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Abstract
We introduce affine optimal k-proper connected edge colorings as a variation on 
Fujita’s notion of optimal k-proper connected colorings (Fujita in Optim Lett 
14(6):1371–1380, 2020. https:// doi. org/ 10. 1007/ s11590- 019- 01442-9) with 
applications to the frequency assignment problem. Here, for a simple undirected 
graph G with edge set E

G
 , such a coloring corresponds to a decomposition of E

G
 

into color classes C1,C2,… ,C
n
 , with associated weights w1,w2,… ,w

n
 , minimizing 

a specified affine function A ∶=
∑n

i=1

�
w
i
⋅ �C

i
�
�
 , while also ensuring the existence 

of k vertex disjoint proper paths (i.e., simple paths with no two adjacent edges in the 
same color class) between all pairs of vertices. In this context, we define � k

A
(G) as 

the minimum possible value of A under a k-proper connectivity requirement. For 
any fixed number of color classes, we show that computing � k

A
(G) is treewidth fixed 

parameter tractable. However, we also show that determining � k
A

� (G) with the affine 
function A� ∶= 0 ⋅ |C1| + |C2| is NP-hard for 2-connected planar graphs in the case 
where k = 1 , cubic 3-connected planar graphs for k = 2 , and k-connected graphs 
∀k ≥ 3 . We also show that no fully polynomial-time randomized approximation 
scheme can exist for approximating � k

A
� (G) under any of the aforementioned con-

straints unless NP = RP.
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1 Introduction

An edge colored graph G is called k-proper connected, or stated to have a k-proper 
connected edge coloring, if there exist k vertex disjoint proper paths between all 
pairs of vertices having no two adjacent edges of the same coloration [3, 6]. Here, 
letting G be a graph with an initial monochromatic edge coloration, Fujita [16] 
introduced the discrete optimization problem of computing the minimum of the sum 
p + q for the number of edges p that must be recolored using q new colors to ensure 
G is k-proper connected. In this context, min{p + q} is referred to as the optimal 
k-proper connection number of G, or pck

opt
(G) , and any edge coloration minimizing 

p + q is referred to as an optimal k-proper connected coloring. Moderating pck
opt
(G) , 

Fujita also introduced a parameter pck
opt�

(G) , corresponding to the minimum total 
number of edges that must be recolored using all distinct colors to ensure G is 
k-proper connected.

Inspired by Fujita’s concept of optimal k-proper connectivity [16], we introduce 
the notion of affine optimal k-proper connected edge colorings. Letting G be a 
simple undirected graph with edge set EG , such a coloring corresponds to a 
decomposition of EG into n distinct color classes C1,C2,… ,Cn , with associated 
weights w1,w2,… ,wn , under the dual objectives of minimizing an affine function 
A ∶=

∑n

i=1

�
wi ⋅ �Ci�

�
 and ensuring G is at least k-proper connected. We likewise 

introduce the affine optimal k-proper connection number, � k
A
(G) , as the minimum 

possible value of A under a k-proper connectivity requirement for G. While we can-
not directly express pck

opt
(G) in terms of � k

A
(G) , for A∗ ∶= 0 ⋅ �C1� +

∑�EG�
i=2

�Ci� we 
can observe that pck

opt�
(G) is equivalent to � k

A
∗ (G).

In this work, we show that � k
A
(G) is expressible in Monadic Second-order ( MS2 ) 

logic, and for any fixed number of color classes n ∈ ℕ>0 for affine function A , cor-
respondingly treewidth Fixed-Parameter Tractable (FPT) to compute (Theorem 1). 
Furthermore, in the special case where we consider highly restricted affine functions 
of the form A∗ ∶= 0 ⋅ �C1� +

∑�EG�
i=2

�Ci� , we show that computing � k
A

∗ (G) is treewidth 
FPT without a bound on the number of color classes (Proposition 1), and that this 
correspondingly holds for the parameter pck

opt�
(G) (Corollary 1).

With regard to hardness results, we consider the problem of determining � k
A

� (G) 
for highly restricted affine functions of the form A� ∶= 0 ⋅ |C1| + |C2| . In particular, 
we show that � k

A
� (G) is NP-hard to compute if G is a 2-connected planar graph and 

k = 1 (Theorem 2), a cubic 3-connected planar graph and k = 2 (Theorem 4 in the 
Appendix), or a k-connected graph and k ≥ 3 (Theorem  5 in the Appendix). 
Concerning approximation complexity, we additionally show that no Fully 
Polynomial-time Randomized Approximation Scheme (FPRAS) can exist for 
approximating � k

A
� (G) under any of the aforementioned constraints unless NP = RP 

(Theorem  3). Finally, we extend each of these hardness results to approximately 
computing parameters pck

opt
(G) and pck

opt�
(G) (Corollary 2).

We remark that our affine optimal k-proper connected edge colorings have 
direct application to the problem of minimizing interference between channels 
of communication in wireless networks. Briefly, in the well-known frequency 
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assignment problem (traditionally abstracted as a vertex proper coloring problem 
on what are known as interference graphs) [1, 13, 15, 18, 22–24], one is tasked 
with assigning a sparse set of frequencies (colors) to a set of transmitters (vertices) 
embedded in ℝ2 or ℝ3 , such that closely spaced transmitters (adjacent vertices) 
have a threshold frequency separation (e.g., ≈ 50–100 kHz [13]) in order to avoid 
interference. In circa 2015, Li and Magnant [21] observed that the notion of proper 
connectivity could allow one to consider a frequency assignment model at the finer-
grained level of message passing. More specifically, noting that transceivers in a 
wireless network (e.g., cellular towers mediating LTE communications) can receive 
and emit at different frequencies, Li and Magnant [21] considered the problem 
of coloring the edges of a network’s interference graph to minimize interference 
by ensuring a minimum threshold frequency separation between incoming and 
outgoing signals at each transceiver.

Consider now that, in the context of Li and Magnant’s [21] model, a k-proper 
connected network coloring using at most n colors correspondingly implies the 
existence of a plausible message passing scheme using at most n frequencies, with k 
vertex disjoint redundant paths between all pairs of nodes. Here, for a simple albeit 
realistic model [1, 13, 15, 18, 22–24] where we assume that different bands of the 
frequency spectrum (abstracted as color classes C1,C2,… ,Cn ) have distinct costs or 
weights ( w1,w2,… ,wn ), and where we require at least k vertex disjoint redundant 
paths for passing messages between nodes, we can observe that finding an optimal 
frequency assignment becomes the problem of finding an affine optimal k-proper 
connected edge coloring.

2  Preliminaries

Concerning fundamental graph theoretic concepts and notation, we will generally 
follow Diestel [14] or, where appropriate, Bondy and Murty [5]. We clarify that all 
graphs in this work should be assumed to be simple (i.e., loop and multi-edge free) 
and undirected. Concerning complexity theoretic concepts and terminology, we call 
a problem Fixed-Parameter Tractable (FPT) for a specified parameter k if its time 
complexity can be expressed as f (k) ⋅ |x|O(1) , where x is a string specifying a given 
problem instance and f(k) is any computable function. Concerning approximation 
complexity and the concept of a Fully Polynomial-time Randomized Approximation 
Scheme (FPRAS), we will follow definitions and notation from Karp and Luby [20].

3  Treewidth fixed‑parameter tractability

Recall that � k
A
(G) is the affine optimal k-proper connection number of a graph G 

for an arbitrary affine function of the form A ∶=
∑n

i=1

�
wi ⋅ �Ci�

�
 . We begin by 

observing the following theorem:
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Theorem 1 For any fixed number of color classes n, determining � k
A
(G) is treewidth 

FPT.

Proof Let G be a graph with edge set EG . To establish the theorem at hand, we will 
show that � k

A
(G) admits a formulation as an extremum problem in Monadic Second-

order ( MS2 ) logic, where the description size is bounded by the number of color 
classes n into which EG can be decomposed. This will allow us to use an extension 
of Courcelle’s well-known algorithmic metatheorem [7–10] to counting and optimi-
zation problems [4, 11, 12] to prove the existence of a treewidth FPT algorithm for 
determining � k

A
(G).

To begin, we remark that the existence of a k-proper connected edge coloring for 
a graph G using at most n colors can be expressed in MS2 logic. Here, we first write 
the sentence �1 to express the decomposition of EG into n distinct color classes, 
(C1,…Cn):

We next write a sentence �2 to express the property of G having k vertex disjoint 
proper paths between all pairs of vertices vx, vy ∈ VG . Here, we will use Courcelle’s 
notion of a quasipath, where we have that an edge set Xi is a quasipath from a 
vertex vx to a vertex vy if and only if the following three first order conditions are 
met: (1) vx ≠ vy ; (2) both vx and vy are incident to a single unique edge in Xi ; and 
(3) any vertex vz not in the set {vx, vy} is incident to exactly two edges in Xi . We 
can therefore use an auxiliary predicate Quasipath(Xi, vx, vy) to check whether the 
edge set Xi corresponds to a quasipath representing a simple path between a pair of 
vertices vx and vy , and can moreover write the first order sentences “ X1,… ,Xk are 
pairwise disjoint” and “no vertex except vx and vy belongs to an edge of Xi and of Xj 
for i ≠ j ” to express that k quasipaths are vertex disjoint aside from having common 
endpoints at vx and vy (see, e.g., the section “Disjoint paths in undirected graphs” on 
“pg. 5” of Courcelle [9]).

Additionally, letting inc(vi, ej) be a binary relation which expresses that a vertex 
vi is adjacent to an edge ej , we can use the following auxiliary predicate PP(Xi) to 
express the property of a quasipath Xi being a proper path:

We can accordingly write �2 as:

𝜓1 ∶=∃C1,… ,Cn ⊆ EG

(
∀ei ∈ EG

(
ei ∈ C1 ∨… ∨ ei ∈ Cn

))
∧

∀i, j ∈ {1,… , n}
(
i = j ∨ Ci ∩ Cj = �

)

PP(Xi) ∶= ∀ea, eb ∈ Xi,∀vz ∈ VG(ea ≠ eb ∧

inc(ea, z) ∧ inc(eb, z) ⟹ ∃r ∈ {1,… , n}(ea ∈ Cr ∧ eb ∉ Cr))

𝜓2 ∶=∀vx, vy ∈ VG(∃X1,… ,Xk ⊆ EG(vx = vy ∨ (Quasipath
(
X1, vx, vy

)
∧

PP(X1) ∧ … ∧ Quasipath
(
Xk, vx, vy

)
∧

PP(Xk) ∧ “X1,… ,Xk are pairwise disjoint”∧

“no vertex except vx and vy belongs to an edge of Xi and of Xj for i ≠ j”)))
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Putting everything together, we have that the sentence �1 ∧ �2 yields an MS2 for-
mula expressing the property of a graph possessing a k-proper connected edge col-
oring using at most n colors.

To now elaborate on our earlier remarks concerning MS2-expressible extremum 
problems, by a result of Arnborg et al. [4]—see also “Theorem 7.12” on “pg. 184” 
of Cygan et al. [12] directly attributed to ref. [4]—for any fixed-size MS2 formula 
� with some number n of monadic free variables X1,… ,Xn (corresponding to 
sets of vertices or edges), we are able to formulate an MS2 extremum problem of 
maximizing or minimizing any affine function over the cardinalities of the sets 
X1,… ,Xn for which � is true. Furthermore, as long as the size of � is fixed, we are 
guaranteed a treewidth FPT algorithm for the extremum problem [4, 12].

Here, letting C1,… ,Cn correspond to the set of free monadic variables, and 
letting � = �1 ∧ �2 , we can formulate the MS2 extremum problem of minimizing 
the earlier defined affine function A . This correspondingly yields a treewidth FPT 
algorithm for determining � k

A
(G) for any fixed n.  ◻

Letting � k
A

∗ (G) be a modification of � k
A
(G) for restricted affine functions of the 

form A∗ ∶= 0 ⋅ �C1� +
∑�EG�

i=2
�Ci� , we can observe the following proposition and 

corollary:

Proposition 1 Determining � k
A

∗ (G) is treewidth FPT.

Proof Let G be a graph with edge set EG . Observe that any affine function of the 
form A∗ ∶= 0 ⋅ �C1� +

∑�EG�
i=2

�Ci� will be minimized if the cardinality of the set |C1| is 
maximized. Accordingly, we can simplify the problem by specifying an affine func-
tion of the form 0 ⋅ |C1| + |C2| , and treating all edges in the color class C2 as having 
a distinct coloration.

We remark that it is a trivial matter to modify the auxiliary predicate PP(Xi) 
from Theorem 1 to check if a quasipath Xi constitutes a proper path in this context. 
Specifically, we can write down an MS2 sentence for the modified auxiliary 
predicate, which we denote PP�(Xi) , as follows:

Now, specifying only the two color classes (C1,C2) and everywhere substituting 
the auxiliary predicate PP�(Xi) in place of PP(Xi) , we otherwise follow exactly the 
Theorem 1 proof argument to establish the existence of a treewidth FPT algorithm 
for computing � k

A
∗ (G).  ◻

Corollary 1 Determining the parameter pck
opt�

(G) for a graph G is treewidth FPT.

Proof Recall that the parameter pck
opt�

(G) is a modification of the original optimal 
k-proper connection number pck

opt
(G) , where, for an input graph G with monochro-

matic edge set EG , one asks only for the total number of edges that must be recolored 

PP�(Xi) ∶= ∀ea, eb ∈ Xi,∀vz ∈ VG(ea ≠ eb ∧ inc(ea, z) ∧ inc(eb, z)

⟹ (ea ∈ C2 ∨ eb ∈ C2))
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to ensure that G is k-proper connected. Here, as we are free to assume all recolored 
edges have distinct colorations, we can recast this optimization problem as one of bi-
partitioning EG into two distinct color classes 

(
C1,C2

)
 , and treating all edges in C2 

as having distinct colorations, maximizing |C1| . As this is exactly our strategy in 
Proposition 1 for showing the existence of a treewidth FPT algorithm for � k

A
∗ (G) , 

where A∗ ∶= 0 ⋅ �C1� +
∑�EG�

i=2
�Ci� , we have the corollary.  ◻

4  Hardness results

Letting � k
A

� (G) be a modification of � k
A
(G) for highly restricted affine functions of the 

form A� ∶= 0 ⋅ |C1| + |C2| , we can observe the following hardness results:

Theorem 2 It is NP-hard to determine �1
A

� (G) for a 2-connected planar graph G.

Proof We proceed via reduction from the NP-complete problem of deciding the 
existence of a Hamiltonian path on a cubic 2-connected planar graph (see Lemma 1 
in the Appendix).

Letting G be an arbitrary cubic 2-connected planar graph with vertex set VG and 
edge set EG , our strategy will be to replace each vertex of G with a common 
subgraph � , such that: (constraint 1) any 1-proper connected coloring for G must 
recolor at least 2 edges per � subgraph, either with both edges internal to the same � 
subgraph, or with one edge having both ends and two edges having one end in a 
common � subgraph; and (constraint 2) if and only if G is traceable, it will suffice to 
recolor exactly two edges per � subgraph, such that the resulting graph has exactly 
two types of edge colors. Together, (constraint 1) and (constraint 2) will ensure that 
�1
A

� (H) ≤ 2 ⋅ |VG| if and only if G is traceable.
To begin, we let � correspond to the subgraph shown in Fig. 1a. Accordingly, we 

replace each vertex vi ∈ VG with the subgraph given by the edge set 
{v(i,1) ↔ v(i,2), v(i,1) ↔ v(i,6), v(i,1) ↔ v(i,7), v(i,2) ↔ v(i,3), v(i,3) ↔ v(i,4), v(i,3) ↔ v(i,5), v(i,3)
↔ v(i,6), v(i,3) ↔ v(i,7), v(i,4) ↔ v(i,5), v(i,4) ↔ v(i,6), v(i,5) ↔ v(i,6), v(i,5) ↔ v(i,7)} , 
reconnecting formerly adjacent vertices to vertices v(i,3) , v(i,4) , and v(i,5) , respectively. 
Letting VH and EH be the vertex and edge sets for the graph H, respectively, we can 
observe that |VH| = 7 ⋅ |VG| and that |EH| = 12 ⋅ |VG| + |EG| =

(
27

2

)
⋅ |VG|.

Next, brute-force enumeration of all possible manners of recoloring ≤ 3 edges in 
the neighborhood of each � subgraph to ensure the resulting graph is 1-proper 
connected can be used to confirm that (constraint 1) holds for H. To elaborate on 
this enumeration, we refer the reader to Fig. 1 where we show the � subgraph in all 
relevant local contexts in H, as well as an example minimum cost coloring for each 
instance. Here, vertices stylized as having a (hollow white) center are adjacent to but 
disjoint from the � subgraph, (thin black) edges belong to color class C1 , (thick 
black) edges belong to color class C2 , and (curved dotted lines) correspond to paths 
of arbitrary length between the aforementioned (hollow white) vertices. Concerning 
the constraint that each graph in Fig. 1a–l is 1-proper connected, we allow proper 
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paths to traverse paths between (hollow white) vertices (curved dotted lines), and to 
do so regardless of the coloration of the edge they traverse prior to ingressing or 
after egressing the path. Concerning the contribution to �1

A
� (H) for each illustrated 

coloring in Fig. 1a–l, we sum the number of (thick black) edges between vertices 
internal to the same � subgraph with a fraction 1

2
 (by the handshaking lemma) of the 

Fig. 1  Illustrations and edge colorings of the subgraph � used in Theorem 2 to reduce the Hamiltonian 
path problem on a cubic 2-connected planar graph G, with vertex set VG , to the problem of determining if 
the affine optimal (k = 1)-proper connection number �1

A
� (H) , for affine function A� ∶= 0 ⋅ |C1| + |C2| and 

a 2-connected planar graph H, is ≤ 2 ⋅ |VG| ; (a–l) colorings minimizing �1
A

� (G) while ensuring the exist-
ence of a proper path between all (solid black) vertices. See the proof argument of Theorem 2 for further 
details
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number of (thick black) edges connecting vertices not belonging to the same � 
subgraph.

To now show that (constraint 2) holds, we can determine for the cases shown in 
Fig.  1a–g, i–l, which are consistent with a 1-proper connected coloring for H 
corresponding to a spanning tree T for G having minimum degree ≤ 2 , that each � 
subgraph incurs a cost of 2 to �1

A
� (H) regardless of whether it corresponds to a leaf 

for T (as in the Fig.  1b–d cases) or whether G is an isolated vertex (yielding the 
Fig.  1a case). We can also determine that the remaining Fig.  1h instance, which 
would allow for a degree 3 vertex in the aforementioned spanning tree T, incurs a 
cost of 3

2
.

Putting everything together, we have that �1
A

� (H) ≤ 2 ⋅ |VG| if and only if G is 
traceable. As the Hamiltonian path decision problem for G is NP-complete by 
Lemma 1, this yields the theorem.  ◻

Concerning cases where k ≥ 2 , we refer the reader to Theorem 4 (in the Appen-
dix) for a proof that �2

A
� (G) is NP-hard to determine for cubic 3-connected planar 

graphs, and Theorem 5 (in the Appendix) that, ∀k ≥ 3 , � k
A

� (G) is NP-hard to deter-
mine for k-connected graphs. Together with Theorem 2, yields the following approx-
imation hardness result:

Theorem 3 No FPRAS can exist that approximates � k
A

� (G) in any of the following 
cases:

• (case 1) k = 1 and G is a 2-connected planar graph;
• (case 2) k = 2 and G is a cubic 3-connected planar graph;
• (case 3) k ≥ 3 and G is a k-connected graph.

Proof From the proof arguments for Theorems 2, 4, and 5, recall that we are able to 
decide if a graph G with vertex set VG has a Hamiltonian path (case 1), Hamiltonian 
cycle (case 2), or k-regular k-connected spanning subgraph with ≤ k

2
⋅ |VG| edges 

(case 3), by constructing a graph H from G in polynomial time and checking, for 
affine function A� ∶= 0 ⋅ |C1| + |C2| , that its affine optimal k-proper connection 
number, � k

A
� (H) , is equal to � ⋅ |VG| for some constant � ∈ ℕ . Now, following the 

definition for an FPRAS given by Karp and Luby [20], let Q be an FPRAS for � k
A

� (H) 

accepting an input string x, having an error parameter 𝜖 <
(

1

2(𝛼⋅|VG|)

)
 , and having an 

accuracy parameter � =
1

3
 . We accordingly have that Q yields a BPP algorithm for 

checking if � k
A

� (H) ≤ � ⋅ |VG| , as we can simply round the output of Q to the nearest 
integer and make a correct guess with probability 1 − � =

2

3
 . However, as each of the 

aforementioned decision problems in (case 1) through (case 3) are NP-complete (as 
detailed in the proof arguments for Theorem 2, 4, and 5), we have that the existence 
of Q would necessarily imply in each of these cases that NP ⊆ BPP , and therefore, 
that NP = RP.  ◻
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Corollary 2 The hardness results established in Theorems 2 through 5 hold for 
exactly and approximately computing the parameters pck

opt
(G) and pck

opt�
(G).

Proof Recall that the proof arguments for Theorems 2, 4, and 5 proceed by reducing 
an NP-complete problem of deciding the existence of an object (e.g., a Hamiltonian 
path in Theorem  2) to the problem of deciding if, for affine function 
A

� ∶= 0 ⋅ |C1| + |C2| , we have that � k
A

� (G) ≤ M for some M ∈ ℕ>0 . In each case we 
can also observe that M is the smallest possible value for � k

A
� (G) , and can check—by 

brute force enumeration in Theorems 2 and 4, and by using a simple induction proof 
in Theorem  5—that treating all edges in the color class C2 as having a distinct 
coloration cannot yield a smaller value of � k

A
� (G) . Accordingly, we have that � k

A
� (G) 

will be equivalent to the parameters pck
opt
(G) and pck

opt�
(G) in these instances. 

Finally, we can observe that the proof argument for Theorem 3 depends only on our 
using polynomial time reductions from NP-hard problems to deciding if � k

A
� (G) ≤ M 

in Theorems 2, 4, and 5. Putting everything together, we therefore have that the 
proof arguments for Theorem  2 through Theorem  5 can be used to establish the 
same hardness results for parameters pck

opt
(G) and pck

opt�
(G).  ◻

5  Concluding remarks and open problems

We have shown ∀k ∈ ℕ>0 , and for every fixed number of color classes n ∈ ℕ>0 
into which the graph’s edge set can be decomposed, that there exists a treewidth 
FPT algorithm for computing  the affine optimal k-proper connection number, 
� k
A
(G) . Here, while we have also shown that no such bound on the number of color 

classes is required if we restrict our consideration to affine functions to the form 
A

∗ ∶= 0 ⋅ �C1� +
∑�EG�

i=2
�Ci� , we consider it an interesting open question as to whether 

there exist treewidth FPT algorithms for more general affine functions. We like-
wise pose the question as to whether treewidth FPT algorithms exist for the optimal 
k-proper connectivity parameter, pck

opt
(Q) , without a bound for the number of color 

classes. Finally, we pose the question as to whether efficient dynamic programming 
algorithms exist for computing the parameters discussed in this work.

Appendix

This appendix contains a helper lemma that we refer to in the proof argument for 
Theorem 2 (Lemma 1), proof arguments for Theorem 4 and Theorem 5 referenced 
in the main text, and a helper lemma for Theorem 5 (Lemma 2). We remark that the 
full power of Lemma 1 is not utilized for the Theorem 2 proof argument.

Lemma 1 The Hamiltonian path decision problem on cubic 3-connected planar 
graphs, where we additionally require that the shortest path between the endpoints 
of any embedded Hamiltonian path is ≥ 4 edges in length, is NP-complete.
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Proof We begin by remarking that there already exists a circa 1976 proof, due to 
Garey et al. [17], that the Hamiltonian path problem (referred to as the “Hamiltonian 
line” problem by the aforementioned authors) is NP-complete on cubic 3-connected 
planar graphs. Specifically, on “pg. 713” of ref. [17] the author’s write: “Finally, 
the undirected planar Hamiltonian line problem is NP-complete: convert the “or” 
linking edges {v11,w11} and {vn4,wm6} into an “exclusive or”. A Hamiltonian line 
must either start at v11 and finish at w11 , or start at vn4 and finish at wm6 . Such a line 
will exist if and only if the original graph had a Hamiltonian circuit. Note that the 
construction preserves triple connectivity and degree threeness, as well as planar-
ity.” Briefly, the aforementioned linking edges {v11,w11} and {vn4,wm6} correspond 
to the edges at the bottom and top of the author’s “Fig. 7” example instance of their 
reduction construct.

Here, it is either the case that Garey et  al. [17] inadvertently omitted further 
important details of their reduction, or that their proof is erroneous. In particular, 
consider that substituting the “exclusive or” (XOR) gadget as the authors specify 
does not prevent a Hamiltonian path from ingressing and egressing the gadget 
and having its endpoints embedded elsewhere. One can also construct an explicit 
example of the author’s reduction construct starting with an unsatisfiable instance 
of 3SAT, then using Hamiltonian cycle or subgraph embedding enumeration 
algorithms—e.g., the Mathematica 12.0.0 ‘FindHamiltonianCycle[]’ procedure [19] 
or the SageMath 8.3.0 ‘SubgraphSearch()’ procedure [25]—find Hamiltonian paths 
that are difficult to meaningfully characterize.

To construct a specific counterexample, we performed the author’s reduction for 
the trivially unsatisfiable 3SAT instance (x ∨ x ∨ x) ∧ (¬x ∨ ¬x ∨ ¬x) , yielding the 
graph shown in Fig. 2 with 436 vertices and 436 ⋅

(
3

2

)
= 654 edges. Our embedding 

for this graph is meant to resemble the one given by Garey et al. [18] in their “Fig. 7” 
illustration, and we use (dotted) boxes to highlight the sections of the reduction 
construct encoding the XOR gadget, clauses (x ∨ x ∨ x) and (¬x ∨ ¬x ∨ ¬x) , and the 
positive and negative literals x and ¬x , respectively. Here, despite the fact that the 
encoded formula is trivially unsatisfiable, the highlighted (thick black) edges trace a 
Hamiltonian path with both endpoints (indicated via black diamond markers) in the 
section of the graph encoding the (x ∨ x ∨ x) clause.

Noting that there appears to be nothing wrong with the NP-completeness proof 
given by Garey et  al. [17] for the Hamiltonian cycle decision problem on cubic 
3-connected planar graphs, we will establish the current lemma via a different 
reduction to the Hamiltonian path decision problem.

Let M be an instance of a cubic 3-connected planar graph which is non-Hamilto-
nian but traceable, and create a graph R by deleting a vertex in M, doing so in such 
that the resulting graph remains traceable (observe that this will always be possible). 
Create two copies of R, which we’ll denote R1 and R2 , and create a reduction gadget 
Υ by: (step 1) adding an edge between one degree 2 vertex in R1 and one degree 
2 vertex in R2 ; (step 2) creating a new vertex vq , then adding an edge between vq 
and a degree 2 vertex in both R1 and R2 . Now, let G be an arbitrary cubic 3-con-
nected planar graph with vertex set VG , and let vi ∈ VG be an arbitrary vertex of this 
graph adjacent to some set of vertices vx, vy, vz ∈ VG . Create a graph H from G by 
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Fig. 2  Explicit counterexample the construction given in Garey et al. [17] to reduce arbitrary instances of 
3SAT to the Hamiltonian path decision problem on cubic 3-connected planar graphs; see the proof argu-
ment for Lemma 1 for further details
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substituting Υ in place of vi ∈ VG , in such a manner that the three degree 2 vertices 
for Υ are each connected to a distinct vertex in the set vx, vy, vz ⊂ VG . Observe that 
the result of this procedure will be a cubic 3-connected planar graph.

To see that H has a Hamiltonian path only if G has a Hamiltonian cycle, observe 
that any Hamiltonian path for H must have both its endpoints embedded internally 
to R1 and R2 , respectively. More specifically, observe that R1 and R2 were derived 
by deleting a single vertex in a non-Hamiltonian graph M, and therefore, that any 
other type of embedding of a Hamiltonian path would imply the existence of a 
Hamiltonian cycle for M.

It now suffices to provide an explicit example of Υ where we can show that H has 
a Hamiltonian path if and only if G has a Hamiltonian cycle. Here, let M be a slightly 
modified variant of the graph “NH42.a” on 42 vertices shown in “Fig. 2” of Aldred 
et. al. [2], where we replace a select vertex with a Cyc3 subgraph in such a manner 
that the graph remains cubic, 3-connected, and planar. Now let Υ be the subgraph 
on 87 vertices shown in Fig. 3—with 129 edges in addition to three outgoing edges 

Fig. 3  Reduction gadget Υ , used in the proof argument for Lemma 1 to reduce the Hamiltonian cycle 
decision problem on cubic 3-connected planar graphs to the Hamiltonian path decision problem on the 
same class of graphs, where we additionally require that the shortest path between the endpoints of any 
embedded Hamiltonian path is ≥ 4 edges in length
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to adjacent cubic graph vertices {vx, vy, vz}—where the vertex vq is adjacent to vx , 
and the bilaterally symmetric embedding shows the 41 vertex R1 and R2 subgraphs 
on the left- and right-hand sides of the embedding, respectively. Using an algorithm 
based on either the Mathematica 12.0.0 ‘FindHamiltonianCycle[]’ procedure [19] 
or the SageMath 8.3.0 ‘SubgraphSearch()’ procedure [25] (with modifications in 
either case to decompose and individually treat subcomponents of the graph), we 
can determine that there are 3265280, 3265280, and 4431736 possible manners in 
which a Hamiltonian path can ingress and egress the Fig. 3 instance of Υ via the 
edges between the gadget and vertices {vx, vy} , {vx, vz} , and {vy, vz} , respectively. We 
therefore have that there exists at least one instance of the Υ gadget that can be used 
to guarantee that H has a Hamiltonian path if and only if G has a Hamiltonian cycle.

Finally, we can explicitly check that no graph containing the aforementioned 
example of the Υ gadget as an induced subgraph can embed a Hamiltonian path 
where the shortest path between the Hamiltonian path’s endpoints is ≤ 3 edges in 
length, yielding the lemma.  ◻

Theorem 4 It is NP-hard to determine �2
A

� (G) for a cubic 3-connected planar graph 
G.

Proof To prove this theorem, we proceed via reduction from the NP-complete prob-
lem of deciding the existence of a Hamiltonian cycle on a cubic 3-connected planar 
graph [17]. To begin, let G be an arbitrary cubic 3-connected planar graph with vertex 
set VG and edge set EG . Generate a graph H from G by replacing each vertex vi ∈ VG 
with a Cyc3 subgraph given by the edge set {v(i,1) ↔ v(i,2), v(i,1) ↔ v(i,3), v(i,2) ↔ v(i,3)} , 
reconnecting formerly adjacent vertices va , vb , and vc to vertices v(i,1) , v(i,2) , and v(i,3) , 
respectively. Letting VH and EH be the vertex and edge sets for the graph H, respec-
tively, we can observe that |VH| = 3 ⋅ |VG| and that |EH| = 3 ⋅ |VG| + |EG| = 6 ⋅ |VG|.

It now suffices to observe that H will admit a (k = 2)-proper connected coloring if 
and only if �2

A
� (H) ≤ |VG| , where we specify A� ∶= 0 ⋅ |C1| + |C2| . As in the proof 

argument for Theorem  2, our strategy will be to show that, if G is Hamiltonian, 
exactly one edge per Cyc3 subgraph must be placed in the color class C2 (the 
remainder placed in the color class C1 ) to obtain a 2-proper connected coloring for 
H, and that this is impossible if G is not Hamiltonian. We can do so by showing that 
the set of proper paths for any 2-proper connected coloring allowing for 
�2
A

� (H) ≤ |VG| will, upon contraction of each Cyc3 subgraph, be embedded along a 
fixed Hamiltonian cycle Q for G.

This leads us to the (very) simple caseology shown in Fig. 4, where we show the 
Cyc3 subgraph in all relevant local contexts in H permitting the ingress and egress of 
two vertex disjoint proper paths—consistent with the requirement for a 2-proper 
connected coloring—with the same vertex and edge stylization as detailed in the 
Theorem 2 proof argument. Using brute force enumeration, we can determine that 
the only colorings allowing for �2

A
� (H) ≤ |VG| partition (up to automorphism) the 

edges corresponding to the Fig.  4a illustrated (thick black lines) in color class C2



 R. D. Barish, T. Shibuya 

1 3

—one per Cyc3 subgraph by the handshaking lemma—and the remainder in the 
color class C1 . We can also determine that, in the case where G is non-Hamiltonian, 
at least one instance of a subgraph colored in the manner of Fig.  4b will need to 
exist in H to allow for a 2-proper connected coloring.

Putting everything together, as the colorings shown in Fig. 4a, b contribute a fac-
tor of 1 and 3

2
 to �2

A
� (H) , respectively, we have that �2

A
� (H) ≤ |VG| if and only if G is 

Hamiltonian. Accordingly, as the Hamiltonian cycle decision problem for G is NP-
complete, we have that it is NP-hard to determine if �2

A
� (H) ≤ |VG| , yielding the the-

orem.  ◻

Lemma 2 Deciding the existence of a k-regular k-connected spanning subgraph S 
for a given k-connected graph of maximum degree k + 1 is NP-complete ∀k ≥ 3.

Proof We proceed via reduction from the NP-complete problem [17] of deciding the 
existence of a Hamiltonian cycle (i.e., a spanning 2-connected subgraph) for a cubic 
3-connected graph G with vertex set VG , where we additionally have that all vertices 
are assigned a unique label from the interval [1, |VG|].

We begin by creating k − 2 copies of the cycle graph Cyc|VG| , with labels 
1, 2,… , |VG| assigned to vertices in the order that they occur in the unique cycle for 
the graph. We then add edges between vertices in the cycle graphs with the same 
integer label, yielding a graph Q isomorphic to Cyc|VG| ◻ Kk−2 (i.e., the Cartesian 
product of the cycle graph with |VG| vertices and the clique with k − 2 vertices). 
Here, we can observe that Q will be a (k − 1)-regular (k − 1)-connected graph that is 

Fig. 4  Illustrations and edge colorings of the subgraph Cyc3 used in Theorem  4 to reduce the Hamil-
tonian cycle decision problem for a cubic 3-connected planar graph G, with vertex set VG , to the prob-
lem of determining if the affine optimal (k = 2)-proper connection number �2

A
� (H) , for affine function 

A
� ∶= 0 ⋅ |C1| + |C2| and a cubic 3-connected planar graph H, is ≤ |VG| ; (a) coloring minimizing �2

A
� (G) 

while ensuring the existence of a proper path between all (solid black) vertices; (b) coloring that must 
occur for some Cyc3 subgraph if G is non-Hamiltonian. See the proof argument of Theorem 4 for further 
details
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isomorphic to its own spanning (k − 1)-regular subgraph. Finally, we create a graph 
H from G and Q by taking the union of the two graphs and adding edges between 
all non-adjacent vertices with identical integer labels. Letting VH and EH be the 
vertex and edge sets for H, respectively, we can note that |VH| = (k − 1) ⋅ |VG| and 
|EH| =

1

2
(k ⋅ (k − 1) + 1) ⋅ |VG|.

We can now observe that H will be k-connected, have maximum vertex degree 
k + 1 , and will possess a k-regular k-connected spanning subgraph with 
|EH| −

(
|VG|
2

)
=

1

2
(k ⋅ (k − 1) + 1) ⋅ |VG| − 4 edges if and only if G is Hamiltonian. 

Accordingly, we have that G is Hamiltonian if and only if a k-regular k-connected 
spanning subgraph S exists for a polynomial time constructable graph H with maxi-
mum vertex degree k + 1 , yielding the lemma.  ◻

Theorem 5 For all k ≥ 3 , it is NP-hard to determine � k
A

� (G) for a k-connected graph 
G.

Proof To prove this theorem, we proceed via reduction from the problem of decid-
ing the existence of a k-regular k-connected spanning subgraph S for given k-con-
nected graph G of maximum degree k + 1 , which is NP-complete as a consequence 
of Lemma 2.

To begin, let Λk and Λ�
k
 and be a pair of subgraphs generated from the cliques 

K2k and K2k+1 , respectively, by adding a new vertex vs and connecting it to k edges 
in the clique. Now let G be an arbitrary k-connected graph with minimum degree 
k, maximum degree k + 1 , vertex set VG , and edge set EG . Generate a graph H 
from G by replacing each vertex vi ∈ VG of degree k and degree k + 1 with sub-
graphs Λ and Λ� , respectively, reconnecting each vertex formerly adjacent to vi to 
a unique vertex in the subset of vertices in either Λk or Λ�

k
 that are non-adjacent 

to the vertex vs . Letting VH and EH be the vertex and edge sets for the graph H, 
respectively, and letting nk and nk+1 be the number of vertices in G of degree k 
and k + 1 , respectively, we can observe that |VH| = 2k ⋅ nk + (2k + 1) ⋅ nk+1 and 
that |EH| = 2k ⋅ (k ⋅ (nk + nk+1) + nk+1) . For illustrative examples of Λk and Λ�

k
 for 

k = 3, 4, 5 we refer the reader to Fig. 5a–f, respectively.
It now suffices to observe that H will admit a k-proper connected coloring if and 

only if � k
A

� (H) ≤ k ⋅ |VG| , where we specify A� ∶= 0 ⋅ |C1| + |C2| . Akin to the earlier 
Theorem 2 and Theorem 3 proof arguments, our strategy will be to show that, if G 
admits a k-regular k-connected spanning subgraph S, exactly k edges per Λk or Λ�

k
 

subgraph must be placed in the color class C2 (the remainder placed in the color 
class C1 ) to obtain a k-proper connected coloring for H, and that this is impossible if 
G does not admit such a spanning subgraph S. We can do so by showing that the set 
of proper paths for any k-proper connected coloring allowing for � k

A
� (H) ≤ k ⋅ |VG| 

will, upon contraction of each Λ and Λ� subgraph, be embedded along the spanning 
subgraph S.

Here, letting va be a vertex adjacent to an “outgoing” edge with only one end in 
given subgraph Λk or Λ�

k
 , and letting vb be a vertex adjacent to vs , we can observe 
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that – under the constraint � k
A

� (H) ≤ k ⋅ |VG| – the edge va ↔ vb must be assigned to 
color class C2 to allow for the “outgoing” edge adjacent to va to belong to S in the 
aforementioned contraction of H. Proceeding with this argument, we can determine 
that exactly k such edges must be assigned to color class C2 in the Λk or Λ�

k
 

subgraphs. These minimal colorings are shown in Fig. 5a–f, where, in the case of 

Fig. 5  Illustration and edge colorings of the subgraphs Λ� and Λ used in Theorem 5 to reduce the prob-
lem of deciding the existence of a k-regular k-connected spanning subgraph S for given k-connected 
graph G of maximum degree k + 1 , to the problem of determining if the affine optimal k-proper connec-
tion number � k

A
� (H) , for affine function A� ∶= 0 ⋅ |C1| + |C2| and a k-connected graph H, is ≤ k ⋅ |VG| ; a–f 

explicit examples of subgraphs Λ� a, c, e and Λ b, d, f for 3 ≤ k ≤ 5 , with colorings minimizing � k
A

� (G) 
while ensuring the existence of k vertex disjoint proper path between all pairs of vertices
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the Λ�
k
 subgraph, we use the ‘ ∗ ’ character to indicate the edge in the contraction of H 

that does not participate in S.
Putting everything together, we have that � k

A
� (H) ≤ k ⋅ |VG| if and only if G admits 

a k-regular k-connected spanning subgraph S. As deciding if G admits S is NP-
complete by Lemma 2, this yields the theorem.  ◻
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