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Abstract

A derivative free method for generally constrained global optimization is described.
A non-smooth merit function with one parameter is used. When this parameter
equals the optimal objective function value f*, the merit function becomes an exact
penalty function. The method estimates f*, avoiding the need for it to be supplied.
The method randomly samples the region satisfying the simple bounds from time to
time, ensuring convergence almost surely. Other samples are drawn randomly from
smaller regions considered promising. Numerical testing is done using a variety of
bound constrained problems and generally constrained problems from the G-suite
and elsewhere. Results show the method is competitive in practice. They also show
that the method performs better when it estimates the optimal objective function
value than when the actual value is used.

Keywords Derivative free - Direct search optimisation - OSCARS - Numerical
results
1 Introduction

The generally constrained global optimization problem addressed here has the form

min f(x) subjectto g;(x) <0 and ggx)=0 (1)
xXEQ

where Q is a finite box defined by upper (U) and lower (L) bounds, as follows
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Q={xeR": L, <x;<U; Vi=1,...,n}.

The objective function f maps R" into R. The equality constraint function g(x) and
inequality constraint function g;(x) map R” into R? and R”~29, respectively. It is
assumed that L < U and that f, g, and g; are continuous functions of x on Q.

For simplicity, the equality constraints are replaced by the pair of inequality con-
straints gp(x) < 0 and —gp(x) < 0. This puts all constraints in the convenient form
g(x) < 0 where g(x) maps R" into R, yielding a simpler expression of problem (1),
viz.

Ec%lslzl f(x) subjectto g(x) <0 )

From now on, we work with (2) rather than (1).

A wide variety of algorithms have been proposed for this problem. The majority
of these methods are stochastic, although deterministic methods also exist [9].

Many stochastic methods are population based, such as particle swarm [4, 14],
differential evolution [17], fish swarm [24] artificial immune system [3], and electro-
magnetism-like methods [1]. Stochastic methods are often paired with local searches
to refine identified minimizers. For example, Hedar and Fukushima [7] pair the
derivative free Nelder—Mead method with simulated annealing. Sequential quadratic
programming is paired with multistart-clustering in DEFT-FUNNEL [27], and with par-
ticle swarm methods [11].

Methods can also be differentiated on how expensive each function value is to
compute. For expensive objectives methods using surrogates [15, 25] are effective,
with radial basis functions being a common means of generating the surrogates. The
surrogate is designed to be much cheaper to evaluate than the objective and con-
straint functions. The surrogate can be minimized by a subsidiary global optimiza-
tion method designed for cheaper to evaluate functions giving a new sample point
for (2). A more sophisticated fusion combining accelerated random search [2] with
surrogates is given by Nufiez et al. [19] and Regis [23].

These methods employ a variety of strategies to adjudicate between changes in
objective function and constraint violations. They include filters [7, 15, 21, 24],
penalty functions [1, 9, 26], interval arithmetic [14] and other techniques such as
adaptive trade-off models [30]. In addition, sample points can be biased towards
feasibility by using constraint gradient information [29] or other processes [31]. A
thorough survey of constraint handling techniques is given by Mezura-Montes and
Coello [16].

In the next section, we describe a stochastic penalty function method for prob-
lems with objective and constraint functions that are cheap to evaluate. Convergence
is discussed in Sect. 3, with numerical results given in Sect. 4. The final section
concludes the paper.

2 Algorithm development

The feasible region of problem (2) is
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F={xeQ: gx)<0 Vi=1,...,m}.

The proposed algorithm extends the oscars-11 algorithm [22] for bound constrained
global optimization to problems of the form (1). Oscars-11 and the new method gen-
erate random sample points in Q and various subregions of Q. Both methods retain
two points at each iteration: the best known point b € Q and a control point ¢ € Q
used to direct the construction of the sampled subregions of Q. The basic structure
of each iteration is to randomly choose an iterate from the current subregion of €,
calculate f'and g at that iterate, and then update b, c and the sampling subregion.

With oscars-11 general constraints are absent, and b is just the iterate with the least
known value of f. From time to time the control point is reset to b or a random point in
Q. Between resets c is the point with the least f value from or after the most recent reset.

The presence of general constraints means b and ¢ must be chosen differently. At
each iteration the new method chooses b as the best known feasible point, or if no
feasible point is found, the least infeasible infeasible point. In contrast, c is chosen to
minimize a merit function J over the iterates generated since the most recent reset. The
merit function contains a parameter which is adjusted occasionally to obtain an accept-
able convergence rate.

If F has measure zero, the algorithm will almost surely fail to find a feasible point
with any finite number of sample points. To circumvent this issue, violations of the
general constraints g < 0 up to a specified tolerance 7, > 0 are permitted. The subset of
€ satisfying the general constraints within this tolerance is

Fa={x€Q: g sz Vi=1,..,m}

Provided F is non-empty, continuity of g implies F,, has positive measure for all
7, > 0. Depending on the nature of the constraints, 7, > 0 might be necessary, but if
F has a positive measure, then 7, = 0 suffices.

Throughout this paper x* and x; | denote arbitrary global minimizers of f over  and
Fiorespectively. Also f* = f(x*) and f7 = f(x; ) are used.

2.1 The merit function

Jones [9] introduced the auxiliary function
Toig = F) = p1, + D wilg;)],
=1

to extend the pIRECT algorithm [10] to problems of the form (1). Here ¢ is a possible
value of f*, w; are positive weights and [gj] += max(gj, 0). DirecT subdivides Q into
ever finer sets of rectangles, where each such set covers Q. At each iteration some
rectangles are divided, yielding the next cover. The rectangles which are selected
are those which could contain a global minimizer of J,, for some value of ¢ and
some value of a Lipschitz constant for J,,. In order to do this, bIRecT calculates and
retains the objective and constraint function values at the centre of every rectangle.

In constrast oscars-11 and the new method retain only b and c.
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The auxiliary function J,, is modified cosmetically to yield the merit function
J. Specifically ¢ is added to the first term, and a different measure of infeasibility

is used for the second term giving

V()

Jx, ¢) = max {f(0), ¢} + T )

Here v(x) is the unweighted 2—norm of the constraint violations
v(x) = [|[g)]4 ]|

and the parameter ¢ is an estimate of f* that is updated from time to time. The sec-
ond term in J behaves like v2 when v is small, and like v for v > 1. This gives J some
of the characteristics of a rounded ¢, exact penalty function.

When ¢ = f*, J has the property that its global minimizer(s) over Q are pre-
cisely the solutions of (2). To see this first note that J(x*, ¢) = f* when ¢ = f* and
x* solves (2). For any x € Q we have

2
Jouf) = max(f )+ 0 0 = T )
1+ v(x)
showing that x* is a global minimizer of J(-,f*) over Q. Conversely J(x,f*) = f* can
only hold if f(x) < f* and v(x) = 0. However v(x) = 0 implies x € F, which means
that f(x) > f*. Hence the set of global minimizers of (2) is the same as the set of
global minimizers of J(-,f*) over Q, as required.

2.2 Aniteration

The algorithm uses a sequence of iterations indexed by k. At iteration k, the algo-
rithm randomly draws one sample point x;, from a sampling region €, C € and
calculates f and g at x,. The algorithm also updates two points at each iteration:
the best known point b, and the current control point c¢,. A subscript k refers to a
quantity’s value at iteration k.

Each Q, is box-shaped and aligned with the coordinate axes, which makes
randomly sampling €, straightforward. Specifically, the sampling region has the
form

where £, € R" and u, € R" are the vectors of lower and upper bounds satisfy-
ing L <7, and u;, < U. The bounds £, and u, are adjusted at each iteration so that
¢, € Q, always holds.

If at least one point in F, has been found, b, is the sample point in F, with
the least value of f. Otherwise, b, is the least infeasible sample point in the sense
that it has the smallest value of v(x). In contrast, the control point is the ‘recently
generated’” sample point with the least J value.
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From time to time, the control point is reset, allowing the method to alternately
search widely across Q, and focus attention in the vicinity of the currently best
known point.

2.3 The control point and selecting 2,

The control point ¢, is used to direct how each €, is formed from its predeces-
sor Q,. After selecting the current sample point x;, if J(x;, ¢) > J(cy, @), then x; is
rejected and Q| is chosen so that €, ,, C Q, with¢;, | = ¢, € Qand x, & Q.
If this proposed €, is too small along all coordinate directions, it is reset via
€, = Q. In any case, the current control point is retained via ¢, | = ¢;.

Alternatively, if J(x;, ¢) < J(cy, @), then x; is judged to be superior to c; by the
merit function, and ¢;,; = x; and Q, ; = Q are used. Hence, if a better point is
found, this becomes the new control and the sampling box resets to Q.

2.4 Passes and cycles

Iterations in which the sampling box €, is reset to £ can be used to group iterations
into passes. Each pass starts at an iteration with €, = Q, and ends on the iteration
before Q, = Q next occurs. Similarly, iterations in which c is reset can be used to
group iterations (and passes) into cycles. Each cycle starts at an iteration with in
which c is reset, and ends on the iteration before the next reset of ¢ occurs. Since c is
only ever reset when Q, = Q, each cycle consists of a whole number of passes. This
is described in more detail now.

The process used to generate each €2, produces contiguous subsequences of
nested boxes, bracketed by iterations where €, = Q. A sequence of such itera-
tions forms a pass. For example, if iterations k,k+ 1, ...,k + p form a pass then
QD DDy, DQ where Q =Q 1 =Q.

The sequence of passes is divided up into contiguous subsequences of passes
called cycles. The event which distinguishes the start of a cycle (and hence the end
of the previous cycle) is the standard way of choosing ¢; = ¢;,_; or ¢, = x;_; is sus-
pended for one iteration. Instead, at the start of cycle number N, if N, is odd, then
¢, is chosen randomly from Q. If N, is an even number, c, is set equal to the current
best known point b,. In both cases €, = Q is used.

The motivation for alternately starting cycles with random controls and the best
known point is that the former aids exploration of unexplored areas of € whereas
the latter focuses the search in the most promising area found so far. To ensure the
method alternates between these two cases on a regular basis, the maximum number
of sample points in each cycle is limited, with this limit increasing with increasing
N,. Cycles are also ended if they repeatedly fail a ‘stall test” which assesses whether
or not the current cycle is likely to improve the best known point. The stall test is
only performed at the end of each pass. If a cycle is ended for any reason, the cur-
rent pass is also ended.

In summary, passes and cycles end for the following four reasons
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An improved control point has been found (pass ends only).

The sample box size falls below A,,,;, along all axes (pass ends only).

T, consecutive stall test failures occur (pass and cycle end).

The maximum permitted number of sample points in the current cycle is reached
(pass and cycle end). Herein this maximum is 30(3 + N_) as per Price et al. [22].

Sl o

In practice, case 4 is checked first. If case 4 does not hold, cases 1 and 2 are checked.
If either case 1 or 2 holds, then case 3 is checked for the end of a cycle, otherwise
case 3 is skipped.

At the start of each even numbered cycle, the algorithm may take one uphill step
that increases J by at most G. This step aids the algorithm in moving along con-
straint boundaries, and is described in more detail later.

Next, the main algorithm is listed. It counts the number of iterates in the current
cycle using j. Also c,4 and c, 4, denote the control points at the ends of the previous
two passes in the cycle. At the start of each cycle ¢,y and c, 4, are set equal to that
cycle’s initial control point. These two quantities are used in the stall test.

Algorithm 1 The main algorithm

1. Randomly pick the initial control ¢ € Q. Set N, =k =1,set G = j = 0,
and set 3 = Q. Calculate f(c) and g(c). Set b = cold = Colder = C-
2. Choose zj € Qj randomly, calculate f(zr) and g(zy). Update the best
known point and increment j.
. Set ¢ = f(b) + v(b). Set NewPass = false and set NewCycle = false.
. If 5 > 30(3 + N.) set NewCycle = true and go to step 7.
L If J(zk, @) < J(c,¢) + G then do (a); otherwise do (b).
(a) Set NewPass = true. Set Colder = Cold and then set coq = ¢. Set G = 0.
(b) Perform the box cutting sub-algorithm (Algorithm 2).
6. If NewPass = true set Qi1 = Q and perform a stall check.
7. If NewCycle = true then
(a) If N is even, set ¢ = b and set G = oz Zle min{v(z;),100};
(b) If N, is odd select ¢ randomly from €. Calculate f(c) and g(c) and
update the best known point; and
(¢) Increment N.. Set j =0, set Qi1 = Q and set Cold = Colder = C.
8. Increment k. Go to step 2.

T W

2.5 The uphill step

When G > 0, step 5 will accept an iterate x; up to G worse than c¢. Normally G =0
is used except for cycles which start with the best known point as the initial control
point. These cycles can use G > 0 until the control point is first updated; after that
G = 0 is used. At the start of each such cycle, G is set to is one percent of the aver-
age constraint violation (capped at 100) seen by the algorithm so far. This choice
permits an uphill step of at most 1 when all sample points generated so far are highly
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infeasible. As less infeasible or feasible sample points are found, this maximum
uphill step seamlessly reduces to its minimum possible value of G = 0. The latter is
achieved when only feasible sample points are encountered, irrespective of whether
general constraints are present or not.

This allows a single worse step off the best known point at the start of each evenly
numbered cycle. The purpose of this is to enhance the algorithm’s ability to move
along constraint boundaries.

Allowing uphill steps has pros and cons. If the best point is wedged in a vee, then
an uphill step can escape the notch, and subsequent steps might be able to locate an
improved point more rapidly. The risk is that the algorithm will waste time undoing
the uphill step without any gain. Numerical experiments with test problems which
have no general constraints show that the latter is the dominant effect on such prob-
lems. When general constraints are present, numerical results indicate the uphill step
is beneficial.

2.6 Box cutting procedure

At each iteration, a sample point x; is generated in €. If x; is not better than the
current control point ¢, (specifically J(x, ¢;) > J(c, ¢;)), then part of the region Q,
is cut off, yielding the next sample box €2, ,; C €,. This cutting process is done by
shifting some of the bounds defining €, inwards towards c;. Each such bound shift is
equivalent to cutting off part of Q, with a hyperplane orthogonal to some coordinate
axis. Each of these cuts is selected so that ¢, lies in the part of Q, that is retained,
and x; lies in the part that is cut off. Since the current control point is retained when
Qs cut, this yields ¢, | = ¢, € Q.

In the rest of this subsection, the iteration number k is dropped from the sub-
scripts of all quantities. In some places a subscript i appears. It denotes the i com-
ponent of the relevant quantity at iteration k.

The cutting process (listed in Algorithm 2) is governed by two parameters: A
and f. The former governs how close each cut is to ¢; and g affects which faces of
€, are cut off. A cut is performed perpendicular to each coordinate axis for which
the magnitude of the corresponding component of the trial step s = x — ¢ is at least
Bllx — ¢|| » where 0 < f < 1. For each such dimension i, the cut passes a fraction
Als;]/Is]l along the line segment from x to ¢, where 0 < A < 1. Hence, for dimen-
sions with maximal |s;|, the cut is a fraction A of the distance from x to c.
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Algorithm 2 The box cutting sub-algorithm

1. Fori=1,...,n do
(a) calculate

i — @]

n=x;+A (c; — xy)

2 —cllo
(b) If ¢; < xj and ¢; —x; > Bz — ||, set u; = p.
(c) If ¢; >z and ¢; —a; > B ||z — ¢| o, set £; = pu.

2. If lu — || .o < hmin, set NewPass = true, set Coder = Cold, then set coiq = c.

2.7 Stall test

Oscars-11 [22] uses a Kolmogorov—Smirnov (KS) statistic to terminate unprofitable
cycles on problems with no general constraints. This test uses the 100 best objective
function values in the current cycle, sorted in increasing order. This prevents the
KS test from easily being transported over to the generally constrained case. The
obvious approach is to apply the same test with the values of J in place of the f
values. However J depends on ¢, and ¢ can be updated at any iteration. This means
all points in the current cycle must be stored, and re-sorted after every change in ¢.
This makes the KS test significantly more expensive to implement. Thus we replace
it with a simpler, cheaper to implement stall test which is described now.

A stall test is done at the end of each pass which is not also the end of the current
cycle. This situation occurs whenever a new point with a lower J value is found or
the minimum box size is reached. If the stall test indicates that progress is poor for
T, consecutive passes, the cycle is considered to have stalled. Poor progress can
occur in two ways: Firstly, if the pass does not improve the current control point ¢
(no progress), or progress is made, but it is insignificant.

For the latter case, let J* minimize J(:, ¢,) over Q. We make the simplifying
assumption that the measure of the level sets for J just greater than J* can be ade-
quately approximated by a power law of the form K(J — J*)” for some values of K
and p. This often occurs in practice: for example an unconstrained minimizer of a C2
function with a positive definite Hessian has this characteristic. Under this assump-
tion, it is easily seen that the expected reduction in J from an improving step is pro-
portional to J(c) — J*, provided c is sufficiently close to x* for any sample x satisfy-
ing J(x) < J(c) to be drawn randomly from the level set {x € Q : J(x) < J(¢)}.

The expected value of each reduction in J is unknown. In its place, the actual
changes in J are used. This allows a rough estimate J,, of the limit of J for the cur-

est
rent cycle that can be formed after each improvement in J via

J(C0|d) - J(C) Where A _ J(C0|d) - J(C)

J.=Jc)—A T T NV — T
est 1-21 J(Colder) - J(Cold)

If either
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(a) no improvement in J has been made in this pass; or
(b) both J(cyy) — J(€) < J(Cyger) — J(Copg) a0 Jog > J(D) — Ty

hold, then the number of consecutive stalled passes N, is incremented, otherwise NV,
is set to zero. Noting that J(¢) < J(coq) < J(Coqer)- the first condition in (b) guaran-
tees that A is defined and A < 1. If 4 > 1, progress does not appear to be decaying
and the method is assumed to not be stalling. Here 7, is the smallest decrease in J
which is considered significant.

Once T, consecutive passes have each yielded poor progress the cycle is ended,
and a new cycle starts from either a random point in Q, or the best known point.

3 Convergence properties

This section looks at the convergence properties of the method when run in exact
arithmetic without halting. Since there is no guarantee that the feasible region has
positive measure, it is necessary to frame the results in terms of the essential global
minimum, which is as follows.

Definition 1 The essential global minimum f* of fover a set S C Qs
S =inf{neR :m{xeS: f()<n})>0)

where m(-) denotes the Lebesgue measure. If m(S) = 0, we set ¥ = o0.

The main convergence result shows that the algorithm locates an essential global
minimizer of f over F, almost surely.

Theorem 1 Let F be non-empty and let b, be an arbitrary limit of{bk}. Then firstly

(@) 7, > 0implies F,, has positive measure; and secondly
(b) m(Fy) > 0implies both b, € Fyyyand f(b,) < fH(F,,) almost surely.

Proof For part (a), let z € F and define the neighborhood

N = {x €Q: |lx—z|l, < min(s, e)} where 6 = ier{linn(Ui —L)/2>0.
J\/:‘ has Lebesgue measure of at least min(6”, €*), which is positive for all € > 0.
This is easily seen on noting that at least one orthant of the uniform norm ball
{x ER" ! |x—z|l, < min(é,e)} lies entirely within Q. Continuity of g implies
de > 0 such that N7 C F, as required.

For part (b), step 4 of the main algorithm ensures the number of cycles N, = oo
as the number of points £ — oco. At the start of each odd numbered cycle, the control
point is drawn randomly from €, hence the number of sample points drawn ran-
domly from Q becomes arbitrarily large as k — oo.
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The strategy for updating the best point means once a point in F, is located, all
future best points will lie in F,. Additionally, each such best point in F, can only
be replaced by another point in F,,, which has a lower f value. Let

e, =m({x € Fyy : f(x) < p})

Now ¢, > 0 for all > Vid (.EO,) by Definition 1. Hence, after N, cycles have been
completed at the k" iteration

Prob(f(b) > u or by & Fy) < (1—¢,)""

The right hand side tends to zero as N, — oo, yielding the result. []

When F, is the closure of its interior, the continuity of f implies the minimum
of f over F,,, equals f*(F,,). When a non-empty F is the closure of its interior, the
preferred choice is 7, = 0 can be made. This gives b, as a global minimizer of (2)
almost surely. The definition of ¢ means ¢, — f* almost surely, meaning J(x, ¢,)
converges to the exact penalty function J(x, f*) almost surely.

The absence of equality constraints does not guarantee that F is the closure of its
interior. The risk with 7, > 0 is that the best known point b which is returned by the
algorithm satisfies the constraints within tolerance, but is infeasible and the distance
between b and the feasible region is large.

4 Numerical testing

The new method was compared against its predecessors oscars [20] and OSCARS-
11 [22] on 50 bound constrained problems in 2-30 dimensions, and on 21 additional
problems in 9-60 dimensions. Comparisons with other methods for generally con-
strained problems are also done using problems from the G-suite and elsewhere.
Finally, some tests are done to explore the value of knowing f*, and how performance
varies with dimension and number of constraints on randomized test problems [28].

The numerical tests herein were all performed with A = 0.9, = 1/3, h,,;,, = 107,
Ty = 1078 and T, = 5. For tests with the T-ceLL method of Aragén et al. [3] and
stochastic ranking evolutionary search (SRes) [26], 7, = 10~*is used.

4.1 Bound constrained only tests

When general constraints are absent, the algorithm minimizes f over Q. This follows
because v = 0 and J(x, ¢) = max{f(x), ¢}. Since ¢ is always set equal to the best
known f immediately, for any sample point x we have f(x) > ¢. Hence f(x) = J(x, ¢)
for all points x at which f has been calculated. This means the algorithm minimizes f
when no general constraints are present. The stall test applied to J is identical to the
stall test applied to f.
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Table 1 Summary of results on problems without general constraints

Method First 50 problems 21 Higher dim. problems

Fevals Best FR Norm nf Fevals Best FR Norm nf
OSCARS 5897 14 4 2.7643 120,653 0 168 3.4729
OSCARS-1I(P) 4158 16 2 1.3105 54,938 6 25 1.2889
CURRENT 3976 20 3 1.2874 48,659 15 17 1.0802

The legend for this table is described in Sect. 4.1

The method was tested on both problem sets used in Price et al. [22]. Test
set 1 [20] contains 50 test problems and test set 2 [22] contains an additional 21
largely higher dimensional problems. Ten runs were performed for problems in
test set 1, and 30 runs for problems in test set 2. Each run which located a best
known point b satisfying

beFy and f(b) <f*+ ropymax {1, [f*]} A3)

was deemed successful, and halted immediately on satisfying these two conditions.
Here 7., = 1073 gives the maximum permitted absolute error (when |[f*| < 1) or rel-
ative error (when |f*| > 1) in f.

Runs which did not find a point satisfying (3) after 50,000 function evaluations
(for test set 1) or 250,000 function evaluations (test set 2) were deemed unsuc-
cessful, and halted at that point.

A summary of the results for both test sets is presented in Table 1. For each method,
the number of function evaluations taken to find a solution was averaged across all runs
for each problem. For each problem, each methods’ averages were normalized by divid-
ing by the least of the methods’ averages for that problem. The normalized function
evaluation counts are averaged across all problems, and listed in the column headed
‘norm nf’. The non-normalized averages of the function counts for all runs of all prob-
lems are in the ‘fevals’ column. Columns headed ‘best’ and ‘FR’ list the number of
problems on which each method had the lowest average function count, and the total
number of runs of all problems which ended in failure. Failed runs are costed out at the
maximum number of function evaluations when calculating the normalized and non-
normalized averages. Doing so artificially reduces both average function counts, with
more failed runs tending to yield greater reductions. The reason for listing both types of
average function count is that the non-normalized averages are dominated by problems
which take many function evaluations to solve. Some problems need more than 100
times as many function evaluations to solve as others.

These results show that the method is competitive with oscars-u [22] and
superior to the original oscars [20] algorithm on bound constrained problems.

4.2 Generally constrained problems: the G-suite

The method was tested on 17 problems from the G-suite [13, 17, 18, 30] and com-
pared against Stochastic Ranking Evolutionary Search (sres) [26] and the modified
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T-CELL algorithm [3]. Results are listed in Table 2, where the best, worst and mean
objective function values are listed for sets of 30 runs, each using 350,000 function
evaluations and 7, = 10™*. The stopping condition (3) was not used: all runs were
halted at 350,000 function evaluations and the best point reported. These conditions
match those used for T-cELL [3] and sres [4], allowing a direct comparison with their
results. Results for sres and T-cELL listed in Table 2 are given to the same number of
significant figures as listed by Aragén et al. [3] and Cagnina et al. [4].

We regard any solution as acceptable if it satisfies (3) with 7, = 10~ and
Topj = 1073, Some results from Aragén et al. [3] and Cagnina et al. [4] are not listed
with sufficient accuracy to determine if this standard was met. In such cases, it is
assumed that the required accuracy was achieved. Firstly, looking at the best points
found by each method over the 30 runs SRes, T-CELL and the current method had 16,
15, and 15 acceptable solutions respectively. For the mean scores the new method
was acceptable on 11 problems, and the other two methods each on 9. For the worst
points found, T-ceLL and this method were acceptable on 9, and sres on 8. These
results show the new method is competitive on generally constrained optimization
problems.

The non-zero constraint tolerance permits points which are slightly better than
optimal to be returned as the solution, and several such points feature in Table 2.

4.3 Other generally constrained tests

The method was also tested on a wider set of generally constrained problems. This
set is the 17 G-suite problems used above, along with the Gomez3 problem [8],
problems 3.3, 4.3, 4.4 and 4.5 from Floudas and Pardalos [6], problems 12.2.3 and
12.2.4 from Floudas et al. [5], the pentagon and equil problems from LukSan and
VIcek [12] and the cylinder-sphere problem (below).

The best known points for problems 4.4 and 4.5 [6] were updated to
f*=-3.13363591 at (0, 3, 0, 1) and f* = —13.401903555 at (1/6, 2, 4, 1/2, 0, 2)
respectively.

Problems 12.2.3 and 12.2.4 from Floudas et al. [5] contain a mix of real and
binary variables. Each binary variable z; was handled by using a real variable
x; € [-0.5,1.5] and rounding x; to the nearest member of {0, 1} to get the binary
value z; before evaluating the objective and constraint functions.

The problems in LukSan and VIéek [12] are nonsmooth local optimization test
problems, and as such are not finitely bounded above and below in all dimensions.
To rectify this Q = [-2,2]° was used for the pentagon problem, and Q = [0, 1]® for
equil. The last problem (cylinder-sphere) has similar characteristics. It is

min x, subjectto |lx]3 <1 and (x;+a)’+ (,+a) >a’+(a—1)°

with x € [=2,2]'% and a = 0.25. The solution is x; = —land x* = 0 foralli # 2 with
an optimal objective function value of f* = —1. There is one proper local minimizer
with f = 0 at x; = —1 and x; = 0 otherwise.

The 10 problems not from the G-suite were tested under the same conditions as the
G-suite. Results appear in Table 3. The method found feasible points on all 300 runs,
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and optimal points (as judged by (3)) on 274 runs. There were 7, 15 and 4 runs with
non-optimal points on problem FP3.3, equil and CF12.2.4 respectively. These results
show that the method can also be effective on problems that are nonsmooth or have
some binary variables.

The method was also tested with 7, = 0 on the 15 generally constrained problems
which do not have equality constraints. The testing regime was otherwise identical to
that for the G-suite. With both 7, = 0 and 7, = 10~* the method found feasible points
on 449 runs out of 450, with one fail each on problem G10. The number of successful
runs were 358 and 356 respectively, showing the method is effective with zero con-
straint tolerance on inequality constrained problems.

4.4 Tests using generally constrained Schoen functions

Tests were also performed on a modified set of Schoen test problems [28] of the form

PINICH | U A
f) = 2N max(gi0).0) Q=[0.1" (4
N N 5 J
Yo My =zl 3=

subject to the constraints g; <0, j=1,...,m. Each z; is chosen randomly from
] &; J i y

[0, 17" and its associated s; is selected from a normal distribution with mean 5 and

variance 1. Each constraint takes the form:

800 = £(IIx" = ylly = e = yll2) = 026;l1x* = y;ll,

where each + sign and y; € Q are chosen randomly to yield either a convex or con-
cave hyperspherical constraint centred on y;. The 6, € {0,1} are also chosen ran-
domly, where 6; = 0 makes the constraint active at x*; otherwise it is inactive at x*.

The global minimizer x* of the left hand term of Jon Qs the z; with the least
corresponding s; [28]. This s; is reduced by 10~ 3max(lsl 1) to reduce the risk
another m1n1mum is within tolerance of the global minimum. Now x* € F and the
right hand term in (4) is zero on F, so x* solves the generally constrained Schoen
problem.

Tests were run on batches of 100 random problems in 5, 10 and 20 dimensions,
with N =40 and 0, 1, 3, 9 or 27 constraints. One run per problem was performed,
with all runs using 7, = 107* and 7,,; = 107, Each run halted successfully once (3)
was satisfied, or as a fail if 350,000 function evaluations was reached.

Results appear in Table 4, and show steadily increasing difficulty with dimension.
These results also show adding a small number of constraints dramatically increases
the problem difficulty. This is because every constaint is active or nearly active at
the solution, which significantly reduces the basin of attraction of x* compared to
other z; € . On such problems convergence to a proper local minimizer sometimes
occurs. As more constraints are added, few or no z; remain in F and the problem
largely reduces to obtaining feasibility. Finding the basm of x* is easier, but the con-
straints make estimating x* accurately more computationally expensive.
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4.5 The value of knowing f*

If there are no general constraints, setting ¢p = f* and using the updating for ¢ both
ensure J(x) = f(x) holds at all sample points which have been used. This means both
versions of the algorithm are functionally identical. Hence comparisons between
estimating ¢ and using ¢ = f* are made only on the 27 generally constrained prob-
lems given above. The Schoen problems were not used.

For each problem, 30 runs were performed with 7, = 10~ for two versions of the
algorithm: one estimated ¢ as described above, and the other used ¢ = f* at all times.
Both versions halted when (3) was satisfied. This allows the relative speeds of both ver-
sions to be compared on the easier problems. Results are presented in Table 5. These
show clearly that setting ¢p = f* when f* is known is detrimental to the algorithm’s per-
formance. The advantage of not setting ¢ = f* is that as ¢ is adjusted, the induced kink
in J from the max{f, ¢} term moves around. This movement enhances the algorithm’s
ability to traverse general constraint boundaries towards the solution (Table 5).

5 Conclusion

The performance of the new method on generally constrained problems is similar to
that of the filter version F-0ScARs [21] of oscars in terms of function counts. In terms
of overheads, the new method is almost twice as efficient. Moreover, on problems
without general constraints, or where no general constraints are active in the vicinity
of the solution, F-oscaRrs becomes equivalent to 0oscars, and the latter is markedly
inferior to the new method.

The new method has been shown to converge almost surely in exact arithmetic.
Numerical results show that the method is effective on a wide range of bound and
generally constrained problems, including nonsmooth problems. It compares well
against other similar methods on problems from the G-suite. There is scope for
improvement in the exploitation phase via a local search. This would be particularly
beneficial on generally constrained problems as it would help the method traverse
along any general constraint boundaries towards the solution.
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