
Vol.:(0123456789)

Optimization Letters
https://doi.org/10.1007/s11590-024-02109-w

1 3

ORIGINAL PAPER

Extending oscars‑ii to generally constrained global
optimization

C. J. Price1  · B. L. Robertson1 · M. Reale1

Received: 27 July 2023 / Accepted: 5 March 2024
© The Author(s) 2024

Abstract
A derivative free method for generally constrained global optimization is described.
A non-smooth merit function with one parameter is used. When this parameter
equals the optimal objective function value f ∗ , the merit function becomes an exact
penalty function. The method estimates f ∗ , avoiding the need for it to be supplied.
The method randomly samples the region satisfying the simple bounds from time to
time, ensuring convergence almost surely. Other samples are drawn randomly from
smaller regions considered promising. Numerical testing is done using a variety of
bound constrained problems and generally constrained problems from the G-suite
and elsewhere. Results show the method is competitive in practice. They also show
that the method performs better when it estimates the optimal objective function
value than when the actual value is used.

Keywords  Derivative free · Direct search optimisation · OSCARS · Numerical
results

1  Introduction

The generally constrained global optimization problem addressed here has the form

where Ω is a finite box defined by upper (U) and lower (L) bounds, as follows

(1)min
x∈Ω

f (x) subject to gI(x) ≤ 0 and gE(x) = 0

 *	 C. J. Price
	 chrisj.price@canterbury.ac.nz

	 B. L. Robertson
	 blair.robertson@canterbury.ac.nz

	 M. Reale
	 marco.reale@canterbury.ac.nz

1	 School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-024-02109-w&domain=pdf
http://orcid.org/0000-0001-6776-0037

	 C. J. Price et al.

1 3

The objective function f maps ℝn into ℝ . The equality constraint function gE(x) and
inequality constraint function gI(x) map ℝn into ℝq and ℝm−2q , respectively. It is
assumed that L < U and that f, gE and gI are continuous functions of x on Ω.

For simplicity, the equality constraints are replaced by the pair of inequality con-
straints gE(x) ≤ 0 and −gE(x) ≤ 0 . This puts all constraints in the convenient form
g(x) ≤ 0 where g(x) maps ℝn into ℝm , yielding a simpler expression of problem (1),
viz.

From now on, we work with (2) rather than (1).
A wide variety of algorithms have been proposed for this problem. The majority

of these methods are stochastic, although deterministic methods also exist [9].
Many stochastic methods are population based, such as particle swarm [4, 14],

differential evolution [17], fish swarm [24] artificial immune system [3], and electro-
magnetism-like methods [1]. Stochastic methods are often paired with local searches
to refine identified minimizers. For example, Hedar and Fukushima [7] pair the
derivative free Nelder–Mead method with simulated annealing. Sequential quadratic
programming is paired with multistart-clustering in deft-funnel [27], and with par-
ticle swarm methods [11].

Methods can also be differentiated on how expensive each function value is to
compute. For expensive objectives methods using surrogates [15, 25] are effective,
with radial basis functions being a common means of generating the surrogates. The
surrogate is designed to be much cheaper to evaluate than the objective and con-
straint functions. The surrogate can be minimized by a subsidiary global optimiza-
tion method designed for cheaper to evaluate functions giving a new sample point
for (2). A more sophisticated fusion combining accelerated random search [2] with
surrogates is given by Nuñez et al. [19] and Regis [23].

These methods employ a variety of strategies to adjudicate between changes in
objective function and constraint violations. They include filters [7, 15, 21, 24],
penalty functions [1, 9, 26], interval arithmetic [14] and other techniques such as
adaptive trade-off models [30]. In addition, sample points can be biased towards
feasibility by using constraint gradient information [29] or other processes [31]. A
thorough survey of constraint handling techniques is given by Mezura-Montes and
Coello [16].

In the next section, we describe a stochastic penalty function method for prob-
lems with objective and constraint functions that are cheap to evaluate. Convergence
is discussed in Sect. 3, with numerical results given in Sect. 4. The final section
concludes the paper.

2 � Algorithm development

The feasible region of problem (2) is

Ω = {x ∈ ℝ
n ∶ Li ≤ xi ≤ Ui ∀i = 1,… , n}.

(2)min
x∈Ω

f (x) subject to g(x) ≤ 0

1 3

Extending oscars‑ii to generally constrained global…

The proposed algorithm extends the oscars-ii algorithm [22] for bound constrained
global optimization to problems of the form (1). Oscars-ii and the new method gen-
erate random sample points in Ω and various subregions of Ω . Both methods retain
two points at each iteration: the best known point b ∈ Ω and a control point c ∈ Ω
used to direct the construction of the sampled subregions of Ω . The basic structure
of each iteration is to randomly choose an iterate from the current subregion of Ω ,
calculate f and g at that iterate, and then update b, c and the sampling subregion.

With oscars-ii general constraints are absent, and b is just the iterate with the least
known value of f. From time to time the control point is reset to b or a random point in
Ω . Between resets c is the point with the least f value from or after the most recent reset.

The presence of general constraints means b and c must be chosen differently. At
each iteration the new method chooses b as the best known feasible point, or if no
feasible point is found, the least infeasible infeasible point. In contrast, c is chosen to
minimize a merit function J over the iterates generated since the most recent reset. The
merit function contains a parameter which is adjusted occasionally to obtain an accept-
able convergence rate.

If F has measure zero, the algorithm will almost surely fail to find a feasible point
with any finite number of sample points. To circumvent this issue, violations of the
general constraints g ≤ 0 up to a specified tolerance �� ≥ 0 are permitted. The subset of
Ω satisfying the general constraints within this tolerance is

Provided F is non-empty, continuity of g implies F��� has positive measure for all
𝜏� > 0 . Depending on the nature of the constraints, 𝜏� > 0 might be necessary, but if
F has a positive measure, then �� = 0 suffices.

Throughout this paper x∗ and x∗
���

 denote arbitrary global minimizers of f over F and
F��� respectively. Also f ∗ = f (x∗) and f ∗

���
= f (x∗

���
) are used.

2.1 � The merit function

Jones [9] introduced the auxiliary function

to extend the direct algorithm [10] to problems of the form (1). Here � is a possible
value of f ∗ , wj are positive weights and [gj]+ = max(gj, 0) . Direct subdivides Ω into
ever finer sets of rectangles, where each such set covers Ω . At each iteration some
rectangles are divided, yielding the next cover. The rectangles which are selected
are those which could contain a global minimizer of J���� for some value of � and
some value of a Lipschitz constant for J���� . In order to do this, direct calculates and
retains the objective and constraint function values at the centre of every rectangle.
In constrast oscars-ii and the new method retain only b and c.

F = {x ∈ Ω ∶ gi(x) ≤ 0 ∀i = 1,… ,m}.

F��� =
{
x ∈ Ω ∶ gi(x) ≤ �� ∀i = 1,… ,m

}
.

J���� = [f (x) − �]+ +

m∑

j=1

wj[gj(x)]+

	 C. J. Price et al.

1 3

The auxiliary function J���� is modified cosmetically to yield the merit function
J. Specifically � is added to the first term, and a different measure of infeasibility
is used for the second term giving

Here v(x) is the unweighted 2–norm of the constraint violations

and the parameter � is an estimate of f ∗ that is updated from time to time. The sec-
ond term in J behaves like v2 when v is small, and like v for v ≫ 1 . This gives J some
of the characteristics of a rounded �2 exact penalty function.

When � = f ∗ , J has the property that its global minimizer(s) over Ω are pre-
cisely the solutions of (2). To see this first note that J(x∗,�) = f ∗ when � = f ∗ and
x∗ solves (2). For any x ∈ Ω we have

showing that x∗ is a global minimizer of J(⋅, f ∗) over Ω . Conversely J(x, f ∗) = f ∗ can
only hold if f (x) ≤ f ∗ and v(x) = 0 . However v(x) = 0 implies x ∈ F  , which means
that f (x) ≥ f ∗ . Hence the set of global minimizers of (2) is the same as the set of
global minimizers of J(⋅, f ∗) over Ω , as required.

2.2 � An iteration

The algorithm uses a sequence of iterations indexed by k. At iteration k, the algo-
rithm randomly draws one sample point xk from a sampling region Ωk ⊆ Ω and
calculates f and g at xk . The algorithm also updates two points at each iteration:
the best known point bk and the current control point ck . A subscript k refers to a
quantity’s value at iteration k.

Each Ωk is box-shaped and aligned with the coordinate axes, which makes
randomly sampling Ωk straightforward. Specifically, the sampling region has the
form

where �k ∈ ℝ
n and uk ∈ ℝ

n are the vectors of lower and upper bounds satisfy-
ing L ≤ �k and uk ≤ U . The bounds �k and uk are adjusted at each iteration so that
ck ∈ Ωk always holds.

If at least one point in F��� has been found, bk is the sample point in F��� with
the least value of f. Otherwise, bk is the least infeasible sample point in the sense
that it has the smallest value of v(x). In contrast, the control point is the ‘recently
generated’ sample point with the least J value.

J(x,�) = max {f (x),�} +
(v(x))2

1 + v(x)

v(x) = ‖‖[g(x)]+‖‖2,

J(x, f ∗) = max{f (x), f ∗} +
(v(x))2

1 + v(x)
≥ f ∗ + 0 = J(x∗, f ∗)

Ωk = {x ∈ ℝ
n ∶ �k ≤ x ≤ uk}

1 3

Extending oscars‑ii to generally constrained global…

From time to time, the control point is reset, allowing the method to alternately
search widely across Ω , and focus attention in the vicinity of the currently best
known point.

2.3 � The control point and selecting Äk

The control point ck is used to direct how each Ωk+1 is formed from its predeces-
sor Ωk . After selecting the current sample point xk , if J(xk,�) ≥ J(ck,�) , then xk is
rejected and Ωk+1 is chosen so that Ωk+1 ⊂ Ωk with ck+1 = ck ∈ Ωk+1 and xk ∉ Ωk+1 .
If this proposed Ωk+1 is too small along all coordinate directions, it is reset via
Ωk+1 = Ω . In any case, the current control point is retained via ck+1 = ck.

Alternatively, if J(xk,𝜙) < J(ck,𝜙) , then xk is judged to be superior to ck by the
merit function, and ck+1 = xk and Ωk+1 = Ω are used. Hence, if a better point is
found, this becomes the new control and the sampling box resets to Ω.

2.4 � Passes and cycles

Iterations in which the sampling box Ωk is reset to Ω can be used to group iterations
into passes. Each pass starts at an iteration with Ωk = Ω , and ends on the iteration
before Ωk = Ω next occurs. Similarly, iterations in which c is reset can be used to
group iterations (and passes) into cycles. Each cycle starts at an iteration with in
which c is reset, and ends on the iteration before the next reset of c occurs. Since c is
only ever reset when Ωk = Ω , each cycle consists of a whole number of passes. This
is described in more detail now.

The process used to generate each Ωk produces contiguous subsequences of
nested boxes, bracketed by iterations where Ωk = Ω . A sequence of such itera-
tions forms a pass. For example, if iterations k, k + 1,… , k + p form a pass then
Ωk ⊃ Ωk+1 ⊃ ⋯ ⊃ Ωk+p−1 ⊃ Ωk+p where Ωk = Ωk+p+1 = Ω.

The sequence of passes is divided up into contiguous subsequences of passes
called cycles. The event which distinguishes the start of a cycle (and hence the end
of the previous cycle) is the standard way of choosing ck = ck−1 or ck = xk−1 is sus-
pended for one iteration. Instead, at the start of cycle number Nc , if Nc is odd, then
ck is chosen randomly from Ω . If Nc is an even number, ck is set equal to the current
best known point bk . In both cases Ωk = Ω is used.

The motivation for alternately starting cycles with random controls and the best
known point is that the former aids exploration of unexplored areas of Ω whereas
the latter focuses the search in the most promising area found so far. To ensure the
method alternates between these two cases on a regular basis, the maximum number
of sample points in each cycle is limited, with this limit increasing with increasing
Nc . Cycles are also ended if they repeatedly fail a ‘stall test’ which assesses whether
or not the current cycle is likely to improve the best known point. The stall test is
only performed at the end of each pass. If a cycle is ended for any reason, the cur-
rent pass is also ended.

In summary, passes and cycles end for the following four reasons

	 C. J. Price et al.

1 3

1.	 An improved control point has been found (pass ends only).
2.	 The sample box size falls below h��� along all axes (pass ends only).
3.	 T����� consecutive stall test failures occur (pass and cycle end).
4.	 The maximum permitted number of sample points in the current cycle is reached

(pass and cycle end). Herein this maximum is 30(3 + Nc) as per Price et al. [22].

In practice, case 4 is checked first. If case 4 does not hold, cases 1 and 2 are checked.
If either case 1 or 2 holds, then case 3 is checked for the end of a cycle, otherwise
case 3 is skipped.

At the start of each even numbered cycle, the algorithm may take one uphill step
that increases J by at most G. This step aids the algorithm in moving along con-
straint boundaries, and is described in more detail later.

Next, the main algorithm is listed. It counts the number of iterates in the current
cycle using j. Also c��� and c����� denote the control points at the ends of the previous
two passes in the cycle. At the start of each cycle c��� and c����� are set equal to that
cycle’s initial control point. These two quantities are used in the stall test.

Algorithm 1   The main algorithm

2.5 � The uphill step

When G > 0 , step 5 will accept an iterate xk up to G worse than c. Normally G = 0
is used except for cycles which start with the best known point as the initial control
point. These cycles can use G > 0 until the control point is first updated; after that
G = 0 is used. At the start of each such cycle, G is set to is one percent of the aver-
age constraint violation (capped at 100) seen by the algorithm so far. This choice
permits an uphill step of at most 1 when all sample points generated so far are highly

1 3

Extending oscars‑ii to generally constrained global…

infeasible. As less infeasible or feasible sample points are found, this maximum
uphill step seamlessly reduces to its minimum possible value of G = 0 . The latter is
achieved when only feasible sample points are encountered, irrespective of whether
general constraints are present or not.

This allows a single worse step off the best known point at the start of each evenly
numbered cycle. The purpose of this is to enhance the algorithm’s ability to move
along constraint boundaries.

Allowing uphill steps has pros and cons. If the best point is wedged in a vee, then
an uphill step can escape the notch, and subsequent steps might be able to locate an
improved point more rapidly. The risk is that the algorithm will waste time undoing
the uphill step without any gain. Numerical experiments with test problems which
have no general constraints show that the latter is the dominant effect on such prob-
lems. When general constraints are present, numerical results indicate the uphill step
is beneficial.

2.6 � Box cutting procedure

At each iteration, a sample point xk is generated in Ωk . If xk is not better than the
current control point ck (specifically J(xk,�k) ≥ J(ck,�k) ), then part of the region Ωk
is cut off, yielding the next sample box Ωk+1 ⊂ Ωk . This cutting process is done by
shifting some of the bounds defining Ωk inwards towards ck . Each such bound shift is
equivalent to cutting off part of Ωk with a hyperplane orthogonal to some coordinate
axis. Each of these cuts is selected so that ck lies in the part of Ωk that is retained,
and xk lies in the part that is cut off. Since the current control point is retained when
Ω is cut, this yields ck+1 = ck ∈ Ωk+1.

In the rest of this subsection, the iteration number k is dropped from the sub-
scripts of all quantities. In some places a subscript i appears. It denotes the i�� com-
ponent of the relevant quantity at iteration k.

The cutting process (listed in Algorithm 2) is governed by two parameters: A
and � . The former governs how close each cut is to ck and � affects which faces of
Ωk are cut off. A cut is performed perpendicular to each coordinate axis for which
the magnitude of the corresponding component of the trial step s = x − c is at least
�‖x − c‖∞ , where 0 < 𝛽 < 1 . For each such dimension i, the cut passes a fraction
A�si�∕‖s‖∞ along the line segment from x to c, where 0 < A < 1 . Hence, for dimen-
sions with maximal |si| , the cut is a fraction A of the distance from x to c.

	 C. J. Price et al.

1 3

Algorithm 2   The box cutting sub-algorithm

2.7 � Stall test

Oscars-ii [22] uses a Kolmogorov–Smirnov (KS) statistic to terminate unprofitable
cycles on problems with no general constraints. This test uses the 100 best objective
function values in the current cycle, sorted in increasing order. This prevents the
KS test from easily being transported over to the generally constrained case. The
obvious approach is to apply the same test with the values of J in place of the f
values. However J depends on � , and � can be updated at any iteration. This means
all points in the current cycle must be stored, and re-sorted after every change in � .
This makes the KS test significantly more expensive to implement. Thus we replace
it with a simpler, cheaper to implement stall test which is described now.

A stall test is done at the end of each pass which is not also the end of the current
cycle. This situation occurs whenever a new point with a lower J value is found or
the minimum box size is reached. If the stall test indicates that progress is poor for
T����� consecutive passes, the cycle is considered to have stalled. Poor progress can
occur in two ways: Firstly, if the pass does not improve the current control point c
(no progress), or progress is made, but it is insignificant.

For the latter case, let J∗ minimize J(⋅,�k) over Ω . We make the simplifying
assumption that the measure of the level sets for J just greater than J∗ can be ade-
quately approximated by a power law of the form K(J − J∗)p for some values of K
and p. This often occurs in practice: for example an unconstrained minimizer of a C2
function with a positive definite Hessian has this characteristic. Under this assump-
tion, it is easily seen that the expected reduction in J from an improving step is pro-
portional to J(c) − J∗ , provided c is sufficiently close to x∗ for any sample x satisfy-
ing J(x) < J(c) to be drawn randomly from the level set {x ∈ Ω ∶ J(x) < J(c)}.

The expected value of each reduction in J is unknown. In its place, the actual
changes in J are used. This allows a rough estimate J��� of the limit of J for the cur-
rent cycle that can be formed after each improvement in J via

If either

J��� = J(c) − �
J(c���) − J(c)

1 − �
where � =

J(c���) − J(c)

J(c�����) − J(c���)

1 3

Extending oscars‑ii to generally constrained global…

(a)	 no improvement in J has been made in this pass; or
(b)	 both J(c���) − J(c) < J(c�����) − J(c���) and J��� ≥ J(b) − ������

hold, then the number of consecutive stalled passes Ns is incremented, otherwise Ns
is set to zero. Noting that J(c) ≤ J(c���) ≤ J(c�����) , the first condition in (b) guaran-
tees that � is defined and 𝜆 < 1 . If � ≥ 1 , progress does not appear to be decaying
and the method is assumed to not be stalling. Here ������ is the smallest decrease in J
which is considered significant.

Once T����� consecutive passes have each yielded poor progress the cycle is ended,
and a new cycle starts from either a random point in Ω , or the best known point.

3 � Convergence properties

This section looks at the convergence properties of the method when run in exact
arithmetic without halting. Since there is no guarantee that the feasible region has
positive measure, it is necessary to frame the results in terms of the essential global
minimum, which is as follows.

Definition 1  The essential global minimum f ♯ of f over a set S ⊆ Ω is

where m(⋅) denotes the Lebesgue measure. If m(S) = 0 , we set f ♯ = ∞.

The main convergence result shows that the algorithm locates an essential global
minimizer of f over F��� almost surely.

Theorem 1  Let F be non-empty and let b∞ be an arbitrary limit of
{
bk
}
 . Then firstly

(a)	 𝜏� > 0 implies F��� has positive measure; and secondly
(b)	 m(F���) > 0 implies both b∞ ∈ F��� and f (b∞) ≤ f ♯(F���) almost surely.

Proof  For part (a), let z ∈ F and define the neighborhood

N
∗
�
 has Lebesgue measure of at least min(�n, �n) , which is positive for all 𝜖 > 0 .

This is easily seen on noting that at least one orthant of the uniform norm ball �
x ∈ ℝ

n ∶ ‖x − z‖∞ < min(𝛿, 𝜖)
�
 lies entirely within Ω . Continuity of g implies

∃𝜖 > 0 such that N∗
𝜖
⊂ F��� , as required.

For part (b), step 4 of the main algorithm ensures the number of cycles Nc → ∞
as the number of points k → ∞ . At the start of each odd numbered cycle, the control
point is drawn randomly from Ω , hence the number of sample points drawn ran-
domly from Ω becomes arbitrarily large as k → ∞.

f ♯(S) = inf {𝜂 ∈ ℝ ∶ m({x ∈ S ∶ f (x) ≤ 𝜂}) > 0}

N
∗
𝜖
=
�
x ∈ Ω ∶ ‖x − z‖∞ < min(𝛿, 𝜖)

�
where 𝛿 = min

i∈1,…,n
(Ui − Li)∕2 > 0.

	 C. J. Price et al.

1 3

The strategy for updating the best point means once a point in F��� is located, all
future best points will lie in F��� . Additionally, each such best point in F��� can only
be replaced by another point in F��� which has a lower f value. Let

Now 𝜖𝜇 > 0 for all 𝜇 > f ♯
(
F���

)
 by Definition 1. Hence, after Nc cycles have been

completed at the k�� iteration

The right hand side tends to zero as Nc → ∞ , yielding the result. □

When F��� is the closure of its interior, the continuity of f implies the minimum
of f over F��� equals f ♯(F���) . When a non-empty F is the closure of its interior, the
preferred choice is �� = 0 can be made. This gives b∞ as a global minimizer of (2)
almost surely. The definition of � means �k → f ∗ almost surely, meaning J(x,�k)
converges to the exact penalty function J(x, f ∗) almost surely.

The absence of equality constraints does not guarantee that F is the closure of its
interior. The risk with 𝜏� > 0 is that the best known point b which is returned by the
algorithm satisfies the constraints within tolerance, but is infeasible and the distance
between b and the feasible region is large.

4 � Numerical testing

The new method was compared against its predecessors oscars [20] and oscars-
ii [22] on 50 bound constrained problems in 2–30 dimensions, and on 21 additional
problems in 9–60 dimensions. Comparisons with other methods for generally con-
strained problems are also done using problems from the G-suite and elsewhere.
Finally, some tests are done to explore the value of knowing f ∗ , and how performance
varies with dimension and number of constraints on randomized test problems [28].

The numerical tests herein were all performed with A = 0.9 , � = 1∕3 , h��� = 10−6 ,
������ = 10−6 and T����� = 5 . For tests with the t-cell method of Aragón et al. [3] and
stochastic ranking evolutionary search (sres) [26], �� = 10−4 is used.

4.1 � Bound constrained only tests

When general constraints are absent, the algorithm minimizes f over Ω . This follows
because v ≡ 0 and J(x,�) ≡ max{f (x),�} . Since � is always set equal to the best
known f immediately, for any sample point x we have f (x) ≥ � . Hence f (x) = J(x,�)
for all points x at which f has been calculated. This means the algorithm minimizes f
when no general constraints are present. The stall test applied to J is identical to the
stall test applied to f.

�� = m
(
{x ∈ F��� ∶ f (x) ≤ �}

)

Prob
(
f (bk) > 𝜇 or bk ∉ F���

)
≤
(
1 − 𝜖𝜇

)Nc∕2

1 3

Extending oscars‑ii to generally constrained global…

The method was tested on both problem sets used in Price et al. [22]. Test
set 1 [20] contains 50 test problems and test set 2 [22] contains an additional 21
largely higher dimensional problems. Ten runs were performed for problems in
test set 1, and 30 runs for problems in test set 2. Each run which located a best
known point b satisfying

was deemed successful, and halted immediately on satisfying these two conditions.
Here ���� = 10−3 gives the maximum permitted absolute error (when |f ∗| < 1 ) or rel-
ative error (when |f ∗| ≥ 1 ) in f.

Runs which did not find a point satisfying (3) after 50,000 function evaluations
(for test set 1) or 250,000 function evaluations (test set 2) were deemed unsuc-
cessful, and halted at that point.

A summary of the results for both test sets is presented in Table 1. For each method,
the number of function evaluations taken to find a solution was averaged across all runs
for each problem. For each problem, each methods’ averages were normalized by divid-
ing by the least of the methods’ averages for that problem. The normalized function
evaluation counts are averaged across all problems, and listed in the column headed
‘norm nf’. The non-normalized averages of the function counts for all runs of all prob-
lems are in the ‘fevals’ column. Columns headed ‘best’ and ‘FR’ list the number of
problems on which each method had the lowest average function count, and the total
number of runs of all problems which ended in failure. Failed runs are costed out at the
maximum number of function evaluations when calculating the normalized and non-
normalized averages. Doing so artificially reduces both average function counts, with
more failed runs tending to yield greater reductions. The reason for listing both types of
average function count is that the non-normalized averages are dominated by problems
which take many function evaluations to solve. Some problems need more than 100
times as many function evaluations to solve as others.

These results show that the method is competitive with oscars-ii [22] and
superior to the original oscars [20] algorithm on bound constrained problems.

4.2 � Generally constrained problems: the G‑suite

The method was tested on 17 problems from the G-suite [13, 17, 18, 30] and com-
pared against Stochastic Ranking Evolutionary Search (sres) [26] and the modified

(3)b ∈ F��� and f (b) ≤ f ∗ + ���� max {1, |f ∗|}

Table 1   Summary of results on problems without general constraints

The legend for this table is described in Sect. 4.1

Method First 50 problems 21 Higher dim. problems

Fevals Best FR Norm nf Fevals Best FR Norm nf

oscars 5897 14 4 2.7643 120,653 0 168 3.4729
oscars-ii(p) 4158 16 2 1.3105 54,938 6 25 1.2889
current 3976 20 3 1.2874 48,659 15 17 1.0802

	 C. J. Price et al.

1 3

Ta
bl

e 
2  

C
om

pa
ris

on
 w

ith
 t
-c

el
l

[3
] a

nd
 sr

es
 [4

] w
ith

 a
ll

ru
ns

 u
si

ng
 3

50
,0

00
 fu

nc
tio

n
ev

al
ua

tio
ns

Th
e

ne
w

 m
et

ho
d

fo
un

d
fe

as
ib

le
 p

oi
nt

s
on

 a
ll

ru
ns

 o
f a

ll
pr

ob
le

m
s

ex
ce

pt
 g

5
an

d
g1

0.
 A

ll
ru

ns
 o

f t
he

 n
ew

 m
et

ho
d

re
tu

rn
ed

 in
fe

as
ib

le
 p

oi
nt

s
on

 g
5,

 a
nd

 tw
o

ru
ns

 d
id

 s
o

on

g1
0

t-
c
el

l
Th

is
 m

et
ho

d
sr

es
 re

su
lts

 fr
om

 [4
]

f∗
B

es
t

M
ea

n
W

or
st

B
es

t
M

ea
n

W
or

st
B

es
t

M
ea

n
W

or
st

1
-1

5
-1

5.
0

-1
5.

0
-1

5.
0

-1
4.

99
94

6
-1

4.
99

79
9

-1
4.

99
63

9
-1

5.
0

-1
5.

0
-1

5.
0

2
-0

.8
03

61
91

-0
.8

01
36

7
-0

.7
52

97
5

-0
.6

87
82

7
-0

.6
28

90
9

-0
.5

30
83

8
-0

.4
30

74
9

-0
.8

03
-0

.7
84

-0
.7

34
3

-1
-1

.0
-1

.0
-1

.0
-0

.9
99

61
1

-0
.9

96
87

3
-0

.9
93

60
9

-1
.0

-1
.0

-1
.0

4
-3

0,
66

5.
53

9
-3

0,
65

5.
53

9
-3

0,
65

5.
53

8
-3

0,
65

5.
53

8
-3

0,
65

5.
66

-3
0,

65
5.

65
-3

0,
65

5.
65

-3
0,

65
5.

53
9

-3
0,

65
5.

48
-3

0,
65

4.
22

5
51

26
.4

98
1

51
26

.6
25

5
53

78
.2

67
8

61
12

.1
18

1
50

43
(in

f)
52

03
(in

f)
56

75
(in

f)
51

26
.4

97
51

30
.7

92
51

53
.7

57
6

-6
96

1.
81

4
-6

96
1.

81
39

-6
96

1.
81

39
-6

96
1.

81
39

-6
96

2.
04

6
-6

96
2.

04
0

-6
96

2.
02

1
-6

96
1.

81
4

-6
86

3.
64

5
-6

26
7.

78
7

7
24

.3
06

20
9

24
.3

20
9

24
.6

53
4

25
.1

34
7

24
.3

18
26

24
.4

00
95

24
.5

44
24

24
.3

10
24

.4
17

24
.8

30
8

-0
.0

95
82

5
-0

.0
95

82
5

-0
.0

95
82

5
-0

.0
95

82
5

-0
.0

95
82

5
-0

.0
95

82
5

-0
.0

95
82

5
-0

.0
95

-0
.0

95
-0

.0
95

9
68

0.
63

00
6

68
0.

63
68

0.
65

68
0.

70
68

0.
63

11
68

0.
63

76
68

0.
64

96
68

0.
63

68
0.

64
6

68
0.

69
7

10
70

49
.2

48
70

50
.8

34
2

80
20

.7
55

1
90

54
.2

92
3

70
49

.6
38

72
65

.6
07

94
23

.3
80

70
50

.1
94

74
23

.4
34

88
67

.8
44

11
0.

75
0.

74
99

0.
74

99
0.

74
99

0.
74

99
00

0.
74

99
00

0.
74

99
01

0.
75

0
0.

75
0

0.
75

1
12

-1
-1

.0
-1

.0
-1

.0
-1

-1
-1

-1
-1

-1
13

0.
05

39
41

5
0.

05
46

38
0.

45
88

57
0.

99
49

83
0.

05
39

42
8

0.
05

40
93

1
0.

05
75

91
6

0.
05

3
0.

06
1

0.
12

8
14

-4
7.

76
48

9
-4

7.
51

71
00

-4
5.

31
08

00
-4

3.
27

23
82

-4
7.

75
23

7
-4

7.
69

65
6

-4
7.

61
82

1
-4

1.
55

1
-4

1.
55

1
-4

0.
12

5
15

96
1.

71
50

2
96

1.
71

50
2

96
3.

37
48

2
97

0.
59

46
7

96
1.

71
50

2
96

1.
71

50
3

96
1.

71
50

4
96

1.
71

5
96

1.
73

1
96

2.
00

8
16

-1
.9

05
15

5
-1

.9
05

15
5

-1
.9

05
15

5
-1

.9
05

15
5

-1
.9

05
16

86
-1

.9
05

01
5

-1
.9

04
42

1
-1

.9
05

-1
.7

03
-1

.5
87

18
-0

.8
66

02
-0

.8
65

96
-0

.7
84

55
-0

.6
29

77
-0

.8
65

94
4

-0
.8

65
52

1
-0

.8
64

33
4

-0
.8

66
00

-0
.7

86
00

-0
.4

57
00

1 3

Extending oscars‑ii to generally constrained global…

t-cell algorithm [3]. Results are listed in Table 2, where the best, worst and mean
objective function values are listed for sets of 30 runs, each using 350,000 function
evaluations and �� = 10−4 . The stopping condition (3) was not used: all runs were
halted at 350,000 function evaluations and the best point reported. These conditions
match those used for t-cell [3] and sres [4], allowing a direct comparison with their
results. Results for sres and t-cell listed in Table 2 are given to the same number of
significant figures as listed by Aragón et al. [3] and Cagnina et al. [4].

We regard any solution as acceptable if it satisfies (3) with �� = 10−4 and
���� = 10−3 . Some results from Aragón et al. [3] and Cagnina et al. [4] are not listed
with sufficient accuracy to determine if this standard was met. In such cases, it is
assumed that the required accuracy was achieved. Firstly, looking at the best points
found by each method over the 30 runs sres, t-cell and the current method had 16,
15, and 15 acceptable solutions respectively. For the mean scores the new method
was acceptable on 11 problems, and the other two methods each on 9. For the worst
points found, t-cell and this method were acceptable on 9, and sres on 8. These
results show the new method is competitive on generally constrained optimization
problems.

The non-zero constraint tolerance permits points which are slightly better than
optimal to be returned as the solution, and several such points feature in Table 2.

4.3 � Other generally constrained tests

The method was also tested on a wider set of generally constrained problems. This
set is the 17 G-suite problems used above, along with the Gomez3 problem [8],
problems 3.3, 4.3, 4.4 and 4.5 from Floudas and Pardalos [6], problems 12.2.3 and
12.2.4 from Floudas et al. [5], the pentagon and equil problems from Lukšan and
Vlček [12] and the cylinder-sphere problem (below).

The best known points for problems 4.4 and 4.5 [6] were updated to
f ∗ = −3.13363591 at (0, 3, 0, 1) and f ∗ = −13.401903555 at (1/6, 2, 4, 1/2, 0, 2)
respectively.

Problems 12.2.3 and 12.2.4 from Floudas et al. [5] contain a mix of real and
binary variables. Each binary variable zi was handled by using a real variable
xi ∈ [−0.5, 1.5] and rounding xi to the nearest member of {0, 1} to get the binary
value zi before evaluating the objective and constraint functions.

The problems in Lukšan and Vlček [12] are nonsmooth local optimization test
problems, and as such are not finitely bounded above and below in all dimensions.
To rectify this Ω = [−2, 2]6 was used for the pentagon problem, and Ω = [0, 1]8 for
equil. The last problem (cylinder-sphere) has similar characteristics. It is

with x ∈ [−2, 2]10 and a = 0.25 . The solution is x∗
2
= −1 and x∗

i
= 0 for all i ≠ 2 with

an optimal objective function value of f ∗ = −1 . There is one proper local minimizer
with f = 0 at x1 = −1 and xi = 0 otherwise.

The 10 problems not from the G-suite were tested under the same conditions as the
G-suite. Results appear in Table 3. The method found feasible points on all 300 runs,

min x2 subject to ‖x‖2
2
≤ 1 and (x1 + a)2 + (x2 + a)2 ≥ a2 + (a − 1)2

	 C. J. Price et al.

1 3

Ta
bl

e 
3  

R
es

ul
ts

 fo
r g

en
er

al
ly

 c
on

str
ai

ne
d

pr
ob

le
m

s n
ot

 in
 th

e
G

-s
ui

te

n
q
i

q
e

f∗
be

st
m

ea
n

w
or

st

G
om

ez
3

2
1

–
-0

.9
71

1
-0

.9
71

11
37

-0
.9

71
11

34
-0

.9
71

11
28

FP
 3

.3
6

6
–

-3
10

-3
10

.0
12

8
-3

07
.7

43
32

-2
97

.2
42

91
FP

 4
.3

4
2

1
-4

.5
14

2
-4

.5
14

87
34

-4
.5

14
83

57
-4

.5
14

80
64

FP
 4

.4
4

2
1

-3
.1

33
63

-3
.1

33
72

87
-3

.1
33

67
66

3.
13

35
64

4
FP

 4
.5

6
3

3
-1

3.
40

19
-1

3.
40

20
12

-1
3.

40
20

12
-1

3.
40

20
12

Pe
nt

ag
on

6
15

–
-1

.8
59

-1
.8

59
71

67
-1

.8
59

64
7

-1
.8

59
49

08
Eq

ui
l

8
–

1
0

0.
00

00
41

87
0.

14
38

6
0.

55
75

35
6

C
yl

-s
ph

er
e

10
2

–
-1

-0
.9

99
77

67
-0

.9
99

48
41

-0
.9

99
20

09
C

F1
2.

2.
3

7
2

1
4.

57
96

4.
57

92
38

9
4.

57
92

20
1

4.
57

92
57

1
C

F1
2.

2.
4

11
3

3
-0

.9
43

47
-0

.9
43

75
24

-0
.9

42
15

22
-0

.9
31

84
65

1 3

Extending oscars‑ii to generally constrained global…

and optimal points (as judged by (3)) on 274 runs. There were 7, 15 and 4 runs with
non-optimal points on problem FP3.3, equil and CF12.2.4 respectively. These results
show that the method can also be effective on problems that are nonsmooth or have
some binary variables.

The method was also tested with �� = 0 on the 15 generally constrained problems
which do not have equality constraints. The testing regime was otherwise identical to
that for the G-suite. With both �� = 0 and �� = 10−4 the method found feasible points
on 449 runs out of 450, with one fail each on problem G10. The number of successful
runs were 358 and 356 respectively, showing the method is effective with zero con-
straint tolerance on inequality constrained problems.

4.4 � Tests using generally constrained Schoen functions

Tests were also performed on a modified set of Schoen test problems [28] of the form

subject to the constraints gj ≤ 0 , j = 1,… ,m . Each zj is chosen randomly from
[0, 1]n and its associated sj is selected from a normal distribution with mean 5 and
variance 1. Each constraint takes the form:

where each ± sign and yj ∈ Ω are chosen randomly to yield either a convex or con-
cave hyperspherical constraint centred on yj . The �j ∈ {0, 1} are also chosen ran-
domly, where �j = 0 makes the constraint active at x∗ ; otherwise it is inactive at x∗.

The global minimizer x∗ of the left hand term of f on Ω is the zj with the least
corresponding sj [28]. This sj is reduced by 10−3 max(|sj|, 1) to reduce the risk
another minimum is within tolerance of the global minimum. Now x∗ ∈ F and the
right hand term in (4) is zero on F  , so x∗ solves the generally constrained Schoen
problem.

Tests were run on batches of 100 random problems in 5, 10 and 20 dimensions,
with N = 40 and 0, 1, 3, 9 or 27 constraints. One run per problem was performed,
with all runs using �c = 10−4 and ���� = 10−3 . Each run halted successfully once (3)
was satisfied, or as a fail if 350,000 function evaluations was reached.

Results appear in Table 4, and show steadily increasing difficulty with dimension.
These results also show adding a small number of constraints dramatically increases
the problem difficulty. This is because every constaint is active or nearly active at
the solution, which significantly reduces the basin of attraction of x∗ compared to
other zj ∈ F  . On such problems convergence to a proper local minimizer sometimes
occurs. As more constraints are added, few or no zj remain in F and the problem
largely reduces to obtaining feasibility. Finding the basin of x∗ is easier, but the con-
straints make estimating x∗ accurately more computationally expensive.

(4)f (x) =

∑N

i=1
si
∏N

j=1,j≠i
‖x − zj‖22

∑N

i=1

∏N

j=1,j≠i
‖x − zj‖22

−

m�

j=1

max(gj(x), 0) Ω = [0, 1]n

gj(x) = ±
�
‖x∗ − yj‖2 − ‖x − yj‖2

�
− 0.2 �j‖x∗ − yj‖2

	 C. J. Price et al.

1 3

Ta
bl

e 
4  

T
he

se
 g

en
er

al
ly

 c
on

str
ai

ne
d

Sc
ho

en
 p

ro
bl

em
 re

su
lts

 li
st

th
e

av
er

ag
e

nu
m

be
r o

f f
un

ct
io

n
ev

al
ua

tio
ns

 o
ve

r 1
00

 p
ro

bl
em

s,
an

d
nu

m
be

r o
f f

ai
le

d
ru

ns
 (F

R
)

Fa
ile

d
ru

ns
 a

re
 c

os
te

d
at

 th
e

m
ax

im
um

 n
um

be
r o

f f
un

ct
io

n
ev

al
ua

tio
ns

 in
 th

e
av

er
ag

es

n
U

nc
on

str
ai

ne
d

1
C

on
str

ai
nt

3
C

on
str

ai
nt

s
9

C
on

str
ai

nt
s

27
 C

on
str

ai
nt

s

FR
Fe

va
ls

FR
Fe

va
ls

FR
Fe

va
ls

FR
Fe

va
ls

FR
Fe

va
ls

5
0

40
38

1
13

,0
09

1
19

,4
09

1
10

,0
57

0
63

93
10

0
57

51
11

53
,0

66
26

11
5,

42
3

7
33

,9
40

2
45

,7
41

20
2

20
,1

25
21

91
,4

56
43

16
4,

54
3

24
11

1,
85

2
11

13
5,

80
5

1 3

Extending oscars‑ii to generally constrained global…

Ta
bl

e 
5  

T
hi

s t
ab

le
 c

om
pa

re
s t

he
 n

ew
 m

et
ho

d
w

he
n

th
e

op
tim

al
 o

bj
ec

tiv
e

fu
nc

tio
n

va
lu

e
f∗

 is
, a

nd
 is

 n
ot

 k
no

w
n

Th
irt

y
ru

ns
 w

er
e

pe
rfo

rm
ed

 fo
r e

ac
h

of
 th

e
27

 p
ro

bl
em

s
gi

vi
ng

 8
10

 r
un

s
in

 to
ta

l.
O

n
g2

 a
nd

 g
10

 n
ei

th
er

 m
et

ho
d

w
as

 b
es

t b
ec

au
se

 b
ot

h
m

et
ho

ds
 to

ok
 3

50
,0

00
 fu

nc
tio

n
ev

al
ua

tio
ns

 o
n

al
l r

un
s

Fe
va

ls
N

or
m

 n
f

B
es

t o
n

Su
cc

es
sf

ul
 ru

ns
Fe

as
ib

le
 ru

ns

f∗
 U

nk
no

w
n

12
6,

05
6

1.
26

3
17

61
9

78
1

f∗
 K

no
w

n
16

1,
04

4
2.

14
2

8
52

5
71

1

	 C. J. Price et al.

1 3

4.5 � The value of knowing f∗

If there are no general constraints, setting � = f ∗ and using the updating for � both
ensure J(x) = f (x) holds at all sample points which have been used. This means both
versions of the algorithm are functionally identical. Hence comparisons between
estimating � and using � = f ∗ are made only on the 27 generally constrained prob-
lems given above. The Schoen problems were not used.

For each problem, 30 runs were performed with �� = 10−4 for two versions of the
algorithm: one estimated � as described above, and the other used � = f ∗ at all times.
Both versions halted when (3) was satisfied. This allows the relative speeds of both ver-
sions to be compared on the easier problems. Results are presented in Table 5. These
show clearly that setting � = f ∗ when f ∗ is known is detrimental to the algorithm’s per-
formance. The advantage of not setting � = f ∗ is that as � is adjusted, the induced kink
in J from the max{f ,�} term moves around. This movement enhances the algorithm’s
ability to traverse general constraint boundaries towards the solution (Table 5).

5 � Conclusion

The performance of the new method on generally constrained problems is similar to
that of the filter version f-oscars [21] of oscars in terms of function counts. In terms
of overheads, the new method is almost twice as efficient. Moreover, on problems
without general constraints, or where no general constraints are active in the vicinity
of the solution, f-oscars becomes equivalent to oscars, and the latter is markedly
inferior to the new method.

The new method has been shown to converge almost surely in exact arithmetic.
Numerical results show that the method is effective on a wide range of bound and
generally constrained problems, including nonsmooth problems. It compares well
against other similar methods on problems from the G-suite. There is scope for
improvement in the exploitation phase via a local search. This would be particularly
beneficial on generally constrained problems as it would help the method traverse
along any general constraint boundaries towards the solution.

Acknowledgements  The authors would like to thank both anonymous referees for many helpful com-
ments leading to an improved paper.

Funding  Open Access funding enabled and organized by CAUL and its Member Institutions.

Data Availability  There are no data.

Declarations 

Conflict of interest:  The authors declare that there are no conflicts of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line

1 3

Extending oscars‑ii to generally constrained global…

to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 Ali, M.M., Golakhani, C.M., Zhuang, J.: A computational study of different penalty approaches for
solving constrained global optimization problems with the electromagnetism-like method. J. Optim.
63, 403–419 (2014)

	 2.	 Appel, M.J., Labarre, R., Radulović, D.: On accelerated random search. SIAM J. Optim. 14, 708–
731 (2003)

	 3.	 Aragón, V.S., Esquivel, S.C., Coello, C.A.C.: A modified version of a T-cell algorithm for con-
strained optimization problems. Int. J. Numer. Methods Eng. 84, 351–378 (2010)

	 4.	 Cagnina, L., Esquivel, S., Coello, C.A.C.: A bi-population PSO with a shake-mechanism for solv-
ing constrained numerical optimization. In: 2007 IEEE Congress on Evolutionary Computation
(CEC’2007), Singapore 2007, pp. 670-676. IEEE Press, New York (2007)

	 5.	 Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gümüs, Z.H., Harding, S.T., Klepeis,
J.L., Meyer, C.A., Schweiger, C.A.: Handbook of test problems in local and global optimization. In:
Nonconvex Optimization and its Applications, vol. 33. Kluwer, Dordrecht (1999)

	 6.	 Floudas, C.A., Pardalos, P.M.: A collection of test problems for constrained global optimization
problems. In: Lecture notes in Computer Science, vol. 455. Springer, Berlin (1990)

	 7.	 Hedar, A.-R., Fukushima, M.: Derivative free filter simulated annealing method for constrained con-
tinuous global optimization. J. Glob. Optim. 35, 521–549 (2006)

	 8.	 Gomez, S., Levy, A.: The tunneling method for solving the constrained global optimization prob-
lem with several non-connected feasible regions. In: Dold, A., Eckmann, B. (eds.) Lecture Notes in
Mathematics, vol. 909, pp. 34–47. Springer (1982)

	 9.	 Jones, D.R.: The DIRECT global optimization algorithm. In: Floudas C.A., Pardalos P.M. (eds.)
Encyclopaedia of Optimization, pp. 433–440. Springer, Boston (2001)

	10.	 Jones, D.R., Pertunnen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz con-
stant. J. Optim. Theory Appl. 79, 157–181 (1993)

	11.	 Liu, Z., Li, Z., Zhu, P., Chen, E.: A parallel boundary search particle swarm optimization algorithm
for constrained optimization problems. Struct. Multidiscip. Optim. 58, 1505–1522 (2018)

	12.	 Lukšan, L., Vlček, J.: Test problems for nonsmooth unconstrained and linearly constrained optimi-
zation. Technical Report 798, Prague: Institute of Computer Science, Academy of Sciences of the
Czech Republic (2000)

	13.	 Koziel, S., Michalewicz, Z.: Evolutionary algorithms, homomorphous mappings, and constrained
parameter optimization. Evol. Comput. 7, 19–44 (1999)

	14.	 Mazhoud, I., Hadj-Hamou, K., Bigen, J., Joyeux, P.: Particle swarm optimization for solving engi-
neering problems: a new constraint handling mechanism. Eng. Appl. Artif. Intell. 26, 1263–1273
(2013)

	15.	 Macêdo, M.J.F.G., Karas, E.W., Costa, M.F.P., Rocha, A.M.A.C.: Filter-based stochastic algorithm
for global optimization. J. Glob. Optim. 77, 777–805 (2020)

	16.	 Mezura-Montes, E., Coello, C.A.C.: Constraint handling in nature-inspired numerical optimization:
past, present and future. Swarm Evol. Comput. 1, 173–194 (2011)

	17.	 Mezura-Montes, E., Miranda-Varela, M.E., del Carmen Gómez-Ramón, R.: Differential evolution in
constrained numerical optimization: an empirical study. Inf. Sci. 180, 4223–4262 (2010)

	18.	 Michalewicz, Z.: Genetic algorithms, numerical optimization and constraints. In: Eshelman, L.J.
(eds) Proceedings of the 6th International Conference on Genetic Algorithms, pp. 151–1580. Mor-
gan Kaufman, San Mateo California (1995)

	19.	 Nuñez, L., Regis, R.G., Varela, K.: Accelerated random search for constrained global optimization
assisted by radial basis function surrogates. J. Comput. Appl. Math. 340, 276–295 (2018)

	20.	 Price, C.J., Reale, M., Robertson, B.L.: One side cut accelerated random search: a direct search
method for bound constrained global optimization. Optim. Lett. 8, 1137–1148 (2014)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	 C. J. Price et al.

1 3

	21.	 Price, C.J., Reale, M., Robertson, B.L.: Stochastic filter methods for generally constrained global
optimization. J. Glob. Optim. 65, 441–456 (2016)

	22.	 Price, C.J., Reale, M., Robertson, B.L.: OSCARS-II: an algorithm for bound constrained global
optimization. J. Glob. Optim. 79, 39–57 (2021)

	23.	 Regis, R.G.: A hybrid surrogate assisted accelerated random search and trust region approach for
constrained black-box optimization. In: Lecture Notes in Computer Science 13164, pp. 162–177.
Springer, Cham (2022)

	24.	 Rocha, A.M.A.C., Costa, M.F.P., Fernandes, E.M.G.P.: A filter-based fish swarm algorithm for con-
strained global optimization: theoretical and practical issues. J. Glob. Opt. 60, 239–263 (2014)

	25.	 Regis, R.G., Shoemaker, C.A.: Constrained global optimization of expensive black box functions
using radial basis functions. J. Glob. Opt. 31, 153–171 (2005)

	26.	 Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization. IEEE Trans.
Evol. Comput. 4, 284–294 (2000)

	27.	 Sampaio, P.R.: DEFT-FUNNEL: an open-source global optimization solver for constrained grey-
box and black-box problems. Comput. Appl. Math. 40, 176–211 (2021)

	28.	 Schoen, F.: A wide class of test functions for global optimization. J. Glob. Optim. 3, 133–137
(1993)

	29.	 Spettel, P., Beyer, H.-G.: Matrix adaptation evolution strategies for optimization under nonlinear
equality constraints. Swarm Evol. Comput. 54, 100653 (2020)

	30.	 Wang, Y., Cai, Z., Zhou, Y.: Accelerating adaptive trade-off model using shrinking space technique
for constrained evolutionary optimization. Int. J. Numer. Methods Eng. 77, 1501–1534 (2009)

	31.	 Xu, P., Luo, W., Lin, X., Qiao, Y.: Evolutionary continuous constrained optimization using random
direction repair. Inf. Sci. 566, 80–102 (2021)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

	Extending oscars-ii to generally constrained global optimization
	Abstract
	1 Introduction
	2 Algorithm development
	2.1 The merit function
	2.2 An iteration
	2.3 The control point and selecting
	2.4 Passes and cycles
	2.5 The uphill step
	2.6 Box cutting procedure
	2.7 Stall test

	3 Convergence properties
	4 Numerical testing
	4.1 Bound constrained only tests
	4.2 Generally constrained problems: the G-suite
	4.3 Other generally constrained tests
	4.4 Tests using generally constrained Schoen functions
	4.5 The value of knowing

	5 Conclusion
	Acknowledgements
	References

