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Abstract
We study the solution set to multivariate Chebyshev approximation problem, focus-
sing on the ill-posed case when the uniqueness of solutions can not be established 
via strict polynomial separation. We obtain an upper bound on the dimension of the 
solution set and show that nonuniqueness is generic for ill-posed problems on dis-
crete domains. Moreover, given a prescribed set of points of minimal and maximal 
deviation we construct a function for which the dimension of the set of best approxi-
mating polynomials is maximal for any choice of domain. We also present several 
examples that illustrate the aforementioned phenomena, demonstrate practical appli-
cation of our results and propose a number of open questions.
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1 Introduction

1.1  Background

The classical Chebyshev approximation problem is to construct a polynomial of 
a given degree that has the smallest possible absolute deviation from some con-
tinuous function on a given interval. For univariate polynomials of degree d ≥ 0 
the solution is unique and satisfies an elegant alternation condition: there exist 
d + 2 points of alternating minimal and maximal deviation of the function from 
approximating polynomial [7] (see Fig. 1).

Once we depart from the classical case and consider approximating a con-
tinuous function on a compact subset X of ℝn by multivariate polynomials, the 
uniqueness is lost: the result of Mairhuber [10] demonstrates that a multivari-
ate Chebyshev approximation problem has a unique solution generically (for all 
continuous functions on a given compact subset of ℝn ) if and only if the underly-
ing set X is homeomorphic to a closed subset of a circle. In particular, if X ⊂ ℝ

n 
contains an interior point, then there is no Haar (Chebyshev) space of dimension 
n ≥ 2 for X (i.e. there is no finite system of continuous functions such that every 
continuous function on X has a unique Chebyshev approximation in the span of 
this system). An example of such nonunique approximation is shown in Fig. 2.

Even though the uniqueness of solutions is lost in the multivariate case, the alter-
nation result holds in the form of algebraic separation. It was first shown in [15] that 
a polynomial approximation of degree d is optimal if the sets of points of minimal 
and maximal deviation can not be separated by a polynomial of degree at most d. 
This result can be reproduced using the standard tools of modern convex analysis, 
as demonstrated in [19]. Another approach to generalise the notion of alternation to 
multivariate problems is based on the alternating signs of certain determinants [8].

1.2  Motivation

The classical alternation result was obtained by Chebyshev in 1854 [7], but little 
is known about the shape of the solutions of a more general multivariate problem. 
In particular, related work [4] that studies a version of this problem for polynomi-
als with integer coefficients, mentions that the multivariate problem is ‘virtually 

Fig. 1  A typical distribu-
tion of the points of minimal 
and maximal deviation of a 
continuous function (f, shown in 
orange) from its best Chebyshev 
approximation by a polynomial 
of degree at most 5 (denoted by 
q, shown in blue) on a bounded 
interval [a, b]
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untouched’. Even though the solutions to the multivariate problem satisfy a form of 
an alternation condition, the structure of the solutions and the location of points of 
maximal and minimal deviation are more complex compared to the univariate case, 
which results in many interesting challenges.

From the point of view of classical approximation theory multivariate polynomial 
approximation is relatively inefficient: for a range of key applications some other 
approaches such as the radial basis functions [6] provide superior results. However 
modern optimisation is increasingly fusing with computational algebraic geometry, 
successfully tackling problems that were insurmountable in the past, and polynomial 
approximation emerges in this context as valuable not only for solving computation-
ally challenging problems, but also as an analytic tool that together with Gröbner 
basis methods may lead to algorithmic solutions for finding extrema in nonconvex 
problems. Another potential application is a generalisation of trust-region methods, 
where instead of local quadratic approximations to the function locally more versa-
tile higher order polynomial approximations may be used.

It is also important to mention rational approximation [1]. Rational functions 
are able to approximate nonsmooth and abruptly changing functions and there are a 
number of efficient methods for univariate rational approximation [3, 12]. Some of 
these methods have been extended to multivariate function approximation [2], but 
the choice is not so extensive. Rational functions are ratios of two polynomials and 
therefore their advances require a better understanding of polynomial approxima-
tion. All these motivate us to study polynomial approximation in details.

Consider the space ℙd(ℝ
n) of real polynomials in n variables of degree at most d. 

Let f ∶ X → ℝ be a continuous function defined on a compact set X ⊂ ℝ
n . A poly-

nomial q∗ ∈ ℙd(ℝ
n) solves the multivariate Chebyshev approximation problem for f 

on X if

We are interested in the set Q ⊂ ℙd(ℝ
n) of all such solutions. In some special cases 

the solution to the multivariate Chebyshev approximation problem is known explic-
itly. For instance, the best approximation by monomials on a unit cube is obtained 

max
x∈X

|f (x) − q∗(x)| ≤ max
x∈X

|f (x) − q(x)| ∀q ∈ ℙd(ℝ
n).

Fig. 2  The function f (x, y) = x6 + y6 + 3x4y2 + 3x2y4 + 6xy2 − 2x3 has several best quadratic approxima-
tions on the disk x2 + y2 ≤ 1 . The plot of the function in orange colour is shown together with two differ-
ent best approximations in blue: q0(x, y) = 1 (on the left) and q1(x, y) = 3x2 + 3y2 − 2 (on the right)
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from the products of classical Chebyshev polynomials (see [21] and a more recent 
overview [22]); this is related to another generalisation of Chebyshev’s results, when 
the problem of a best approximation of zero with polynomials having a fixed highest 
degree coefficient is considered: in some special cases, solutions on the unit cube are 
known from [17]; solutions for the unit ball were obtained in [13].

There is a different approach to generalising Chebyshev polynomials, based on 
extending the relation Tk(cos x) = cos kx to the multivariate case. In [11, 16] more 
general functions h ∶ ℝ

n
→ ℝ

n periodic with respect to fundamental domains of 
affine Weyl groups are considered, and the aforementioned relation is replaced by 
Pk(h(x)) = h(kx) . Such generalised Chebyshev polynomials are in fact systems of 
polynomials, as Pk ∶ ℝ

n
→ ℝ

n . We note here that the aforementioned work, as well 
as other approximation techniques based on Chebyshev polynomials (common in 
numerical PDEs), use nodal interpolation with Chebyshev polynomials. This is a 
conceptually different framework compared to our optimisation setting; in particu-
lar, this approach requires a careful choice of interpolation nodes on the domain to 
ensure the quality of approximation.

1.3  Challenges

For the univariate problem the optimal solutions to the Chebyshev approximation 
problem can be obtained using numerical techniques that fit in the context of lin-
ear programming and the simplex method, and exchange algorithm pioneered by 
Remez [14] is perhaps the most well-known technique. Even though the multivari-
ate problem can be solved approximately by linear programming, the problem rap-
idly becomes intractable with the increase in the degree and number of variables, 
and hence there is much need for more efficient methods. This is another exciting 
research direction, as the rich structure of the problem is likely to yield specialised 
methods which surpass the performance of direct linear programming discretisation. 
The general framework for the potential generalisation of the exchange approach 
was laid out in [18–20]. In these papers, authors (partially) extended de la Vallée-
Poussin procedure, which is the core of the Remez method. However, several imple-
mentation issues need to be resolved for a practically viable version of the method. 
It is also possible that some of these issues can not be extended to the case of mul-
tivariate polynomials due to the the loss of uniqueness of optimal solution, which is 
the target of this paper.

For any polynomial q we can define the sets of points of minimal and maximal 
deviation, i.e. such x ∈ X for which the values q(x) − f (x) and f (x) − q(x) respec-
tively coincide with the maximum maxx�∈X |f (x�) − q(x�)| . These sets may be dif-
ferent for different polynomials in the optimal set Q. We show that it is possible 
to identify an intrinsic pair of such subsets pertaining to all polynomials in Q (see 
Theorem 3); moreover the location of these points determines the maximal possi-
ble dimension of the solution set (see Lemma 1). We also show that for any pre-
scribed arrangement of points of minimal and maximal deviation and any choice 
of the maximal degree there exists a continuous function and a relevant approxi-
mating polynomial for which these points are precisely the points of minimal and 
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maximal deviation; moreover, the set of all best approximations has the largest pos-
sible dimension, for any choice of domain X (Lemma 2). Finally, we show that the 
set of best Chebyshev approximations is always of the maximal possible dimension 
if the domain X is finite (Lemma 3). All these constructions are essential for design-
ing computational algorithms for multivariate polynomial approximations. In par-
ticular, since the basis functions do not form a Chebyshev system in multivariate 
cases, the proofs of convergence are much more challenging due to the necessity to 
trace several possibilities.

We begin with some preliminaries and examples in Sect. 2, focussing on the well-
known separation characterisation of optimality and Mairhuber’s uniqueness result. 
In Sect. 3 we present our new results. We then summarise our findings and present 
some open problems in Sect. 4.

2  Preliminaries and examples

2.1  Multivariate polynomials

A multivariate polynomial of degree d with real coefficients can be represented as

where � = (�1,… , �n) is an n-tuple of nonnegative integers,

|�| = |�1| + |�2| +⋯ + |�n| , and a� ∈ ℝ are the coefficients. All polynomials of 
degree not exceeding d constitute a vector space ℙd(ℝ

n) = span{x� | |�| ≤ d} of 

dimension 
(
n + d

d

)
.

Note that, generally speaking, we can consider any finite set of (linearly inde-
pendent) polynomials in n variables, G = (g1,… , gN) and instead of the space 
ℙd(ℝ

n) consider the linear span V of G, i.e.

Then the solution set Q ⊆ V  to the Chebyshev approximation problem for a given 
continuous function f defined on a compact set X ⊆ ℝ

n is

where

q(x) =
∑
|�|≤d

a�x
� ,

x� = x
�1
1
x
�2
2
⋯ x�n

n
,

(1)V = span{gi | i ∈ {1,… ,N}}.

(2)Q∶=Argmin
q∈V

‖f − q‖∞,

‖f − q‖∞ = max
x∈X

�f (x) − q(x)�.
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Fixing a continuous function f ∶ X → ℝ , for every polynomial q ∈ V  we define the 
sets of points of minimal and maximal deviation explicitly as

Observe that for any given polynomial q at least one of these sets is nonempty, and 
for any q∗ ∈ Q both of them are nonempty (otherwise one can add an appropri-
ate small constant to q∗ and decrease the value of the maximal absolute deviation). 
Also observe that the sets N(q) and P(q) are disjoint unless q ≡ f  on X (in this case 
N(q) = P(q) = X).

The minimisation problem of (2) is an unconstrained convex optimisation prob-
lem: the objective function ‖f − q‖∞ can be interpreted as the maximum over two 
families of linear functions parametrised by the domain variable x ∈ X , i.e.

The solution set Q is nonempty, since it represents the metric projection of f onto 
a finite-dimensional linear subspace V of the normed linear space of functions 
bounded on X. It is also easy to see from the continuity of f that this set is closed. 
Moreover, since a maximum function over a family of linear functions is convex, Q 
is convex (e.g. see [9, Proposition 2.1.2]).

Example 1 (Solution set is unbounded) We consider a degenerate case of the prob-
lem: find the best linear approximation to f (x, y) = x2 on X = [−1, 1] × {0} . Since 
the domain is effectively restricted to the line segment [−1, 1] , the solution reduces 
to the classical univariate case: there is a unique best approximation, which hap-
pens to be constant, 1

2
 . Observe however that in the true two-dimensional setting 

any linear polynomial of the form q(x, y) = 1

2
+ �y is also a best approximation 

of f on X. This means that the solution set of best approximations is unbounded, 
Q = {

1

2
+ �y, � ∈ ℝ} , even though all such optimal solutions coincide on X, and 

effectively—on the set X—provide the same unique best approximation.

2.2  Optimality conditions

Definition 1 We say that a polynomial p ∈ V  separates two sets N,P ⊂ ℝ
n if

we say that the separation is strict if the inequality in (5) is strict, i.e.

Recall the well-known characterisations of optimality (see [15] for the original 
result and [19] for modern proofs). These important results are highlighted in Sect. 1 
as our preliminary background of the problem.

(3)
N(q)∶={x ∈ X � q(x) − f (x) = ‖f − q‖∞},
P(q)∶={x ∈ X � f (x) − q(x) = ‖f − q‖∞}.

(4)
‖f − q‖∞ = max

x∈X
�f (x) − q(x)� = max

x ∈ X

� ∈ {−1, 1}

�(f (x) − q(x)).

(5)p(x) ⋅ p(y) ≤ 0 ∀x ∈ N, y ∈ P;

(6)p(x) ⋅ p(y) < 0 ∀x ∈ N, y ∈ P.
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Theorem  1 Let X be a compact subset of ℝn , and assume that f ∶ X → ℝ is a 
continuous function. A polynomial q ∈ V  is an optimal solution to the Chebyshev 
approximation problem (2) if and only if there exists no p ∈ V  that strictly separates 
the sets N(q) and P(q).

Example 2 (Best quadratic approximation is not unique) We focus on the function 
f (x, y) = x6 + y6 + 3x4y2 + 3x2y4 + 6xy2 − 2x3 discussed in the Introduction and 
demonstrate that it does indeed have multiple best quadratic approximations on the 
disk x2 + y2 ≤ 1 (see Fig. 2).

For two different polynomials q0(x, y) = 1 and q1(x, y) = 3x2 + 3y2 − 2 the points 
of maximal negative and positive deviation of f from these polynomials are

where

This is not difficult to verify using standard calculus techniques (see appendix).

2.3  Location of maximal and minimal deviation points

Observe that the points z1 , z2,… , z6 lie on the unit circle. By the Bézout theorem, 
this circle can have at most 4 intersections with any other quadratic curve. However 
if we could find a quadratic polynomial that strictly separates the points of maximal 
and minimal deviation, the relevant curve would intersect the circle in at least six 
points, as shown in Fig. 3.

Hence such separation is impossible, so both q0 and q1 are optimal.
We conclude this section with the well-known result of Mairhuber [10] (gen-

eralised to compact Hausdorff spaces by Brown [5]). These results contributed to 
the motivation for this paper, since the uniqueness of the optimal solution is lost 
(Sect. 1).

Theorem  2 (Mairhuber) A compact subset X of ℝn containing at least k ≥ 2 
points may serve as the domain of definition of a set of real continuous functions 
f1(x),… , fk(x) that provide a unique Chebyshev approximation to any continuous 
function f on the set X, if and only if X is homeomorphic to a closed subset of the 
circumference of a circle.

N(q0) = {z1, z3, z5}, N(q1) = N(q0) ∪ {z0}, P(q0) = P(q1) = {z2, z4, z6},

z0 = (0, 0), z1 = (1, 0), z2 =

�
1

2
,

√
3

2

�
, z3 =

�
−
1

2
,

√
3

2

�
,

(7)z4 = (−1, 0), z5 =

�
−
1

2
,−

√
3

2

�
, z6 =

�
1

2
,−

√
3

2

�
.
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With relation to our setting, Mairhuber’s result is a necessary condition for 
uniqueness, since our choice of the system of functions is restricted to multivari-
ate polynomials. Hence it is possible to identify a compact set X homeomorphic 
to a circle and a set of polynomials linearly independent on X that do not provide 
a unique multivariate approximation to a continuous function on X.

Example 3 Observe that any best approximation to f from Example 2 on the disk is 
also the best approximation to f on any subset of the disk that contains the sets N(q0) 
and P(q0) . Even though the two different best approximations q0 and q1 coincide on 
the boundary of the disk, they take different values everywhere in the interior, and 
hence we can choose another subset of the unit disk that is homeomorphic to a circle 
(like the one shown in Fig. 3 on the right) to obtain two different optimal solutions. 
This does not contradict Mairhuber’s theorem, since in this case we have restricted 
ourselves to a very specific choice of the basic functions.

3  Structure of the solution set

3.1  The location of maximal and minimal deviation points for different optimal 
solutions

The key technical result of this section is the following theorem that establishes 
the existence of uniquely defined subsets of points of maximal and minimal devi-
ation across all optimal solutions. This means that the points of maximal and 
minimal deviation do not wander around the domain X as we move from one opti-
mal solution to another.

Theorem  3 Let f ∶ X → ℝ be a continuous function defined on a compact set 
X ⊂ ℝ

n , let V be a subspace of multivariate polynomials in n variables (1), and sup-
pose that Q is the set of optimal solutions to the relevant optimisation problem, as in 
(2). Then 

Fig. 3  On the left: the intersection of two quadratic curves at six points contradicts the Bézout theorem; 
on the right: a subset of the unit disk homeomorphic to a circle
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 (i) N(q) = N(p) , P(q) = P(p) ∀p, q ∈ riQ;
 (ii) N(q) ⊆ N(p) , P(q) ⊆ P(p) ∀q ∈ riQ, p ∈ Q.

Here the relative interior is considered with respect to the convex sets of the coef-
ficients in the representation of the solutions as linear combinations of polynomials 
in V.

For the proof of this theorem, we will need the following elementary result about 
max-type convex functions. In particular, we prove the following proposition.

Proposition 1 Let F ∶ ℝ
n
→ ℝ be a pointwise maximum over a family of linear 

functions,

Let I(v) = {t |Ft(v) = F(v)} , Q∶=Argmin
v∈ℝn

F(v) . If Q ≠ ∅ , then

Proof Let v ∈ riQ , u ∈ Q . Assume that there exists t ∈ T  such that t ∈ I(v) ⧵ I(u) . 
Then F(v) = F(u) = Ft(v) > Ft(u) , and since Ft is linear, we then have

hence, v − �(u − v) ∉ Q for 𝛼 > 0 , while u = v + (u − v) ∈ Q , which means 
v ∉ riQ .   ◻

Proof of Theorem 3 Recall that our objective function can be represented as the max-
imum over a family of linear functions, as in (4). For every polynomial q ∈ V  define 
the set of active indices

It is evident from the definition (3) of N(q) and P(q) that

The result now follows from Proposition 1.   ◻

The following corollary of Theorem 3 characterises the structure of the location 
of maximal deviation points corresponding to different optimal solutions.

Corollary 1 The sets of points of minimal and maximal deviation remain constant 
if the optimal solutions belong to the relative interior of the solution set. Additional 
maximal and minimal deviation points can only occur if an optimal solution is on 
the relative boundary.

For any given continuous function f defined on a compact set X we can hence 
define the minimal or essential sets of points of minimal and maximal deviation,

F(v) = max
t∈T

Ft(v), Ft ∶ ℝ
n
→ ℝ linear ∀t ∈ T .

I(v) ⊆ I(u) ∀v ∈ riQ, u ∈ Q.

F(v − 𝛼(u − v)) ≥ Ft(v − 𝛼(u − v)) = Ft(v) − 𝛼(Ft(u) − Ft(v)) > F(v) ∀𝛼 > 0,

I(q) = {(x, �) ∈ X × {−1, 1} � �(f (x) − q(x)) = ‖f − q‖∞}.

x ∈ N(q) ⇔ (x,−1) ∈ I(q); x ∈ P(q) ⇔ (x, 1) ∈ I(q).
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where P(q) and N(q) are defined in the standard way, as in (3). For instance, in 
Example  2 we have N = {z1, z3, z5} and P = {z2, z4, z6} , while N(q1) contains an 
additional point z0.

3.2  Dimension of the solution set

We next focus on the relation between the family of separating polynomials and the 
dimension of solution set.

For a fixed continuous function f ∶ X → ℝ and a polynomial q ∈ V  consider 
the set of all polynomials in V that separate the points of minimal and maximal 
deviation,

Notice that the zero polynomial is always in S(q), and for the polynomials in the 
optimal solution set we may have a nontrivial set of separating functions. This hap-
pens in particular when all points of minimal and maximal deviation are located on 
an algebraic variety of a subset of V.

Since the pair of sets of minimal and maximal deviation is minimal on the rela-
tive interior of Q, and such minimal pair is unique according to Theorem 3, we can 
define the maximal set of separating polynomials as S = S(q) for q ∈ riQ.

For the rest of the section, we work with an arbitrary fixed continuous real-valued 
function f defined on a compact set X ⊂ ℝ

n , so we do not repeat this assumption in 
each statement, and simply refer to the solution set Q of the corresponding Cheby-
shev approximation problem.

Lemma 1 For the solution set Q we have dimQ ≤ dim S ; moreover, for any q ∈ riQ , 
p ∈ Q we have p − q ∈ S(p) ⊆ S.

Proof Observe that it is enough to show that for any q ∈ riQ and any p ∈ Q we have 
p − q ∈ S . It then follows that affQ ⊆ S + q , and hence dimQ ≤ dim S.

Let q ∈ riQ and assume p ∈ Q . Then ‖f − q‖∞ = ‖f − p‖∞ . By Theorem 3 we 
have N(q) ⊆ N(p) , P(q) ⊆ P(p) , therefore:

– if u ∈ N(q) , then q(u) − f (u) = p(u) − f (u) = ‖f − p‖∞;
– if u ∈ N(p) ⧵N(q) , then q(u) − f (u) < ‖f − p‖∞ = p(u) − f (u).

And a similar relation, with inverse inequalities apply for u ∈ P(p) . Therefore:

Let s(x) = p(x) − q(x) . We have

P = P(q), N = N(q), q ∈ riQ,

S(q) = {s ∈ V | s(x) ⋅ s(y) ≤ 0∀x ∈ P(q), y ∈ N(q)}.

f (u) − p(u) ≤ f (u) − q(u) ∀u ∈ N(p),

f (u) − p(u) ≥ f (u) − q(u) ∀u ∈ P(p).
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and so s(u) ∈ S(p) ⊆ S(q) .   ◻

Corollary 2 If for the solution set Q we have dimQ > 0 , then all essential points of 
minimal and maximal deviation lie on an algebraic variety of some nontrivial poly-
nomial s ∈ V .

Proof This follows directly from a modification of the proof of Lemma 1: if Q is 
of dimension 1 or higher, then there exist two different polynomials q ∈ riQ and 
p ∈ Q . We have

Hence, s(u) = p(u) − q(u) = 0 ∀u ∈ N ∪ P .   ◻

The next corollary is a well-known uniqueness result.

Corollary 3 If the set S is trivial, then the optimal solution is unique.

Proof If S = {0} , then dim S = 0 , and by Lemma 1 we have dimQ = 0 .   ◻

3.3  Uniqueness and the location of maximal deviation points

It may happen that the dimensions of Q and S do not coincide. Consider the follow-
ing example.

Example 4 Let f (x, y) = (x2 −
1

2
)(1 − y2) and consider the problem of finding a best 

linear approximation of this function on the square X = [−1, 1] × [−1, 1].
It is not difficult to verify that the constant function q0(x, y) ≡ 0 is an optimal 

solution: the points of maximal deviation are the maxima of f(x, y) on the square, 
attained at P(q0) = {(1, 0), (−1, 0)} ; the set of points of minimal deviation is a sin-
gleton N(q0) = {(0, 0)} (we provide technical details in the appendix).

Since these three alternating points of maximal and minimal deviation lie on 
a straight line y = 0 , there is no strict linear separator between them (see the left 
image in Fig. 5), hence this constant solution must be optimal by Theorem 1. Also 
notice that taking any point out of either N(q0) or P(q0) ruins the optimality condi-
tion (in fact, our configuration of the points of minimal and maximal deviation is 
also known as critical set in the notation of [15]). Hence we must have N = N(q0) 
and P = P(q0) , so these are the essential sets of the points of minimal and maximal 
deviation. These three points can be separated non-strictly by the linear functions of 
the form l(x, y) = �y , � ∈ ℝ . We therefore have

s(u) = p(u) − q(u) ≥ 0 ∀u ∈ N(p), s(u) = p(u) − q(u) ≤ 0 ∀u ∈ P(p),

f (u) − p(u) = f (u) − q(u) ∀u ∈ N = N(q),

f (u) − p(u) = f (u) − q(u) ∀u ∈ P = P(q).

S = {�y | � ∈ ℝ}.
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Even though dim S = 1 , the best linear approximation is unique. It follows from 
Lemma  1 that Q ⊆ S , and hence any best linear approximation should have 
the form q�(x, y) = �y for some � ∈ ℝ . When x = ±1 , we have the deviation 
d�(x, y) = f (x, y) − q�(x, y) =

1−y2

2
− �y . The maximun of d�(x, y) is attained at 

y = −� , with the value d𝛼(±1,−𝛼) =
1

2
+

𝛼2

2
>

1

2
 for � ≠ 0 , which means that there 

are no optimal solutions in the neighbourhood of q0(x, y) ≡ 0 , and hence, due to the 
convexity of Q, the best approximation is unique.

Now consider a modified example: let h(x, y) = (x2 −
1

2
)(1 − |y|) (see Fig. 6, left 

hand side). The same trivial constant function q0(x, y) ≡ 0 is a best linear approxi-
mation to h, with the same sets of points of minimal and maximal deviation (see 
Fig.  4, right). However, this best approximation is not unique: any function 
q�(x, y) = �y for � ∈

[
−

1

2
,
1

2

]
 is also a best linear approximation of f on the square X 

Fig. 4  The function f (x, y) = (x2 −
1

2
)(1 − y2) (on the left), the absolute deviation of f 

from the constant q0(x, y) ≡ 0 , |d0(x, y)| = |f (x, y) − q0(x, y)| (middle), and the function 
g(x, y) = (min{|2x|, 2 − |2x|} − 1∕2)(1 − y2), (on the right)

Fig. 5  The points of minimal and maximal deviation for different cases: on the left for h (and also f) 
approximated by q0 ; in the middle for h and q 1

2

(x, y) =
y

2
 ; on the right for h and q− 1

2

(x, y) = −
y

2

Fig. 6  The function h(x, y) = (x2 −
1

2
)(1 − |y|) on the left, and the same function shown together with 

two different best approximations: q 1

2

(x, y) =
y

2
 and q− 1

2

(x, y) = −
y

2
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(see appendix for technical computations). Moreover, the sets of points of maximal 
and minimal deviation are different at the endpoints of the optimal interval, i.e. for 
� = ±

1

2
 , see Fig. 5 (the technical computations are presented in appendix).

3.4  Uniqueness and smoothness

Finally, we would like to point out that smoothness of the function that we are 
approximating is not necessary for the uniqueness of a best approximation, as one 
may be tempted to conclude from the study of the functions f and h. Note that for yet 
another modification,

the function q0(x, y) ≡ 0 is a unique best approximation, while the points of maxi-
mal and minimal deviation are distributed in a similar fashion, along the line y = 0 , 
potentially allowing for nonuniqueness. Notice that the function g(x, y) is nondif-
ferentiable at the points of minimal and maximal deviation. This function is however 
smooth in y for every fixed x. This observation is related to the problem of relating 
the specific (partial) smoothness properties of the function we are approximating 
with the solution set. We discuss this open question in some detail in the conclu-
sions section.

We have seen from the preceding example that whether the Chebyshev approxi-
mation problem has a solution is determined not only by the location of points of 
maximal and minimal deviation, but also by the properties of the function that is 
being approximated; in particular the smoothness of the function at the points of 
minimal and maximal deviation appears to be a decisive factor.

Example 5 For the distribution of points of maximal and minimal deviation from 
Example 2, i.e. N = {z1, z3, z5} , P = {z2, z4, z6} , where z1, z2,… z6 are defined by (7), 
we construct a nonsmooth continuous function

where

shown in Fig. 7 on the left.
The function g(x, y) = 0 is an optimal solution to the quadratic approximation 

problem for the function f on X = {x � ‖x‖ ≤ 2} (since this is exactly the same pat-
tern of points of minimal and maximal deviation as discussed in one of the two cases 
in Example 2). Moreover, the polynomial

g(x, y)∶=(min{|2x|, 2 − |2x|} − 1∕2)(1 − y2),

f (x) = f1(x) − f2(x),

f1(x) =min{2‖x − z1‖, 2‖x − z3‖, 2‖x − z5‖, 1},
f2(x) =min{2‖x − z2‖, 2‖x − z4‖, 2‖x − z6‖, 1},

q�(x, y) = �(x2 + y2 − 1)
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is also a best approximation of f for sufficiently small values of � (this may be 
already evident to the reader from the plot; the mathematically rigorous reasons for 
this will be laid out in the proof of Lemma 2).

Modifying the ‘bump’ that defines each of the peaks that correspond to the points 
of minimal and maximal deviation so that the function f is smooth around these 
points, results in the uniqueness of the approximation q0 . Indeed, let

where

this function is shown in Fig. 7 on the right.
The same constant polynomial q0(x, y) = 0 is optimal for h, however, this time 

the solution is unique: indeed, suppose that another polynomial in S provides a best 
approximation. This polynomial must be of the form p�(x, y) = �(x2 + y2 − 1) for 
some � ≠ 0 . By convexity of the solution set, p�′ should also be optimal for any �′ 
between 0 and �.

In the neighbourhood of the point z1 we have h(x, y) = 4‖x − z1‖2 − 1 = 4
�
(x − 1)2 + y2

�
− 1 . 

Then for a sufficiently small |�′|

hence this is not a solution.

The next result provides a more general justification for the non-uniqueness of 
the approximation to a nonsmooth function f that we have just considered.

h(x) = h1(x) − h2(x),

h1(x) = min{4‖x − z1‖2, 4‖x − z3‖2, 4‖x − z5‖2, 1},
h2(x) = min{4‖x − z2‖2, 4‖x − z4‖2, 4‖x − z6‖2, 1},

h
(

4

4 − 𝛼�
, 0
)
− p𝛼�

(
4

4 − 𝛼�
, 0
)
= −1 −

(𝛼�)2

4 − 𝛼�
< −1,

Fig. 7  The functions f and h in Example 5
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Lemma 2 Let V be as in (1), and let N and P be two disjoint compact subsets of ℝn 
such that they can not be separated strictly by a polynomial in V. Let

There exists a continuous function f ∶ ℝ
n
→ ℝ such that for any compact X ∈ ℝ

n 
with N,P ⊆ X , the optimal solution set Q to the relevant optimisation problem satis-
fies dimQ = dim S . Moreover, there exists q0 ∈ Q such that P(q0) = P , N(q0) = N.

Proof Let

where

Fix a compact set X ⊂ ℝ
n such that P ∪ N ⊆ X . First observe that q0(x, y) ≡ 0 is 

an optimal solution to the Chebyshev approximation problem: the deviation f − q0 
coincides with the function f, and we have for all x ∈ X

likewise

Moreover, for x ∈ P we have f (x) = 1 , for x ∈ N we have f (x) = −1 , and it follows 
from (8) and (9) that for x ∉ P ∩ U we have −1 < f (x) < 1 , hence, N = N(q0) and 
P = P(q0) , so q0 satisfies the very last statement of the lemma. We have assumed 
that N and P can not be strictly separated by a polynomial in V, hence we deduce 
that q0 ≡ 0 is a best Chebyshev approximation of f on X.

We will next show that for any direction p ∈ S such that p(N) ≤ 0 and p(P) ≥ 0 
there exists a sufficiently small 𝛼 > 0 such that �p is another best Chebyshev approx-
imation of f on X. Note that this guarantees that for any set of linearly independent 

S = {s ∈ V | s(x) ⋅ s(y) ≤ 0∀x ∈ P, y ∈ N}.

f (x)∶=max
u∈P

�u(x) −max
v∈N

�v(x),

�u(x) = max
�
1 −

2

d
‖x − u‖, 0

�
, d = min

u ∈ P

v ∈ N

‖u − v‖.

(8)

f (x) = max
u∈P

�u(x) −max
v∈N

�v(x)

≤ max
u∈P

�u(x)

= max
u∈P

max
�
1 −

2

d
‖x − u‖, 0

�

≤ max
u∈P

max
�
1 −

2

d
min
u∈P

‖x − u‖, 0
�

= max
�
1 −

2

d
min
u∈P

‖x − u‖, 0
�

= 1 −
2

d
min

�
min
u∈P

‖x − u‖, d
2

�
≤ 1;

(9)f (x) ≥ −1 +
2

d
min

�
min
v∈N

‖x − v‖, d
2

�
≥ −1 ∀x ∈ X.
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vectors in S we can produce a simplex with vertices at zero and at nonzero vectors 
along these linearly independent vectors. This yields dimQ = dim S.

Since p ∈ S is a polynomial, and the set X is compact, p is Lipschitz on X with 
some constant L, and its absolute value is bounded by some M > 0 on X. Let 
�∶=min

{
1
M,

2

dL

}
 , then for q = �p we have

From q(N) ≤ 0 and p(P) ≥ 0 we have for all x ∈ X

Hence,

We hence have for every x ∈ X

therefore q is a best Chebyshev approximation of f on X.   ◻

3.5  Uniqueness and the domain geometry

Finally, we turn our attention to the relation between the uniqueness of best Che-
byshev approximation and the geometry of the domain. We show that on finite 
domains the best approximation is nonunique whenever the dimension of S allows 
for this (that is, dim S > 0 ).

Lemma 3 If X ⊂ ℝ
n is finite, then for any f ∶ X → ℝ we have dimQ = dim S.

Proof If dim S = 0 , the result follows directly from Corollary 3. For the rest of the 
proof, assume dim S > 0.

Let q ∈ riQ , s ∈ S . Then

Let

Without loss of generality, assume that s(x) ≥ 0 for x ∈ P and s(x) ≤ 0 for x ∈ N  
(otherwise consider −s).

�q(x)� = ��p(x)� ≤ � ⋅M ≤ 1 ∀x ∈ X,

�q(x) − q(y)� = ��p(x) − �p(y)� = ��p(x) − p(y)� ≤ �L‖x − y‖ ≤
2

d
‖x − y‖ ∀x, y ∈ X;

q(y) −
2

d
‖x − y‖ ≤ q(x) ≤ q(y) +

2

d
‖x − y‖ ∀x, y ∈ X;

2

d
min
y∈P

‖x − y‖ ≤ max
y∈P

�
q(y) −

2

d
‖x − y‖

�
≤ q(x) ≤ min

y∈N

�
q(y) +

2

d
‖x − y‖

�
≤

2

d
min
y∈N

‖x − y‖.

max

�
2

d
min
y∈P

‖x − y‖,−1
�

≤ q(x) ≤ min

�
2

d
min
y∈N

‖x − y‖, 1
�
.

−1 ≤ f (x) − q(x) ≤ 1,

s(x) ⋅ s(y) ≤ 0∀x ∈ P, y ∈ N.

qt∶=q + ts.
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Let

where we use the standard convention that the maximum over an empty set equals 
−∞ , so � = +∞ in the case when X = N ∪ P . Since X is finite, 𝛼 > 0.

Let

We have for all t ≥ 0 and x ∈ N

for t ≥ 0 and x ∈ P

So, whenever t� ≤ ‖f − q‖∞ , we find that for x ∈ N ∪ P,

For x ∈ X ⧵ (N∪P) and all t ≥ 0

Note that � = +∞ only for the case when X = N∪P.
Therefore, for t such that t� ≤ min{�, ‖f − q‖∞} we have

and hence qt ∈ Q for some positive t.
It remains to pick a maximal linearly independent system {s1, s2,… , sd} ⊂ S , and 

observe that the convex hull co{q, q + t1s1,… , q + tdsd} ⊆ Q for some nonzero 
t1,… , td . Therefore, dimQ ≥ dim S . By Lemma 1 the converse is true, and we are done.  
 ◻

It follows from the previous lemma that the uniqueness of solutions depends 
not only on the function itself, but also on the domain of its definition. In particu-
lar, it may happen that a function defined on a continuous domain has a unique 
best approximation, but a discretisation of this domain would lead to nonunique-
ness of best approximation. This observation is crucial, since most numeri-
cal methods work on finite grids rather than with continuous functions directly. 
Therefore, they do require a certain level of discretisation. In this case there is a 
potential danger of finding an optimal solution to the discretised problem, while it 
is not relevant to the original one.

�∶=‖f − q‖∞ − max
x∈X⧵(N∪P)

�f (x) − q(x)�,

�∶=max
x∈X

|s(x)|.

‖f − q‖∞ = q(x) − f (x) ≥ q(x) − f (x) + ts(x) ≥ q(x) − f (x) − t� = ‖f − q‖∞ − t�;

‖f − q‖∞ = f (x) − q(x) ≥ f (x) − q(x) − ts(x) ≥ f (x) − q(x) − t� = ‖f − q‖∞ − t�;

�f (x) − qt(x)� ≤ ‖f − q‖∞.

�f (x) − qt(x)� ≤ �f (x) − q(x)� + t�s(x)� ≤ ‖f − q‖∞ − � + t�.

‖qt − f‖∞ ≤ ‖f − q‖∞,
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4  Conclusions

We have identified and discussed in detail key structural properties pertaining to 
the solution set of the multivariate Chebyshev approximation problem. We have 
clarified the relations between the points of maximal and minimal deviation for 
different optimal solutions, related the set of optimal solutions to the set of sepa-
rating polynomials, and elucidated the relations between the geometry of the 
domain and smoothness of the function and uniqueness of the solutions.

However many questions remain unanswered, some of them pertinent to the 
potential algorithmic solutions, and more remains to be done to fully understand 
the relation between the uniqueness of the solutions and structure of the problem. 
Namely, the following questions are of paramount importance. 

1. Can we refine Mairhuber’s theorem for the case of multivariate Chebyshev 
approximation by polynomials of degree at most d? Example 2 indicates that to 
have a unique approximation of any continuous function on a given domain by a 
system of multivariate polynomials, it may not be enough to restrict the domain 
to a set homeomorphic to a subset of a circle. Perhaps a more algebraic condition 
would work, for instance, restricting the domain to sets with one-dimensional 
Zariski closure.

2. What are the sufficient conditions for the uniqueness of the best Chebyshev 
approximation in terms of the function f only? Can we guarantee that for a 
given set of points of maximal and minimal deviation there exists a domain X 
that contains them and a function f for which an optimal solution is unique and 
has specifically this distribution of points of minimal and maximal deviation?

3. Can we bridge the gap between Lemmas 1 and 3 and show that given a distri-
bution of points of minimal and maximal deviation, for any d ∈ {0,… , dim S} 
there exists a function f and domain X with dimQ = d ? This question is closely 
related to our discussion at the end of Example 4, where smoothness appears to be 
important only with relation to the orthogonal direction to the varieties separating 
the points of maximal and minimal deviation.

Appendix

Technical computations for example 2

Consider the polynomial q�(x, y) = 3�(x2 + y2 − 1) + 1 , � ∈ [0, 1] , of 
which the polynomials q0 and q1 are special cases. Explicitly our deviation 
d�(x, y) = f (x, y) − q�(x, y) has the form

The points of maximal and minimal deviation are the global extrema of d� on the 
unit disk. To obtain all such extrema, we first find the global minima and maxima of 
d� on the boundary of the disk, using the method of Lagrange multipliers, and then 
study the behaviour of d� on the interior of the disk.

d�(x, y) = x6 + y6 + 3x4y2 + 3x2y4 + 6xy2 − 2x3 − 1 − 3�(x2 + y2 − 1).
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Our Lagrangian function is L�(x, y, �) = d�(x, y) + 6�(x2 + y2 − 1) (where we 
have multiplied the constraint by 6 for convenience), and the necessary condition 
for the constrained global stationary points on the unit circle is

Multiplying the first line by y, and the second line by x, and subtracting, we obtain 
the consequence of the first two equations in the Lagrangian system: y(y2 − 3x2) = 0 . 
Together with the constraint x2 = 1 − y2 this yields six candidates for the stationary 
points on the boundary,

It is not difficult to check that

Note that these values do not depend on �.
It remains to study the behaviour of the deviation d� on the interior of the disk. If 

d� attains a global minimum or maximum in an interior point of the disk, then such 
extrema must satisfy the unconstrained optimality condition ∇d�(x, y) = 02 . We have 
explicitly

As before, premultiplying the equations by y and x and subtracting, we conclude that 
any stationary point must satisfy the equality y(y2 − 3x2) = 0 . Hence any maximum 
or minimum must lie on one of the lines

Observe that both our polynomial and the constraint are symmetric with respect to 
the rotation of the plane by 2�∕3 , the restrictions of the polynomial d� to each of 
those lines are identical (under the relevant rotations), hence it is sufficient for us to 
study the behaviour of the restriction of d� to the open line segment (−1, 1) × {0} . 
For convenience, we let

Observe that

∇L�(x, y, �) = 6

⎡
⎢⎢⎣

(y2 − x2) + x[(x2 + y2)2 − � + 2�]

2xy + y[(x2 + y2)2 − � + 2�]

x2 + y2 − 1

⎤
⎥⎥⎦
= 03.

z1 =(1, 0), z2 =

�
1

2
,

√
3

2

�
, z3 =

�
−
1

2
,

√
3

2

�
,

z4 =(−1, 0), z5 =

�
−
1

2
,−

√
3

2

�
, z6 =

�
1

2
,−

√
3

2

�
.

d�(z1) = d�(z3) = d�(z5) = −2, d�(z2) = d�(z4) = d�(z6) = 2.

∇d�(x, y) = 6

[
(y2 − x2) + x[(x2 + y2)2 − �]

2xy + y[(x2 + y2)2 − �]

]
= 02.

y = 0, y = −
√
3x, y =

√
3x.

��(x)∶=d�(x, y) = x6 − 2x3 − 1 − 3�(x2 − 1).
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hence ��(x) is strictly decreasing on (0, 1), and can only have minima or maxima on 
the endpoints of [0, 1]. For the open line segment (−1, 0) and � ∈ [0, 1] we have

likewise

Since �(1) = −2 , and �(1) = 2 , this means that no global minimum or maximum 
can be achieved on (−1, 1) . We are hence left with the only candidate x = 0 , for 
which we have

and �1(0) = −2 . This yields the distribution of points of minimal and maximal devi-
ation of f from q0 and q1 as described in Example 2.

Computations for example 4

To find the points of maximal and minimal deviation of f (x, y) = (x2 −
1

2
)(1 − y2) 

from the constant polynomial q0(x, y) ≡ 0 on the square [−1, 1] × [−1, 1] , observe 
that the optimality condition on the interior of the square gives

and out of the five solutions to ∇f (x, y) = 0

only (0,  0) is in the interior of the square. Hence we have only one sta-
tionary point (0,  0) within the interior of the square, with deviation 
d0(0, 0) = f (0, 0) − q0(0, 0) = f (0, 0) = −

1

2
.

We now study the boundary of the square: restricting to x = ±1 , and y ∈ [−1, 1] , 
we have the function 1

2
(1 − y2) , which attains minima at the endpoints of the sides of 

the square, at (±1,±1) with deviation d0(±1,±1) = 0 , and maxima at (±1, 0) , with 
the value d0(±1, 0) = f (±1, 0) =

1

2
 . For y = ±1 the function is identically zero. We 

conclude that the points of maximal and minimal deviation of f from zero, on the 
square X = [−1, 1] × [−1, 1] , are

𝜑�
𝛼
(x) = 6x5 − 6x2 − 6𝛼x = 6x(x(x3 − 1) − 1) < 0 ∀x ∈ (0, 1),

𝜑𝛼(x) = (x3 − 1)2 + 3𝛼(1 − x2) − 2 < 1 + 3 − 2 = 2 ∀x ∈ (−1, 0);

𝜑𝛼(x) = (x3 − 1)2 + 3𝛼(1 − x2) − 2 > 0 + 0 − 2 = −2 ∀x ∈ (−1, 0).

��(0) = −1 + 3� ∈ [−1, 2) for � ∈ [0, 1),

∇f (x, y) =

(
2x(1 − y2)

−y
(
x2 −

1

2

)
)

= 02,

(0, 0),

�
−

1√
2
,−1

�
,

�
1√
2
,−1

�
,

�
−

1√
2
, 1

�
,

�
1√
2
, 1

�

P(q) = {(0, 0)}, N(q) = {(−1, 0), (1, 0)}.
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We next study the deviation of the function h(x, y) = (x2 −
1

2
)(1 − |y|) from polyno-

mials q�(x, y) = �y for � ∈
[
−

1

2
,
1

2

]
 . First of all, observe that for y = 0 we have

and hence d�(x, 0) is minimal at (0, 0) with the value d�(0, 0) = −
1

2
 , and maximal at 

(±1, 0) with the value d�(±1, 0) =
1

2
 , independent on �.

For y > 0 we have d�(x, y) = h(x, y) − q�(x, y) = (x2 −
1

2
)(1 − y) − �y , hence the 

unconstrained optimality condition gives

and the only case when we have solutions in the intersection of the interior of the 
square and y > 0 is when � =

1

2
 ; likewise, ∇d�(x, y) = 0 gives no solutions in the 

interior of the square intersected with y < 0 except for � = −
1

2
 . In both cases we 

have

For the sides of the square that correspond to x = ±1 , and y ∈ [−1, 1] , we have a 
piecewise linear function

hence its behaviour is completely determined by the endpoints of the relevant seg-
ments: (±1,±1) , (±1, 0) . We have

For the remaining case of the interior of the sides, (−1, 1) × {±1} we have

Observe that for � = 0 the only points of maximal and minimal deviation lie on 
the line y = 0 , and hence the polynomial q0(x, y) = 0 is a best approximation of the 
function h on the square X. Also note that for |𝛼| > 1

2
 the relations (11) give worse 

values of minimal and maximal deviation, hence, q� can not be a best approximation 
for |𝛼| > 1

2
 . For |�| ∈ (0,

1

2
) we observe that there are no additional points of minimal 

and maximal deviation on top of the three alternating points on y = 0 that are pre-
sent for � = 0 . It remains to consider the values |�| = 1

2
.

d�(x, y) = h(x, y) − q�(x, y) = x2 −
1

2
,

∇d�(x, y) =

(
2x(1 − y)

−x2 +
1

2
− �

)
= 02,

d 1

2

(0, y) = −
1

2
(1 − y) −

1

2
y = −

1

2
, y > 0;

d− 1

2

(0, y) = −
1

2
(1 + y) +

1

2
y = −

1

2
, y < 0.

d𝛼(±1, y) =
1

2
(1 − |y|) − 𝛼y =

{
1

2
− (𝛼 +

1

2
)y, y ≥ 0,

1

2
− (𝛼 −

1

2
)y, y < 0,

(10)d�(±1,−1) = �; d�(±1, 1) = −�; d�(±1, 0) =
1

2
.

(11)d�(x,−1) = �; d�(x, 1) = −�.
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For � = −
1

2
 we have from (10) and the piecewise linear observation

and (11) gives

Likewise, for � =
1

2
 we obtain
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