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Abstract
A derivative free method for generally constrained global optimization is described. 
A non-smooth merit function with one parameter is used. When this parameter 
equals the optimal objective function value f ∗ , the merit function becomes an exact 
penalty function. The method estimates f ∗ , avoiding the need for it to be supplied. 
The method randomly samples the region satisfying the simple bounds from time to 
time, ensuring convergence almost surely. Other samples are drawn randomly from 
smaller regions considered promising. Numerical testing is done using a variety of 
bound constrained problems and generally constrained problems from the G-suite 
and elsewhere. Results show the method is competitive in practice. They also show 
that the method performs better when it estimates the optimal objective function 
value than when the actual value is used.

Keywords  Derivative free · Direct search optimisation · OSCARS · Numerical 
results

1  Introduction

The generally constrained global optimization problem addressed here has the form

where Ω is a finite box defined by upper (U) and lower (L) bounds, as follows

(1)min
x∈Ω

f (x) subject to gI(x) ≤ 0 and gE(x) = 0
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The objective function f maps ℝn into ℝ . The equality constraint function gE(x) and 
inequality constraint function gI(x) map ℝn into ℝq and ℝm−2q , respectively. It is 
assumed that L < U and that f, gE and gI are continuous functions of x on Ω.

For simplicity, the equality constraints are replaced by the pair of inequality con-
straints gE(x) ≤ 0 and −gE(x) ≤ 0 . This puts all constraints in the convenient form 
g(x) ≤ 0 where g(x) maps ℝn into ℝm , yielding a simpler expression of problem (1), 
viz.

From now on, we work with (2) rather than (1).
A wide variety of algorithms have been proposed for this problem. The majority 

of these methods are stochastic, although deterministic methods also exist [9].
Many stochastic methods are population based, such as particle swarm [4, 14], 

differential evolution [17], fish swarm [24] artificial immune system [3], and electro-
magnetism-like methods [1]. Stochastic methods are often paired with local searches 
to refine identified minimizers. For example, Hedar and Fukushima  [7] pair the 
derivative free Nelder–Mead method with simulated annealing. Sequential quadratic 
programming is paired with multistart-clustering in deft-funnel [27], and with par-
ticle swarm methods [11].

Methods can also be differentiated on how expensive each function value is to 
compute. For expensive objectives methods using surrogates [15, 25] are effective, 
with radial basis functions being a common means of generating the surrogates. The 
surrogate is designed to be much cheaper to evaluate than the objective and con-
straint functions. The surrogate can be minimized by a subsidiary global optimiza-
tion method designed for cheaper to evaluate functions giving a new sample point 
for (2). A more sophisticated fusion combining accelerated random search [2] with 
surrogates is given by Nuñez et al. [19] and Regis [23].

These methods employ a variety of strategies to adjudicate between changes in 
objective function and constraint violations. They include filters  [7, 15, 21, 24], 
penalty functions  [1, 9, 26], interval arithmetic  [14] and other techniques such as 
adaptive trade-off models  [30]. In addition, sample points can be biased towards 
feasibility by using constraint gradient information [29] or other processes [31]. A 
thorough survey of constraint handling techniques is given by Mezura-Montes and 
Coello [16].

In the next section, we describe a stochastic penalty function method for prob-
lems with objective and constraint functions that are cheap to evaluate. Convergence 
is discussed in Sect.  3, with numerical results given in Sect.  4. The final section 
concludes the paper.

2 � Algorithm development

The feasible region of problem (2) is

Ω = {x ∈ ℝ
n ∶ Li ≤ xi ≤ Ui ∀i = 1,… , n}.

(2)min
x∈Ω

f (x) subject to g(x) ≤ 0
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The proposed algorithm extends the oscars-ii algorithm [22] for bound constrained 
global optimization to problems of the form (1). Oscars-ii and the new method gen-
erate random sample points in Ω and various subregions of Ω . Both methods retain 
two points at each iteration: the best known point b ∈ Ω and a control point c ∈ Ω 
used to direct the construction of the sampled subregions of Ω . The basic structure 
of each iteration is to randomly choose an iterate from the current subregion of Ω , 
calculate f and g at that iterate, and then update b, c and the sampling subregion.

With oscars-ii general constraints are absent, and b is just the iterate with the least 
known value of f. From time to time the control point is reset to b or a random point in 
Ω . Between resets c is the point with the least f value from or after the most recent reset.

The presence of general constraints means b and c must be chosen differently. At 
each iteration the new method chooses b as the best known feasible point, or if no 
feasible point is found, the least infeasible infeasible point. In contrast, c is chosen to 
minimize a merit function J over the iterates generated since the most recent reset. The 
merit function contains a parameter which is adjusted occasionally to obtain an accept-
able convergence rate.

If F  has measure zero, the algorithm will almost surely fail to find a feasible point 
with any finite number of sample points. To circumvent this issue, violations of the 
general constraints g ≤ 0 up to a specified tolerance �� ≥ 0 are permitted. The subset of 
Ω satisfying the general constraints within this tolerance is

Provided F  is non-empty, continuity of g implies F��� has positive measure for all 
𝜏� > 0 . Depending on the nature of the constraints, 𝜏� > 0 might be necessary, but if 
F  has a positive measure, then �� = 0 suffices.

Throughout this paper x∗ and x∗
���

 denote arbitrary global minimizers of f over F  and 
F��� respectively. Also f ∗ = f (x∗) and f ∗

���
= f (x∗

���
) are used.

2.1 � The merit function

Jones [9] introduced the auxiliary function

to extend the direct algorithm [10] to problems of the form (1). Here � is a possible 
value of f ∗ , wj are positive weights and [gj]+ = max(gj, 0) . Direct subdivides Ω into 
ever finer sets of rectangles, where each such set covers Ω . At each iteration some 
rectangles are divided, yielding the next cover. The rectangles which are selected 
are those which could contain a global minimizer of J���� for some value of � and 
some value of a Lipschitz constant for J���� . In order to do this, direct calculates and 
retains the objective and constraint function values at the centre of every rectangle. 
In constrast oscars-ii and the new method retain only b and c.

F = {x ∈ Ω ∶ gi(x) ≤ 0 ∀i = 1,… ,m}.

F��� =
{
x ∈ Ω ∶ gi(x) ≤ �� ∀i = 1,… ,m

}
.

J���� = [f (x) − �]+ +

m∑

j=1

wj[gj(x)]+
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The auxiliary function J���� is modified cosmetically to yield the merit function 
J. Specifically � is added to the first term, and a different measure of infeasibility 
is used for the second term giving

Here v(x) is the unweighted 2–norm of the constraint violations

and the parameter � is an estimate of f ∗ that is updated from time to time. The sec-
ond term in J behaves like v2 when v is small, and like v for v ≫ 1 . This gives J some 
of the characteristics of a rounded �2 exact penalty function.

When � = f ∗ , J has the property that its global minimizer(s) over Ω are pre-
cisely the solutions of (2). To see this first note that J(x∗,�) = f ∗ when � = f ∗ and 
x∗ solves (2). For any x ∈ Ω we have

showing that x∗ is a global minimizer of J(⋅, f ∗) over Ω . Conversely J(x, f ∗) = f ∗ can 
only hold if f (x) ≤ f ∗ and v(x) = 0 . However v(x) = 0 implies x ∈ F  , which means 
that f (x) ≥ f ∗ . Hence the set of global minimizers of  (2) is the same as the set of 
global minimizers of J(⋅, f ∗) over Ω , as required.

2.2 � An iteration

The algorithm uses a sequence of iterations indexed by k. At iteration k, the algo-
rithm randomly draws one sample point xk from a sampling region Ωk ⊆ Ω and 
calculates f and g at xk . The algorithm also updates two points at each iteration: 
the best known point bk and the current control point ck . A subscript k refers to a 
quantity’s value at iteration k.

Each Ωk is box-shaped and aligned with the coordinate axes, which makes 
randomly sampling Ωk straightforward. Specifically, the sampling region has the 
form

where �k ∈ ℝ
n and uk ∈ ℝ

n are the vectors of lower and upper bounds satisfy-
ing L ≤ �k and uk ≤ U . The bounds �k and uk are adjusted at each iteration so that 
ck ∈ Ωk always holds.

If at least one point in F��� has been found, bk is the sample point in F��� with 
the least value of f. Otherwise, bk is the least infeasible sample point in the sense 
that it has the smallest value of v(x). In contrast, the control point is the ‘recently 
generated’ sample point with the least J value.

J(x,�) = max {f (x),�} +
(v(x))2

1 + v(x)

v(x) = ‖‖[g(x)]+‖‖2,

J(x, f ∗) = max{f (x), f ∗} +
(v(x))2

1 + v(x)
≥ f ∗ + 0 = J(x∗, f ∗)

Ωk = {x ∈ ℝ
n ∶ �k ≤ x ≤ uk}
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From time to time, the control point is reset, allowing the method to alternately 
search widely across Ω , and focus attention in the vicinity of the currently best 
known point.

2.3 � The control point and selecting Äk

The control point ck is used to direct how each Ωk+1 is formed from its predeces-
sor Ωk . After selecting the current sample point xk , if J(xk,�) ≥ J(ck,�) , then xk is 
rejected and Ωk+1 is chosen so that Ωk+1 ⊂ Ωk with ck+1 = ck ∈ Ωk+1 and xk ∉ Ωk+1 . 
If this proposed Ωk+1 is too small along all coordinate directions, it is reset via 
Ωk+1 = Ω . In any case, the current control point is retained via ck+1 = ck.

Alternatively, if J(xk,𝜙) < J(ck,𝜙) , then xk is judged to be superior to ck by the 
merit function, and ck+1 = xk and Ωk+1 = Ω are used. Hence, if a better point is 
found, this becomes the new control and the sampling box resets to Ω.

2.4 � Passes and cycles

Iterations in which the sampling box Ωk is reset to Ω can be used to group iterations 
into passes. Each pass starts at an iteration with Ωk = Ω , and ends on the iteration 
before Ωk = Ω next occurs. Similarly, iterations in which c is reset can be used to 
group iterations (and passes) into cycles. Each cycle starts at an iteration with in 
which c is reset, and ends on the iteration before the next reset of c occurs. Since c is 
only ever reset when Ωk = Ω , each cycle consists of a whole number of passes. This 
is described in more detail now.

The process used to generate each Ωk produces contiguous subsequences of 
nested boxes, bracketed by iterations where Ωk = Ω . A sequence of such itera-
tions forms a pass. For example, if iterations k, k + 1,… , k + p form a pass then 
Ωk ⊃ Ωk+1 ⊃ ⋯ ⊃ Ωk+p−1 ⊃ Ωk+p where Ωk = Ωk+p+1 = Ω.

The sequence of passes is divided up into contiguous subsequences of passes 
called cycles. The event which distinguishes the start of a cycle (and hence the end 
of the previous cycle) is the standard way of choosing ck = ck−1 or ck = xk−1 is sus-
pended for one iteration. Instead, at the start of cycle number Nc , if Nc is odd, then 
ck is chosen randomly from Ω . If Nc is an even number, ck is set equal to the current 
best known point bk . In both cases Ωk = Ω is used.

The motivation for alternately starting cycles with random controls and the best 
known point is that the former aids exploration of unexplored areas of Ω whereas 
the latter focuses the search in the most promising area found so far. To ensure the 
method alternates between these two cases on a regular basis, the maximum number 
of sample points in each cycle is limited, with this limit increasing with increasing 
Nc . Cycles are also ended if they repeatedly fail a ‘stall test’ which assesses whether 
or not the current cycle is likely to improve the best known point. The stall test is 
only performed at the end of each pass. If a cycle is ended for any reason, the cur-
rent pass is also ended.

In summary, passes and cycles end for the following four reasons 
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1.	 An improved control point has been found (pass ends only).
2.	 The sample box size falls below h��� along all axes (pass ends only).
3.	 T����� consecutive stall test failures occur (pass and cycle end).
4.	 The maximum permitted number of sample points in the current cycle is reached 

(pass and cycle end). Herein this maximum is 30(3 + Nc) as per Price et al. [22].

In practice, case 4 is checked first. If case 4 does not hold, cases 1 and 2 are checked. 
If either case 1 or 2 holds, then case 3 is checked for the end of a cycle, otherwise 
case 3 is skipped.

At the start of each even numbered cycle, the algorithm may take one uphill step 
that increases J by at most G. This step aids the algorithm in moving along con-
straint boundaries, and is described in more detail later.

Next, the main algorithm is listed. It counts the number of iterates in the current 
cycle using j. Also c��� and c����� denote the control points at the ends of the previous 
two passes in the cycle. At the start of each cycle c��� and c����� are set equal to that 
cycle’s initial control point. These two quantities are used in the stall test.

Algorithm 1   The main algorithm

2.5 � The uphill step

When G > 0 , step 5 will accept an iterate xk up to G worse than c. Normally G = 0 
is used except for cycles which start with the best known point as the initial control 
point. These cycles can use G > 0 until the control point is first updated; after that 
G = 0 is used. At the start of each such cycle, G is set to is one percent of the aver-
age constraint violation (capped at 100) seen by the algorithm so far. This choice 
permits an uphill step of at most 1 when all sample points generated so far are highly 
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infeasible. As less infeasible or feasible sample points are found, this maximum 
uphill step seamlessly reduces to its minimum possible value of G = 0 . The latter is 
achieved when only feasible sample points are encountered, irrespective of whether 
general constraints are present or not.

This allows a single worse step off the best known point at the start of each evenly 
numbered cycle. The purpose of this is to enhance the algorithm’s ability to move 
along constraint boundaries.

Allowing uphill steps has pros and cons. If the best point is wedged in a vee, then 
an uphill step can escape the notch, and subsequent steps might be able to locate an 
improved point more rapidly. The risk is that the algorithm will waste time undoing 
the uphill step without any gain. Numerical experiments with test problems which 
have no general constraints show that the latter is the dominant effect on such prob-
lems. When general constraints are present, numerical results indicate the uphill step 
is beneficial.

2.6 � Box cutting procedure

At each iteration, a sample point xk is generated in Ωk . If xk is not better than the 
current control point ck (specifically J(xk,�k) ≥ J(ck,�k) ), then part of the region Ωk 
is cut off, yielding the next sample box Ωk+1 ⊂ Ωk . This cutting process is done by 
shifting some of the bounds defining Ωk inwards towards ck . Each such bound shift is 
equivalent to cutting off part of Ωk with a hyperplane orthogonal to some coordinate 
axis. Each of these cuts is selected so that ck lies in the part of Ωk that is retained, 
and xk lies in the part that is cut off. Since the current control point is retained when 
Ω is cut, this yields ck+1 = ck ∈ Ωk+1.

In the rest of this subsection, the iteration number k is dropped from the sub-
scripts of all quantities. In some places a subscript i appears. It denotes the i�� com-
ponent of the relevant quantity at iteration k.

The cutting process (listed in Algorithm  2) is governed by two parameters: A 
and � . The former governs how close each cut is to ck and � affects which faces of 
Ωk are cut off. A cut is performed perpendicular to each coordinate axis for which 
the magnitude of the corresponding component of the trial step s = x − c is at least 
�‖x − c‖∞ , where 0 < 𝛽 < 1 . For each such dimension i, the cut passes a fraction 
A�si�∕‖s‖∞ along the line segment from x to c, where 0 < A < 1 . Hence, for dimen-
sions with maximal |si| , the cut is a fraction A of the distance from x to c.
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Algorithm 2   The box cutting sub-algorithm

2.7 � Stall test

Oscars-ii [22] uses a Kolmogorov–Smirnov (KS) statistic to terminate unprofitable 
cycles on problems with no general constraints. This test uses the 100 best objective 
function values in the current cycle, sorted in increasing order. This prevents the 
KS test from easily being transported over to the generally constrained case. The 
obvious approach is to apply the same test with the values of J in place of the f 
values. However J depends on � , and � can be updated at any iteration. This means 
all points in the current cycle must be stored, and re-sorted after every change in � . 
This makes the KS test significantly more expensive to implement. Thus we replace 
it with a simpler, cheaper to implement stall test which is described now.

A stall test is done at the end of each pass which is not also the end of the current 
cycle. This situation occurs whenever a new point with a lower J value is found or 
the minimum box size is reached. If the stall test indicates that progress is poor for 
T����� consecutive passes, the cycle is considered to have stalled. Poor progress can 
occur in two ways: Firstly, if the pass does not improve the current control point c 
(no progress), or progress is made, but it is insignificant.

For the latter case, let J∗ minimize J(⋅,�k) over Ω . We make the simplifying 
assumption that the measure of the level sets for J just greater than J∗ can be ade-
quately approximated by a power law of the form K(J − J∗)p for some values of K 
and p. This often occurs in practice: for example an unconstrained minimizer of a C2 
function with a positive definite Hessian has this characteristic. Under this assump-
tion, it is easily seen that the expected reduction in J from an improving step is pro-
portional to J(c) − J∗ , provided c is sufficiently close to x∗ for any sample x satisfy-
ing J(x) < J(c) to be drawn randomly from the level set {x ∈ Ω ∶ J(x) < J(c)}.

The expected value of each reduction in J is unknown. In its place, the actual 
changes in J are used. This allows a rough estimate J��� of the limit of J for the cur-
rent cycle that can be formed after each improvement in J via

If either 

J��� = J(c) − �
J(c���) − J(c)

1 − �
where � =

J(c���) − J(c)

J(c�����) − J(c���)
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(a)	 no improvement in J has been made in this pass; or
(b)	 both J(c���) − J(c) < J(c�����) − J(c���) and J��� ≥ J(b) − ������

hold, then the number of consecutive stalled passes Ns is incremented, otherwise Ns 
is set to zero. Noting that J(c) ≤ J(c���) ≤ J(c�����) , the first condition in (b) guaran-
tees that � is defined and 𝜆 < 1 . If � ≥ 1 , progress does not appear to be decaying 
and the method is assumed to not be stalling. Here ������ is the smallest decrease in J 
which is considered significant.

Once T����� consecutive passes have each yielded poor progress the cycle is ended, 
and a new cycle starts from either a random point in Ω , or the best known point.

3 � Convergence properties

This section looks at the convergence properties of the method when run in exact 
arithmetic without halting. Since there is no guarantee that the feasible region has 
positive measure, it is necessary to frame the results in terms of the essential global 
minimum, which is as follows.

Definition 1  The essential global minimum f ♯ of f over a set S ⊆ Ω is

where m(⋅) denotes the Lebesgue measure. If m(S) = 0 , we set f ♯ = ∞.

The main convergence result shows that the algorithm locates an essential global 
minimizer of f over F��� almost surely.

Theorem 1  Let F  be non-empty and let b∞ be an arbitrary limit of 
{
bk
}
 . Then firstly

(a)	 𝜏� > 0 implies F��� has positive measure; and secondly
(b)	 m(F���) > 0 implies both b∞ ∈ F��� and f (b∞) ≤ f ♯(F���) almost surely.

Proof  For part (a), let z ∈ F  and define the neighborhood

N
∗
�
 has Lebesgue measure of at least min(�n, �n) , which is positive for all 𝜖 > 0 . 

This is easily seen on noting that at least one orthant of the uniform norm ball �
x ∈ ℝ

n ∶ ‖x − z‖∞ < min(𝛿, 𝜖)
�
 lies entirely within Ω . Continuity of g implies 

∃𝜖 > 0 such that N∗
𝜖
⊂ F��� , as required.

For part (b), step 4 of the main algorithm ensures the number of cycles Nc → ∞ 
as the number of points k → ∞ . At the start of each odd numbered cycle, the control 
point is drawn randomly from Ω , hence the number of sample points drawn ran-
domly from Ω becomes arbitrarily large as k → ∞.

f ♯(S) = inf {𝜂 ∈ ℝ ∶ m({x ∈ S ∶ f (x) ≤ 𝜂}) > 0}

N
∗
𝜖
=
�
x ∈ Ω ∶ ‖x − z‖∞ < min(𝛿, 𝜖)

�
where 𝛿 = min

i∈1,…,n
(Ui − Li)∕2 > 0.
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The strategy for updating the best point means once a point in F��� is located, all 
future best points will lie in F��� . Additionally, each such best point in F��� can only 
be replaced by another point in F��� which has a lower f value. Let

Now 𝜖𝜇 > 0 for all 𝜇 > f ♯
(
F���

)
 by Definition 1. Hence, after Nc cycles have been 

completed at the k�� iteration

The right hand side tends to zero as Nc → ∞ , yielding the result. □

When F��� is the closure of its interior, the continuity of f implies the minimum 
of f over F��� equals f ♯(F���) . When a non-empty F  is the closure of its interior, the 
preferred choice is �� = 0 can be made. This gives b∞ as a global minimizer of (2) 
almost surely. The definition of � means �k → f ∗ almost surely, meaning J(x,�k) 
converges to the exact penalty function J(x, f ∗) almost surely.

The absence of equality constraints does not guarantee that F  is the closure of its 
interior. The risk with 𝜏� > 0 is that the best known point b which is returned by the 
algorithm satisfies the constraints within tolerance, but is infeasible and the distance 
between b and the feasible region is large.

4 � Numerical testing

The new method was compared against its predecessors oscars  [20] and oscars-
ii [22] on 50 bound constrained problems in 2–30 dimensions, and on 21 additional 
problems in 9–60 dimensions. Comparisons with other methods for generally con-
strained problems are also done using problems from the G-suite and elsewhere. 
Finally, some tests are done to explore the value of knowing f ∗ , and how performance 
varies with dimension and number of constraints on randomized test problems [28].

The numerical tests herein were all performed with A = 0.9 , � = 1∕3 , h��� = 10−6 , 
������ = 10−6 and T����� = 5 . For tests with the t-cell method of Aragón et al. [3] and 
stochastic ranking evolutionary search (sres) [26], �� = 10−4 is used.

4.1 � Bound constrained only tests

When general constraints are absent, the algorithm minimizes f over Ω . This follows 
because v ≡ 0 and J(x,�) ≡ max{f (x),�} . Since � is always set equal to the best 
known f immediately, for any sample point x we have f (x) ≥ � . Hence f (x) = J(x,�) 
for all points x at which f has been calculated. This means the algorithm minimizes f 
when no general constraints are present. The stall test applied to J is identical to the 
stall test applied to f.

�� = m
(
{x ∈ F��� ∶ f (x) ≤ �}

)

Prob
(
f (bk) > 𝜇 or bk ∉ F���

)
≤
(
1 − 𝜖𝜇

)Nc∕2
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The method was tested on both problem sets used in Price  et  al.  [22]. Test 
set 1 [20] contains 50 test problems and test set 2 [22] contains an additional 21 
largely higher dimensional problems. Ten runs were performed for problems in 
test set 1, and 30 runs for problems in test set 2. Each run which located a best 
known point b satisfying

was deemed successful, and halted immediately on satisfying these two conditions. 
Here ���� = 10−3 gives the maximum permitted absolute error (when |f ∗| < 1 ) or rel-
ative error (when |f ∗| ≥ 1 ) in f.

Runs which did not find a point satisfying (3) after 50,000 function evaluations 
(for test set 1) or 250,000 function evaluations (test set 2) were deemed unsuc-
cessful, and halted at that point.

A summary of the results for both test sets is presented in Table 1. For each method, 
the number of function evaluations taken to find a solution was averaged across all runs 
for each problem. For each problem, each methods’ averages were normalized by divid-
ing by the least of the methods’ averages for that problem. The normalized function 
evaluation counts are averaged across all problems, and listed in the column headed 
‘norm nf’. The non-normalized averages of the function counts for all runs of all prob-
lems are in the ‘fevals’ column. Columns headed ‘best’ and ‘FR’ list the number of 
problems on which each method had the lowest average function count, and the total 
number of runs of all problems which ended in failure. Failed runs are costed out at the 
maximum number of function evaluations when calculating the normalized and non-
normalized averages. Doing so artificially reduces both average function counts, with 
more failed runs tending to yield greater reductions. The reason for listing both types of 
average function count is that the non-normalized averages are dominated by problems 
which take many function evaluations to solve. Some problems need more than 100 
times as many function evaluations to solve as others.

These results show that the method is competitive with oscars-ii  [22] and 
superior to the original oscars [20] algorithm on bound constrained problems.

4.2 � Generally constrained problems: the G‑suite

The method was tested on 17 problems from the G-suite [13, 17, 18, 30] and com-
pared against Stochastic Ranking Evolutionary Search (sres) [26] and the modified 

(3)b ∈ F��� and f (b) ≤ f ∗ + ���� max {1, |f ∗|}

Table 1   Summary of results on problems without general constraints

The legend for this table is described in Sect. 4.1

Method First 50 problems 21 Higher dim. problems

Fevals Best FR Norm nf Fevals Best FR Norm nf

oscars 5897 14 4 2.7643 120,653 0 168 3.4729
oscars-ii(p) 4158 16 2 1.3105 54,938 6 25 1.2889
current 3976 20 3 1.2874 48,659 15 17 1.0802
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t-cell algorithm [3]. Results are listed in Table 2, where the best, worst and mean 
objective function values are listed for sets of 30 runs, each using 350,000 function 
evaluations and �� = 10−4 . The stopping condition (3) was not used: all runs were 
halted at 350,000 function evaluations and the best point reported. These conditions 
match those used for t-cell [3] and sres [4], allowing a direct comparison with their 
results. Results for sres and t-cell listed in Table 2 are given to the same number of 
significant figures as listed by Aragón et al. [3] and Cagnina et al. [4]. 

We regard any solution as acceptable if it satisfies  (3) with �� = 10−4 and 
���� = 10−3 . Some results from Aragón et al. [3] and Cagnina et al. [4] are not listed 
with sufficient accuracy to determine if this standard was met. In such cases, it is 
assumed that the required accuracy was achieved. Firstly, looking at the best points 
found by each method over the 30 runs sres, t-cell and the current method had 16, 
15, and 15 acceptable solutions respectively. For the mean scores the new method 
was acceptable on 11 problems, and the other two methods each on 9. For the worst 
points found, t-cell and this method were acceptable on 9, and sres on 8. These 
results show the new method is competitive on generally constrained optimization 
problems.

The non-zero constraint tolerance permits points which are slightly better than 
optimal to be returned as the solution, and several such points feature in Table 2.

4.3 � Other generally constrained tests

The method was also tested on a wider set of generally constrained problems. This 
set is the 17  G-suite problems used above, along with the Gomez3 problem  [8], 
problems 3.3, 4.3, 4.4 and 4.5 from Floudas and Pardalos [6], problems 12.2.3 and 
12.2.4 from Floudas et al.  [5], the pentagon and equil problems from Lukšan and 
Vlček [12] and the cylinder-sphere problem (below).

The best known points for problems 4.4 and 4.5  [6] were updated to 
f ∗ = −3.13363591 at (0, 3, 0, 1) and f ∗ = −13.401903555 at (1/6, 2, 4, 1/2, 0,  2) 
respectively.

Problems 12.2.3 and 12.2.4 from Floudas  et  al.  [5] contain a mix of real and 
binary variables. Each binary variable zi was handled by using a real variable 
xi ∈ [−0.5, 1.5] and rounding xi to the nearest member of {0, 1} to get the binary 
value zi before evaluating the objective and constraint functions.

The problems in Lukšan and Vlček  [12] are nonsmooth local optimization test 
problems, and as such are not finitely bounded above and below in all dimensions. 
To rectify this Ω = [−2, 2]6 was used for the pentagon problem, and Ω = [0, 1]8 for 
equil. The last problem (cylinder-sphere) has similar characteristics. It is

with x ∈ [−2, 2]10 and a = 0.25 . The solution is x∗
2
= −1 and x∗

i
= 0 for all i ≠ 2 with 

an optimal objective function value of f ∗ = −1 . There is one proper local minimizer 
with f = 0 at x1 = −1 and xi = 0 otherwise.

The 10 problems not from the G-suite were tested under the same conditions as the 
G-suite. Results appear in Table 3. The method found feasible points on all 300 runs, 

min x2 subject to ‖x‖2
2
≤ 1 and (x1 + a)2 + (x2 + a)2 ≥ a2 + (a − 1)2
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and optimal points (as judged by (3)) on 274 runs. There were 7, 15 and 4 runs with 
non-optimal points on problem FP3.3, equil and CF12.2.4 respectively. These results 
show that the method can also be effective on problems that are nonsmooth or have 
some binary variables.

The method was also tested with �� = 0 on the 15 generally constrained problems 
which do not have equality constraints. The testing regime was otherwise identical to 
that for the G-suite. With both �� = 0 and �� = 10−4 the method found feasible points 
on 449 runs out of 450, with one fail each on problem G10. The number of successful 
runs were 358 and 356 respectively, showing the method is effective with zero con-
straint tolerance on inequality constrained problems.

4.4 � Tests using generally constrained Schoen functions

Tests were also performed on a modified set of Schoen test problems [28] of the form

subject to the constraints gj ≤ 0 , j = 1,… ,m . Each zj is chosen randomly from 
[0, 1]n and its associated sj is selected from a normal distribution with mean 5 and 
variance 1. Each constraint takes the form:

where each ± sign and yj ∈ Ω are chosen randomly to yield either a convex or con-
cave hyperspherical constraint centred on yj . The �j ∈ {0, 1} are also chosen ran-
domly, where �j = 0 makes the constraint active at x∗ ; otherwise it is inactive at x∗.

The global minimizer x∗ of the left hand term of f on Ω is the zj with the least 
corresponding sj  [28]. This sj is reduced by 10−3 max(|sj|, 1) to reduce the risk 
another minimum is within tolerance of the global minimum. Now x∗ ∈ F  and the 
right hand term in (4) is zero on F  , so x∗ solves the generally constrained Schoen 
problem.

Tests were run on batches of 100 random problems in 5, 10 and 20 dimensions, 
with N = 40 and 0, 1, 3, 9 or 27 constraints. One run per problem was performed, 
with all runs using �c = 10−4 and ���� = 10−3 . Each run halted successfully once (3) 
was satisfied, or as a fail if 350,000 function evaluations was reached.

Results appear in Table 4, and show steadily increasing difficulty with dimension. 
These results also show adding a small number of constraints dramatically increases 
the problem difficulty. This is because every constaint is active or nearly active at 
the solution, which significantly reduces the basin of attraction of x∗ compared to 
other zj ∈ F  . On such problems convergence to a proper local minimizer sometimes 
occurs. As more constraints are added, few or no zj remain in F  and the problem 
largely reduces to obtaining feasibility. Finding the basin of x∗ is easier, but the con-
straints make estimating x∗ accurately more computationally expensive.

(4)f (x) =

∑N

i=1
si
∏N

j=1,j≠i
‖x − zj‖22

∑N

i=1

∏N

j=1,j≠i
‖x − zj‖22

−

m�

j=1

max(gj(x), 0) Ω = [0, 1]n

gj(x) = ±
�
‖x∗ − yj‖2 − ‖x − yj‖2

�
− 0.2 �j‖x∗ − yj‖2
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4.5 � The value of knowing f∗

If there are no general constraints, setting � = f ∗ and using the updating for � both 
ensure J(x) = f (x) holds at all sample points which have been used. This means both 
versions of the algorithm are functionally identical. Hence comparisons between 
estimating � and using � = f ∗ are made only on the 27 generally constrained prob-
lems given above. The Schoen problems were not used.

For each problem, 30 runs were performed with �� = 10−4 for two versions of the 
algorithm: one estimated � as described above, and the other used � = f ∗ at all times. 
Both versions halted when (3) was satisfied. This allows the relative speeds of both ver-
sions to be compared on the easier problems. Results are presented in Table 5. These 
show clearly that setting � = f ∗ when f ∗ is known is detrimental to the algorithm’s per-
formance. The advantage of not setting � = f ∗ is that as � is adjusted, the induced kink 
in J from the max{f ,�} term moves around. This movement enhances the algorithm’s 
ability to traverse general constraint boundaries towards the solution (Table 5).

5 � Conclusion

The performance of the new method on generally constrained problems is similar to 
that of the filter version f-oscars [21] of oscars in terms of function counts. In terms 
of overheads, the new method is almost twice as efficient. Moreover, on problems 
without general constraints, or where no general constraints are active in the vicinity 
of the solution, f-oscars becomes equivalent to oscars, and the latter is markedly 
inferior to the new method.

The new method has been shown to converge almost surely in exact arithmetic. 
Numerical results show that the method is effective on a wide range of bound and 
generally constrained problems, including nonsmooth problems. It compares well 
against other similar methods on problems from the G-suite. There is scope for 
improvement in the exploitation phase via a local search. This would be particularly 
beneficial on generally constrained problems as it would help the method traverse 
along any general constraint boundaries towards the solution.
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