elements by a fac-
tor of 2, which leads to an algorithm requiring log n queries.

We never forbade agreeing in a strategy before the start of an adaptive algorithm.
The reason is that forbidding this leads to a sort of philosophical question. Can the
players agree in a strategy in constant time? They can communicate during the algo-
rithm (by sending messages via asking certain queries) and send any number k to
each other, e.g., by asking the query X exactly k times in a row. Without discussing
the strategy, but assuming optimal play by the players, can we assume that the other
player understands that the message is k and can he decode this message? If yes,
then forbidding the discussion beforehand only gives a constant additive term.

In this paper we restricted our study to worst case bounds. Yet one could also
consider the expected length of algorithms in case the defective element is chosen
randomly (and then we can also decide if Player A should choose randomly which
Player can ask a query next in the appropriate models, or this could be the choice of
A).

Let us finally remark that while cooperation was essential in our algorithms, we
could have studied competitive versions of Combinatorial Search instead, using the
same models. For example, in Models 4,5,6,7,8 it could be the goal of Player B that
Player C should not be able to identify the defective element (and vice versa). What
are the chances that Player B wins when the defective is a (uniformly) random ele-
ment and how many queries are needed in the optimal algorithm? In Models 1,2,3
the goal of Player B could be e.g. that one player cannot identify the defective ele-
ment but multiple players can.

Funding  Open access funding provided by Eötvös Loránd University. Research of Gerbner is supported
by the National Research, Development and Innovation Office - NKFIH under the Grants SNN 129364,
FK 132060, and KKP-133819. Research of Keszegh is supported by the János Bolyai Research Schol-
arship of the Hungarian Academy of Sciences, by the National Research, Development and Innova-
tion Office – NKFIH under the Grant K 132696 and FK 132060, by the ÚNKP-21-5 and ÚNKP-22-5
New National Excellence Program of the Ministry for Innovation and Technology from the source of
the National Research, Development and Innovation Fund and by the ERC Advanced Grant “ERMiD”.
Research of Patkós is supported by the National Research, Development and Innovation Office - NKFIH
under the Grants SNN 129364 and FK 132060. This research has been implemented with the support
provided by the Ministry of Innovation and Technology of Hungary from the National Research, Devel-
opment and Innovation Fund, financed under the ELTE TKP 2021-NKTA-62 and the TKP2021 (project
no. BME-NVA-02) funding scheme.

Data availability  We do not analyse or generate any datasets, because our work is theoretical. One can
obtain the relevant materials from the references below.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this

1 3

Cooperation in combinatorial search﻿	

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 Aigner, M.: Combinatorial Search. Wiley, Hoboken (1988)
	 2.	 Bonamy, M., Botler, F., Dross, F., Naia, T., Skokan J.: Separating the edges of a graph by a linear

number of paths. (2023). arXiv preprint arXiv:​2301.​08707
	 3.	 Birkás, G.y., Hraskó, A.: Personal communication (2022)
	 4.	 D’yachkov, A.G., Vorobyev, I.V., Polyanskii, N.A., Shchukin, V.Y.: On a hypergraph approach to

multistage group testing problems. In 2016 IEEE International Symposium on Information Theory
(ISIT), pp. 1183–1191. IEEE, (2016)

	 5.	 Du, D.-Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications. World Scientific, Sin-
gapore (1999)

	 6.	 Erdős, P.: On a lemma of littlewood and offord. Bull. Am. Math. Soc. 51, 898–902 (1945)
	 7.	 Katona, G.: On separating systems of a finite set. J. Combin. Theory 1, 174–194 (1966)
	 8.	 Letzter, S.: Separating paths systems of almost linear size. arXiv preprint arXiv:​2211.​07732 (2022)
	 9.	 Pelc, A.: Searching games with errors-fifty years of coping with liars. Theoret. Comput. Sci. 270(1–

2), 71–109 (2002)
	10.	 Róka, S.: Independent intersection systems (in Hungarian). Acta Acad. Paedag. Nyíregyháziensis

12, 17–20 (1990)
	11.	 Róka, S.: Independent intersection systems II. Acta Acad. Paedag. Agriensis, Sect. Math. 24, 67–73

(1997). (in Hungarian)
	12.	 Spencer, J.: Minimal completely separating systems. J. Combin. Theory 8, 446–447 (1970)
	13.	 Spencer, J., Winkler, P.: Three thresholds for a liar. Comb. Probab. Comput. 1(1), 81–93 (1992)
	14.	 Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Math. Z. 27, 544–548 (1928)
	15.	 Vorobyev, I.: Optimal multistage group testing algorithm for 3 defectives. In 2020 IEEE Interna-

tional Symposium on Information Theory (ISIT), pp. 90–95. IEEE, (2020)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2301.08707
http://arxiv.org/abs/2211.07732

	Cooperation in combinatorial search
	Abstract
	1 Introduction
	2 Proofs
	3 Concluding remarks
	References

