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Abstract
A meticulous description of a real network with respect to its heterogeneous physical 
infrastructure and properties is necessary for network design assessment. Quantifying 
the costs of making these structures work together effectively, and taking into account 
any hidden charges they may incur, can lead to improve the quality of service and 
reduce mandatory maintenance requirements, and mitigate the cost associated with 
finding a valid solution. For these reasons, we devote our attention to a novel approach 
to produce a more complete representation of the overall costs on the reload cost net-
work. This approach considers both the cost of reloading due to linking structures and 
their internal charges, which we refer to as the penalized reload cost. We investigate 
the complexity and approximability of finding an optimal path, walk, tour, and maxi-
mum flow problems under penalized reload cost. All these problems turn out to be 
NP-complete. We prove that, unless P=NP, even if the reload cost matrix is symmetric 
and satisfies the triangle inequality, the problem of finding a path, tour, and a maxi-
mum flow with a minimum penalized reload cost cannot be approximated within any 
constant 𝛼 < 2 , and finding a walk is not approximable within any factor � ≤ 3.

Keywords  Reload cost · Approximability · NP-completeness · Penalized reload 
cost · Network design

1  Introduction

Edge labeled graphs can be utilized to model heterogeneous physical infrastruc-
ture and properties in various network design problems [1]. Labels can repre-
sent different technologies in telecommunication networks or different carriers in 
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transportation contexts. The concept of reload cost, introduced by Wirth and Steffan 
[2], occurs whenever it is necessary to traversing two consecutive arcs that differ in 
label. The reload cost of a s-t path on an edge label graph, for example, is the sum of 
the arising reload costs incurred while traversing the path, from the source s to the 
destination t. This calculation excludes any factor related to what is happening in the 
remaining substructures, such as any of the connected components. In the presence 
of huge and heterogeneous networks, dominated by a set of properties, and substruc-
tures, where each can represented by a label, the reload costs can become a useful 
instrument to evaluate the maintenance costs required to put a real network to work. 
This evaluation goes beyond just assessing that only cost is produced by finding spe-
cific structures but also includes hidden costs coming from the remain subparts. For 
example, in transportation network applications, one may be interested in finding the 
path with the lowest reload cost when traveling from a source storage to a destina-
tion storage. The goal is to pay as little as possible for tool and transportation prices 
while also minimizing the local freight costs associated with delivering goods from 
destination storages to all consumers based on their demands. This overall cost of 
this network is referred to as the penalized reload cost. To the best of our knowl-
edge, this is a novel specialization of the concept of reload cost, and we believe that 
it can have clear practical relevance in many areas, such as transportation, telecom-
munication networks, distribution of goods, and energy distribution networks. In 
this paper, we investigate the computational complexity of problems in finding the 
optimum path, walk (which allows the repetition of nodes), and maximum flow (of 
value f) between the source s and destination t, and tour from a specific node s, mini-
mizing the penalized reload cost over the graph G . The remainder of this paper is 
organized as follows. In Sect. 2, we present a brief literature review of the canonical 
reload cost problems. In Sect. 3, we provide formal definitions for path, flow, walk 
and tour problems with the minimum penalized reload cost. Additionally, we will 
demonstrate the clear difference from the standard reload cost model using an exam-
ple. Sects. 4.1 and 4.3, present the computational complexity of finding an optimum 
path, maximum flow, and tour under the penalized reload cost model. We prove that 
finding a path/flow/tour is NP-complete and not approximable within any factor 
𝛼 < 2 even if they are restricted to having symmetric reload cost matrix that satisfies 
the triangle inequality. In Sect. 4.2, we deal with the walk problem and prove that it 
is NP-complete, and not approximable within any factor � ≤ 3 , even when the reload 
cost matrix is symmetric and satisfies the triangle inequality.

2 � Literature review

In recent years, only a few key works have been presented in the literature, although 
the concept of reload cost can find application in many utilization areas and useful-
ness in modeling complex cost structures in the telecommunications and transporta-
tion industry and energy distribution problems. Reload cost applied to spanning tree 
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problem has been presented in [2–5], to paths, tours and flows in [6], to cycle cover 
in [7, 8], to paths, trails and walks in [9], and to the minimum diameter spanning tree 
in (Diameter-Tree) [2]. Particular attention has been given to the concept of diam-
eter, because it is an upper limit on the reload cost between any two nodes.  Diam-
eter-Tree [2] problem is not approximable even if it is restricted to graphs of maxi-
mum node degree 5 but it can be solved exactly when the maximum node degree 
is reduced to 3. Furthermore, when the triangle inequality holds the problem is not 
approximable within any factor 𝛼 < 1∕6 ln |V| on graphs of |V| vertices. Instead, the 
minimum diameter spanning tree [3] cannot be approximated within any constant 
𝛼 < 2 , which was proposed by [2] as an open question. Besides, if the reload costs 
satisfy the triangle inequality then the problem is not approximable within any con-
stant 𝛼 < 5∕3 . Some heuristics methods have been presented to solve the minimum 
reload spanning tree such as: an Ant Colony Optimization approach, a greedy and a 
random search techniques [10] and tree-nontree edge swap neighborhood [11]. The 
complexity of problems involving paths, trails (which allow a vertex to be revis-
ited), and walks (which allow vertices and edges to be revisited) with symmetric and 
asymmetric costs between a fixed couple s,t of source and destination was studied in 
[9]. An extensive discussion of the complexities of several problems, dealing with 
finding paths, tours and flows, can be found in [6]. Some of these problems, such 
as the shortest paths and the minimum cost flows are solvable in polynomial time. 
However, others such as the minimum shortest path tree and minimum unsplittable 
multicommodity flows have been proven to be NP-Hard. They demonstrate that even 
on graphs where maximum degree is 4, finding a path tree rooted from s that mini-
mizes the maximum among the transportation costs of its paths is not approximable 
within any factor 𝛼 < 2 . Additionally, in undirected graphs with reload costs satisfy-
ing the triangle inequality, it is not possible to approximate the problem within any 
factor 𝛽 < 5∕3.

3 � Definitions and preliminaries

Let G = (N,A,L, c, u,w, s, t, f ) be a digraph with a node set N, an arc set A, a 
label set L, f is the value of the maximum flow. We identify two specific nodes: 
s,t, which represent the source and the destination, respectively. Further, three arc 
functions are defined: the labeling function l , a weight function w , and a capac-
ity function u, all of them assign non-negative values to each arc (i, j) ∈ A . More-
over, a reload cost function c is defined on all couple (l

1
, l
2
) , that assigns zero 

whenever the labels are equivalent (i.e., l
1
= l

2
 ) and a value greater than zero oth-

erwise. Additionally, we can say that the triangle inequality holds when given 
a triple of edge (e

1
, e

2
, e

3
) , where all of them are incident on the same node then 

c(l(e
1
), l(e

3
)) ≤ c(l(e

1
), l(e

2
)) + c(l(e

2
), l(e

3
)) . Without loss generality, we suppose to 

not have parallel edges, whenever it happens we can transform the parallel edges 
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into a chain of them, and we deal with directed graphs. Then, the reload cost arises 
whenever two consecutive arcs differ in label. We distinguish three types of costs:

•	 reload cost, that is the expense coming from finding a specific substructure (clas-
sical version of reload cost found in the literature);

•	 reload cost component, which is the cost incurred by every connected compo-
nent obtained after the deletion of the found substructure;

•	 penalized reload cost, which is the aggregate of all preceding costs.

In the reload cost graph, the cost is only generated by the consecutive arc couples; 
a pair of arcs [(h, i), (i, j)] is considered consecutive if they share an endpoint node 
i. Given a path/walk/tour/flow x = {xij} , then, the penalized reload cost rp(x) is 
obtained by adding the reload cost r(x) and reload cost component rC(Ω(x)) , that is 
rp(x) = r(x) + rC(Ω(x)) , where the reload cost is given by

and reload cost component of every connected component y ∈ Ω(x) can be depicted 
as follows:

 Let Gx = (Nx
,Ax) denotes the subgraph of G induced by x, which contains only 

the arcs and nodes included into x. Here, Ω(x) stands for all connected compo-
nents in (G ⧵ Gx) obtained by removal of the nodes and arcs in Gx from G , that is 
(G⧵Gx) = (N⧵Nx

,A⧵Ax ). Then, we indicate with rC(Ω(x)) the total reload cost com-
ponent found that is obtained as:

Furthermore, we denote the overall transportation cost of x as:

being penalized reload cost rp(x) = r(x) + rC(Ω(x)) , and and total weight 
w(x) =

∑
(i,j)∈x w(i, j) . Notice that, if |L| = 1 , all the introduced problems are equiva-

lent to finding a path, walk, maximum flow and tour in a monochromatic graph G , 
all of them polynomial resolvable, then for this reason, we will assume to deal with 
graphs where |L| ≥ 2 . With this notation in place, we are ready to formally define 
a path, maximum flow, walk and tour looking for minimizing the penalized reload 
cost.

r(x) =
∑

[(h,i),(i,j)]∈x

c(l(h, i), l(i, j))

rC(y) =
∑

[(h,i),(i,j)]∈y∶h<j

c(l(h, i), l(i, j))

rC(Ω(x)) =
∑

y∈Ω(x)

rC(y)

C(x) = rp(x) + w(x),
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3.1 � Problems statement

In this paper, the problems we investigate are defined by taking into account unitary 
weights on arcs and dealing only with the total transportation cost caused by penal-
ized reload cost. To assist with understanding, we will illustrate the solution appli-
cation outcomes for the presented problems, taking into account the example graph 
G = (N,A, L, c, u, s, t, f = 2) shown in Fig. 1. This network has eleven nodes:

and eighteen arcs:

and ten labels

Without loss of generality, we can consider the cost function c assigning unitary 
value to any pair of different labels (li, lj) . The capacity function u allocate one unit 
capacity to the arcs {(s, 9), (9, s), (4, 9), (9, 4)} and all others get a value of two. A 
label lj is assigned to each arc (i, j) with head j and for each node j ∈ N , apart from 
the arcs {(9, s), (9, 4)} , which have tail label l

9
 . The arc notation [capacity, label], 

shown in Fig. 1, explicitly shows the capacity and the label that goes with each arc.

Definition 3.1   Penalized Reload Cost Path (PRC-P)
Given a labeled, reload cost digraph G = (N,A, L, c, s, t) , the Penalized Reload 

Cost Path (PRC-P) problem is looking for a path P from s to t such that the amount 
of overall penalized reload cost is minimized.

N = {s, 1,… , 9, t},

A = {(s, 1)(s, 9), (1, 2), (1, 3), (2, 4), (3, 4), (4, 5), (4, 6), (4, 9), (5, 9),

(6, 7), (6, 8), (6, 9), (7, 8), (8, 9), (9, s), (9, 4), (9, t)},

L = {l
1
,… , l

9
, lt}.

Fig. 1   Example of a reload cost graph G. The notation [capacity,label] denotes capacity and label 
assigned for each arc.
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The optimal solution for PRC-P is the path p = {(s, 1), (1, 2), (2, 4), (4, 6), 
(6, 9), (9, t)} , with a penalized reload cost rp(x) of 5. This is derived from the sum 
of the reload cost for the path, i.e. r(p) = 5 , and the zero contribution of reload cost 
component rC(�) = 0 . Despite the fact that the remaining connected components 
after p removal are {5}, {7, 8} , they are not capable of generating any reload cost 
component with fewer than two consecutive arcs. Instead, if we consider the two arcs 
path p� = {(s, 9), (9, t)} , we have penalized reload cost equals to 10, that is obtained 
by rp(p�) = r(p�) + rC({1, 2, 3, 4, 5, 6, 7, 8}) = 1 + 9 = 10 . In particular, the reload 
cost component rC(Ω(p�) = {1, 2, 3, 4, 5, 6, 7, 8})) is generated by the nine consecu-
tive arc couples: [(1, 2), (2, 4)], [(1, 3), (3, 4)], [(2, 4), (4, 5)], [(2, 4), (4, 6)], [(3, 4), (
4, 5)],  [(3, 4), (4, 6)], [(4, 6), (6, 7)], [(4, 6), (6, 8)], [(6, 7), (7, 8)].

Definition 3.2  Penalized Reload Cost Walk (PRC-W)
Given a labeled, reload cost digraph G = (N,A, L, c, s, t) , the Penalized Reload 

Cost Walk (PRC-W) problem is looking for a walk W, which allows node rep-
etitions, from s to t such that penalized reload cost is minimized.

The PRC-W application solution w = {(s, 9), (9, 4), (4, 6), (6, 9), (9, t)} , pro-
duces penalized reload cost equals to 3, that is rp(w) = r(w) + rC(�) = 3 + 0 . 
Where reload cost r(w) = 3 is produced by consecutive arcs couples [(9,  4),  (
4, 6)], [(4, 6), (6, 9)], [(6, 9), (9,  t)] that differ in label, but there are not con-
secutive arcs into connected components {1, 2, 3}, {7, 8} , that can produce any 
reload cost component cost.

Definition 3.3  Penalized Reload Cost Tour (PRC-T)
Given a labeled, reload cost digraph G = (N,A, L, c, s) , the Penalized Reload 

Cost Tour (PRC-T) problem is looking for a tour T, from a specified node s 
such that the penalized reload cost is minimized.

The PRC-T example solutions � = {(s, 1), (1, 2), (2, 4), (4, 9), (9, s)} , 
�� = {(s, 1), (1, 3), (3, 4), (4, 9), (9, s)} and 
��� = {(s, 1), (1, 2), (2, 4), (4, 6), (6, 9), (9, s)}  are optimal, having the same penal-
ized reload cost value, rp(�) = rp(�

�) = r(�) + rC({6, 7, 8}) = 3 + 1 = 4 and 
rp(�

��) = r(��) + rC(�) = 4 + 0= 4
.

Definition 3.4  Penalized Reload Cost Maximum Flow (PRC-MF)
Given a capacited, labeled, reload cost digraph G = (N,A,L, c, u, s, t, f ) of 

maximum flow value f, the Penalized Reload Cost Maximum Flow (PRC-MF) 
problem is looking for a feasible optimum maximum flow x∗ from s to t such 
that the amount of penalized reload cost is minimized and the subgraph Gx con-
tains no cycles.

Instead, as regards the PRC-MF application solution x = {(s, 1), (1, 2), (2, 4),

(4, 6), (6, 9), (9, t)} with maximum flow f=2, has penalized reload cost 
rp(x) = r(x) + rC(�) = 5 + 0 = 5.
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4 � Hardness and approximation results

In the following subsections, we will provide definitions and findings regarding the 
complexity and approximability of each specific problem discussed in this paper. 
Especially, Sect. 4.1 addresses Penalized Reload Cost Path (PRC-P) and Penalized 
Reload Cost Maximum Flow (PRC-MF) problems, Sect. 4.2 deals with the Penal-
ized Reload Cost Walk (PRC-W) and the last Sect. 4.3 with Penalized Reload Cost 
Tour (PRC-T) problem.

4.1 � PRC‑P and PRC‑MF problems

In this subsection, we prove that PRC-P and PRC-MF are NP-complete and we pro-
vide inapproximability results. Before proceeding with the complexity proofs we 
begin to introduce the decision version of PRC-P as follows:

Definition 4.1  k-Penalized Reload Cost Path (kPRC-P)   

INSTANCE:	� A labeled, reload cost digraph G = (N,A, L, c, s, t) and a non-nega-
tive integer k.

QUESTION:	� Is there a path P from s to t such that the penalized reload cost is 
less than or equal to k?

Next, we prove that kPRC-P is NP-complete, in doing so, we prove the NP-com-
pleteness by reduction from the Hamiltonian Path problem, well known to be NP-
complete [12].

Definition 4.2  Hamiltonian Path  

INSTANCE:	� Undirected network G = (V ,E, vs, vt).
QUESTION:	� Is there an vs − vt path which visits every vertex in G exactly once?

Since a non-deterministic algorithm requires polynomial time to determine 
whether a path P from s to t produces penalized reload cost at most k, so kPRC-P is 
in NP.

Theorem 4.1  The kPRC-P problem is NP-complete.

Given an instance G = (V ,E, vs, vt) of HP, we seek to determine if there is a path 
P
HP

 from vs to vt in G , with |V(P
HP
)| = k , which visits every vertex v ∈ V  exactly 

once. This is equivalent to determining if there exists a path P
PRC-P

 for the kPRC-P 
problem of penalized reload cost equal to k. We formalize this observation in the 
following proof of Theorem 4.1.



	 D. Granata 

1 3

Proof  We construct a network G≃ = (N,A, L, s, t) for an arbitrary instance 
G = (V ,E, vs, vt) of the HP problem, where the size of the label set is |L| = k + 1 
with k = |V| . To construct G≃ we perform the following steps 

1.	 Create two dummy vertices s and t.
2.	 Create two directed arcs (s,vs ) and ( vt,t), with labels lvt,lvs respectively.
3.	 For each edge e = (i, j) ∈ E create two directed arcs (i, j) and (j, i) with labels lj 

and li , respectively.
4.	 Create a clique of size k + 2 for each vertex v ∈ V , having as nodes {v, v

1
,… , vk+1} 

such that v < v
1
< v

2
< … < vk+1 and all the created arcs are labeled with label lv 

except for the arc (v, v
1
) labeled as lv′ (instead of the arc  (v

1
, v) , labeled with lv).

5.	 We assign c(li, lj) = 1 for any couple of labels (li, lj) ∈ L with li ≠ lj , value zero 
otherwise.

Figure 2 shows an example of the construction that can be performed in polynomial 
time.

⇒ ” Let P
HP

= {vs,… , vt} be a Hamiltonian Path between vs and vt . We can con-
struct the path P

PRC-P
= {s} ∪ P

HP
∪ {t} from s to t by selecting only the edges that 

belong to P
HP

 and arcs (s, vs) and (vt, t) . The deletion of P
PRC-P

 removes all the verti-
ces v ∈ V  which decreases the size of each clique constructed on each vertex by one 
unit, thus producing |Ω(P

PRC-P
)| = |V| connected components, with cardinality equal 

to k + 1 and zero cost, so rC(Ω(PPRC-P
)) = 0 . This is because the path P deletes all 

the arcs having different label from cliques. The penalized reload cost is restricted to 
the path reload cost, that is rp(PPRC-P

) = r(P
PRC-P

) = k.
“⇐ ”  If the kPRC-P problem is a yes instance for G′ , then there is a kPRC-P 

path P
PRC-P

= {s, vs,… , vt, t} from s to t of rp(PPRC-P
) = k , then this means that 

the instance covers all the V nodes because otherwise each node v not included 
in the solution should increment rp of k units. As result of all the k arcs couples 
[(v, v

1
)(v

1
, vz)] z = 2,… , k + 1 which differ in label, belonging to the clique built on 

v. By construction, the path from vs to vt is a Hamiltonian Path. 	�  ◻

Therefore, the same construction of the Proof of Theorem 4.1, presented above 
can be used for the decision version of PRC-MF, that is the k-Penalized Reload Cost 
Maximum Flow problem, that is looking for a maximum flow between s and t in a 
digraph with penalized reload cost less than or equal to k. This proof is obtained in 
an equivalent way by assigning unitary capacity to every arc and sending a unit of 
flow in the graph. This leads us to the following corollary:

Corollary 4.1.1  Given a capacited labeled, reload cost digraph 
G = (N,A, L, c,w, s, t, f ) of maximum flow value f, the Penalized Reload Cost Maxi-
mum Flow (PRC-MF) problem, that is looking for a flow x from s to t such that mini-
mizes the amount of penalized reload cost in an acyclic Gx , is NP-complete.
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So, from Theorem 4.1, we can claim that deciding between YES/NO is hard, we 
would like to show that even deciding, between those instances that are (almost) 
satisfiable and those that are far from being like, is also hard. In other words, there 
exists a gap between YES and NO instances. This gap implies the hardness of the 
approximation of the optimization version.

Theorem  4.2  The PRC-P problem cannot be approximated with a factor 𝛼 < 2 
unless P=NP.

We use the same reduction presented in Proof of Thereom 4.1, to derive the non-
approximability bound. We consider opt(G�) to be the feasible optimal solution of 
the PRC-P problem found on the graph G′ . Now we show that this reduction intro-
duces a gap such that: 

Fig. 2   Example construction of proof Theorem 4.1
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	 I.	 if HP is a yes-instance: opt(G�) ≤ K

	 II.	 if HP is a no-instance: opt(G�) ≥ 2K

To prove (I.), we observe that HP is a Hamiltonian path, from its definition all the 
vertices are covered once by the path, then opt(G�) ≤ K by construction. To prove 
(II.), we suppose to have a solution with opt(G�) ≤ 2K − 1 , this means there exists a 
PRC-P solution P from s to t that meets all the nodes, because every node not 
included in the path increases the reload cost of a factor equal to K. This path is 
forced to be exactly a Hamiltonian path HP, a contradiction holds for the property 
(I.) that affirms that opt(G�) ≤ K , but then no optimal solution can exist with 
opt(G�) < 2K . Properties (I.) and (II.) together imply a gap-introducing reduction. It 
follows that PRC-P is not approximable within 2K − ��

K
 for any 𝜖′ > 0 . Then we can 

conclude that unless P = NP for any given 𝜖 > 0 , PRC-P is not approximable within 
a ratio 2 − � , since 2 − � ≤

2K − ��

K
.

Considering the proof above we note that the proof holds even if the reload 
matrix is symmetric and triangle inequalities are satisfied. Thus, this leads us to the 
following corollaries.

Corollary 4.2.1  The PRC-P problem is not approximable within any factor 𝛼 < 2 , 
even if the reload matrix is symmetric and satisfies the triangle inequality.

Following the same line of reasoning as done for Corollary 4.2.1, we obtain the 
following result

Corollary 4.2.2  The PRC-MF problem is not approximable within any factor 𝛼 < 2 , 
even if the reload matrix is symmetric and satisfies the triangle inequality.

4.2 � PRC‑W problem

Before turning our attention to the walking problem we state its decision version 
kPRC-W as follows:

Definition 4.3  k-Penalized Reload Cost Walk (kPRC-W)  
INSTANCE:	� A labeled, reload cost digraph G = (N,A, L, c, s, t) and a non-nega-

tive integer k.
QUESTION:	� Is there a walk W from s to t such that the penalized reload cost is 

less than or equal to k?

We propose a reduction from the 3SAT problem:
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Definition 4.4  3SAT
INPUT:  Collection C = {c

1
, c

2
, c

3
,… , ck} of clauses on a finite set of variables 

U = {u
1
, u

2
, u

3
,… , um} such that |ci| = 3 for 1 ≤ i ≤ k.

 OUTPUT:  Is there an assignment for U that satisfies all the clauses in C?

3SAT is known to be NP-Complete in the sense strong. We again refer to Garey 
and Johnson [12]. We construct a graph G = (V ,E, L, c, s, t) for an arbitrary instance 
� of the 3SAT problem, such that graph G contains a kPRC-W walk from s to t with 
penalized reload cost less than or equal to k = 3m − 1 , if and only if there is a truth 
assignment t to the variables which satisfies all the clauses of formula � . This graph 
G is constructed as follows: 

	 1.	 Create two dummy nodes s and t.
	 2.	 For each clause ci ∈ � create a node ci in the graph G.
	 3.	 For each variable ui ∈ U  create a nodes ui , ui in the graph G , with 

u
1
≤ u

1
< u

2
≤ u

2
< … < um ≤ um.

	 4.	 For each variable ui ∈ U ∀i = 2,… ,m create a node pi in the graph G.
	 5.	 For every node pi ∀i = 2,… ,m create directed arcs (ui−1, pi) and (ui−1, pi) with 

label lpi.
	 6.	 For every node pi ∀i = 2,… ,m create directed arcs (pi, ui) and (pi, ui) with label 

l′
pi
.

	 7.	 Create directed arcs (s, u
1
) , (s, u

1
) and label them as ls.

	 8.	 Create directed arcs (um, t) , (um, t) and label both with lt.
	 9.	 For each clause cj and literal ui ∈ cj create a couple of arcs (cj, ui) and (ui, cj) in 

the graph G with label lui.
	10.	 For each clause cj and literal ui ∈ cj create a couple of arcs (cj, ui) and (ui, cj) in 

the graph G with label lui.
	11.	 Assign unitary cost for each label couple (li, lj) except for the couples (lui , luj ) , 

(lui , luj ) , (lui , luj ) , and (lui , luj ) where the considered reload cost is equal to 3m.

An example is given in Fig. 3. This construction of G can be accomplished in pol-
ynomial time. We need to show that the proposed construction leads to a one-to-
one correspondence between the solutions of 3SAT instances and kRCP-W problem 
solutions.

Since it takes polynomial time to determine whether a walk from s to t produces 
penalized reload cost at most k, so kPRC-W is in NP.

Theorem 4.3  The PRC-W problem is NP-complete.

We formalize this observation in the following proof of Theorem 4.3.

Proof  Given a formula � , the 3-SAT seeks to determine if there is a truth assign-
ment t to the variables which satisfies all the clauses of the formula � , this is equiva-
lent to determining if there exists a feasible solution W for kPRC-W problem with 
penalized reload cost at most equal to k = 3m − 1.
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Without loss of generality, we can suppose to have a clause with no more 
than one occurrence for each literal.“⇒ ” Let t = {u

1
= 1;u

2
= 1;u

3
= 0;u

4
= 0} 

be a truth assignment to the variables which satisfies the formula 
� = (u

1
∨ u

2
∨ u

3
) ∧ (u

2
∨ u

3
∨ u

4
) ∧(u

1
∨ u

2
∨ u

3
) , at least one variable ui per clause 

is assigned the true value, we can construct from graph G (please refer to Fig. 3) the 
following walk:

from s to t by selecting only the arcs that are incoming into or coming out nodes 
correspondent to the variables with true value in the truth assignment, whenever 
there is an arc going to or from a ci node, we select it. We can see that W deletion 

W = {(s, u
1
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Fig. 3   Graph G obtained from the formula � = (u
1
∨ u

2
∨ u

3
) ∧ (u

2
∨ u

3
∨ u

4
) ∧ (u

1
∨ u

2
∨ u

3
)
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produces Ω(W) = � , so penalized reload cost is restricted solely to the cost contri-
bution of the walk r(W) ≤ 3m − 1 = k.

“⇐ ” If there is a feasible k-Penalized Reload Cost Walk

from s to t, with penalized reload cost k = 3m − 1 , we can assign the value 1 to 
every ui that is in the walk, this is a feasible truth assignment to the variables which 
satisfy every clause of � formula. We can suppose for absurd that there is a feasi-
ble walk W from s to t, for which does not exist a truth assignment for the formula 
� . If this is true, means the existence of at least one clause ci with all false vari-
ables, but this is absurd because we should have a connected component composed 
of the clause ci and all nodes uj , representing the false variables in graph G . Then, 
rC(Ω(W)) ≥ 3m and the penalized reload cost is forced to be greater than k, but this 
a contradiction because we have supposed W to be an optimal solution. 	� ◻

Theorem 4.4  The PRC-W problem is not approximable within any factor � ≤ 3.

To prove the non-approximability of PRC-W, we refer to the reduction used in the 
Proof of Theorem 4.3 presented above. We denote with opt(G�) the PRC-W optimal 
solution and with t the truth assignment that satisfies all the clauses and assume 
K = 3m − 1 . Now we show that this reduction introduces a gap such that: 

	 I.	 if t is a yes-instance: opt(G�) ≤ K

	 II.	 if t is a no-instance: opt(G�) ≥ 3K + 3

To prove I.), if t is a feasible truth assignment to the variables which satisfies every 
clause of � formula than then opt(G�) ≤ K . So, each clause ci has at least a literal 
with true value in the assignment, and then there exists at least an arc covering the 
node ci . To prove II.), we suppose that opt(G�) ≤ 3K + 2 then this means that there 
exists, for construction, truth assignment to the variables which satisfies every 
clause, because every clause not satisfied by truth assignment produces a node ci not 
included in the walk increasing the reload cost of a factor at least equal to 3K + 3 . 
But this means that t is a feasible truth assignment. A immediate contradiction to I.) 
holds, since opt(G�) ≤ K . Properties I.) and II.) together imply a  gap-introducing 
reduction. Therefore, PRC-W is not approximable within 3K + 3 − ��

K
 for any 𝜖′ > 0 . 

Then we can conclude that unless P = NP for any given � ≥ 0 , W-RCP is not 
approximable within a ratio 3 − � , since 3 − � ≤

3K + 3 − ��

K
.

4.3 � PRC‑T problem

We now turn our attention to the problem of finding the tour.
The decision version of PRC-T is stated as follows:

W = {(s, u
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Definition 4.5  k-Penalized Reload Cost Tour (kPRC-T)  

INSTANCE:	� A directed capacited and labeled and weighted reload cost graph 
G = (N,A, L, c, s) and a non-negative integer k.

QUESTION:	� Is there a tour T such that the penalized reload cost is less than or 
equal to k?

Next, we prove that kPRC-T is NP-complete, in doing so, we prove the NP-com-
pleteness by reduction from the Hamiltonian Path problem, well known to be NP-
complete [12].

Since a non-deterministic algorithm requires polynomial time to determine 
whether a tour T

PRC-T
 produces reload cost at most k, so kPRC-T is in NP.

Theorem 4.5  The kPRC-T problem is NP-complete.

We construct a network G≃ = (N,A, L, c, s) for an arbitrary instance 
G = (V ,E, vs, vt) of the HP problem, where the size of the label set is |L| = k + 1 
with k = |V| , such that the network G≃ contains a tour T

PRC-T
 with the minimum 

reload cost at most k, if and only if there is a Hamiltonian Path from vs to vt . To con-
struct G≃ we proceed as follows. 

1.	 Create a vertex s
2.	 Create the arc (s, vs) to link vs to the dummy source s and (vt, s) to link vt to s with 

labels lvs.

The construction is completed by the execution of steps 3-5 of the proof Theo-
rem 4.1. An example of this polynomial time construction is shown in Fig. 4.

Given an instance G = (V ,E, vs, vt) , we try to determine whether there is an HP 
path P

HP
 of G , with |V(T

HP
)| = k , that visits every vertex v exactly once. This is 

equivalent to determining if there exists a T
PRC-T

 tour for the kPRC-T problem whose 
deletion creates |V| connected components, all of size k with reload cost component 
zero and reload cost up to k. We formalize this observation in the following Proof of 
Theorem 4.5.

Proof  “⇒ ”  Let P
HP

= {vs,… , vt} be a Hamiltonian Path between vs and vt . We can 
construct the tour T

PRC-T
= {s} ∪ P

HP
∪ {s} , from s to s, by selecting only the edges 

that belong to P
HP

 and arcs (s, vs) and (vt, s) . The deletion of T
PRC-T

 removes all ver-
tices v ∈ V  , not only decrementing the size of each clique, constructed on every ver-
tex, but also removing all the arcs differing in label. Then the penalized reload cost 
rp(TPRC-T) = r(T

PRC-T
) + rC(�) = k.

“⇐ ” If the kPRC-T problem is a yes instance for G′ , then there is a PRC-T tour 
T �
PRC-T

= {s} ∪ P
HP

∪ {s} with penalized reload cost rp(TPRC-T) = k , then this means 
that the instance is covering all the V nodes, because otherwise each node not 
included in the solution should increase the penalized reload cost of k units (due to 
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the clique labels). Therefore, by construction the path from vs to vs is a Hamiltonian 
path, meeting all the nodes once. 	�  ◻

Note that using the same procedure used to prove that finding PRC-P is not 
approximable, (i.e., Theorem 4.2 ) it is possible to derive the following non-approx-
imability bound.

Corollary 4.5.1  The PRC-T problem is not approximable within any factor 𝛽 < 2.

Fig. 4   Example construction of proof Theorem 4.5
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