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Abstract
We generalize a primal-dual interior-point algorithm (IPA) proposed recently in 
(Illés T, Rigó PR, Török R Unified approach of primal-dual interior-point algo-
rithms for a new class of AET functions, 2022) to P∗(�)-horizontal linear comple-
mentarity problems (LCPs) over Cartesian product of symmetric cones. The algo-
rithm is based on the algebraic equivalent transformation (AET) technique with a 
new class of AET functions. The new class is a modification of the class of AET 
functions proposed in (Illés T, Rigó PR, Török R Unified approach of primal-dual 
interior-point algorithms for a new class of AET functions, 2022) where only two 
conditions are used as opposed to three used in (Illés T, Rigó PR, Török R Unified 
approach of primal-dual interior-point algorithms for a new class of AET functions, 
2022). Furthermore, the algorithm is a feasible algorithm that uses full Nesterov-
Todd steps, hence, no calculation of step-size is necessary. Nevertheless, we prove 
that the proposed IPA has the iteration bound that matches the best known iteration 
bound for IPAs solving these types of problems.
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1  Introduction

Interior-point algorithms (IPAs) provide an efficient tool for solving differ-
ent optimization problems. Important references related to IPAs for solving lin-
ear programming (LP) problems are the monographs of Roos, Terlaky and Vial 
[30], Wright [36] and Ye [37]. IPAs have been also extended to LCPs, see [9, 10, 
15–17, 20, 21]. Note that LCPs belong to the class of NP-complete problems [7]. 
In spite of this fact, Kojima et al. [21] showed that if the problem’s matrix pos-
sesses the P∗(�)-property, then IPAs for LCPs have polynomial iteration complex-
ity in the size of the problem, bit length of the data and in the parameter � . IPAs 
have been generalized to Cartesian symmetric cone linear complementarity prob-
lems (SCLCPs) in [23, 24] and Cartesian symmetric cone horizontal linear com-
plementarity problems (SCHLCPs) in [4]. Anitescu et al. [1] showed the equiva-
lence between different formulations of the LCPs. It should be mentioned that 
LP, convex quadratic optimization (CQO), LCPs, second-order cone optimization 
(SOCO), symmetric cone optimization (SCO) and semidefinite programming 
(SDP) problems can be formulated as special cases of SCHLCP. Mohammadi 
et al. [25] proposed an infeasible IPA taking full NT steps for solving SCHLCPs. 
In [3], the authors presented an IPA for solving Cartesian SCHLCP which uses 
the search directions proposed in [8]. Later on, Asadi et al. [2] proposed a new 
IPA for solving Cartesian SCHLCP which is based on a positive-asymptotic 
barrier function. In [5], a feasible IPA for solving P∗(�)-SCHLCP using a wide 
neighbourhood of the central path was proposed.

The way we determine the search directions plays a crucial role in this paper. 
Note that there exist several approaches for defining search directions in case of 
IPAs. Peng et al. [27] introduced large-update IPAs for LP by using self-regular 
barriers. In [22], the authors provided a unified analysis of kernel-based IPAs for 
P∗(�)-LCPs. Vieira [34] also proposed different IPAs for SCO problems that use 
kernel functions for determining search directions. Tunçel and Todd [33] gave a 
reparametrization of the central path system. Karimi et al. [19] dealt with entropy-
based search directions for LP. Subsequently, Darvay introduced a new technique 
for determining search directions for LP problems [8]. This method has become 
known as algebraic equivalent transformation (AET) technique. In [28], different 
IPAs for LP, SCO and P∗(�)-LCPs using the AET technique have been proposed. 
Haddou et al. [14] proposed a class of concave functions in the AET technique to 
define IPAs for solving monotone LCPs. However, they used other type of trans-
formation of the central path system. In 2022, Illés et al. [18] introduced a new 
class of AET functions and they defined IPAs for P∗(�)-LCPs. It needs to be men-
tioned that this new class differs from the class of concave functions proposed by 
Haddou et al. Moreover, there exist functions belonging to the new class of AET 
functions proposed by Illés et al. [18], for which the corresponding kernel func-
tions are neither eligible, nor self-regular kernel functions.

The aim of this paper is to generalize the algorithms presented in [18] to Car-
tesian SCHLCP possessing the P∗(�)-property. In addition, we propose a modi-
fication of the class of AET functions proposed in [18]. We also present the 
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complexity analysis of the proposed IPA and we provide some technical lemmas 
that will be useful in the analysis. In [18], the authors gave a relationship between 
the parameters appearing in the definition of the class of AET functions in order 
to prove that the IPA is well defined. In this paper we prove that the IPA is well 
defined without any relationship between the parameters. Hence, we provide a 
wider class of AET functions. We prove that the derived iteration bound matches 
the best known iteration bounds for IPAs solving these types of problems.

The paper is organized in the following way. Section 2 contains the description of 
the Cartesian P∗(�)-SCHLCP. In Sect. 3 we present the class of AET functions used 
in this paper and we give the generalization of the AET technique to Cartesian P∗(�)

-SCHLCP. In Sect.  4 the new IPA is defined for Cartesian P∗(�)-SCHLCPs. Sec-
tion 5 is devoted to the complexity analysis of the proposed IPA. In Sect. 6 we list 
several concluding remarks and the possible related future research topics. Appen-
dix contains several results from the theory of Euclidean Jordan algebras and sym-
metric cones relevant for the analysis of the proposed IPA.

2 � Cartesian P∗(�)‑symmetric cone horizontal linear complementarity 
problem and the central path

In the Appendix we provide a more detailed presentation of the theory of Euclid-
ean Jordan algebras and symmetric cones. We denote by V ∶= V1 × V2 ×⋯ × Vm 
the Cartesian product space, where each space Vi is a Euclidean Jordan algebra. The 
corresponding cone of squares is denoted by K ∶= K1 ×K2 ×⋯ ×Km , where each 
Ki is the corresponding cone of squares of Vi . Let x =

(
x(1), x(2), ⋯ , x(m)

)T
∈ V and 

s =
(
s(1), s(2), ⋯ , s(m)

)T
∈ V . The trace, the determinant and the minimal and maxi-

mal eigenvalues of the element x are given as

Furthermore,

The Lyapunov transformation and the quadratic representation of x is defined in the 
following way:

The Frobenius norm of x is given as ‖x‖F =

�∑m

i=1
��x(i)��

2

F

�1∕2

.

tr(x) =

m∑

i=1

tr
(
x(i)

)
, det(x) =

m∏

i=1

det
(
x(i)

)
,

�min(x) = min
1≤i≤m

{
�min

(
x(i)

)}
, �max(x) = max

1≤i≤m

{
�max

(
x(i)

)}
.

x◦s =
�
x(1)◦s(1), x(2)◦s(2), ⋯ , x(m)◦s(m)

�T
, ⟨x, s⟩ =

m�

i=1

⟨x(i), s(i)⟩.

L(x) = diag
(
L(x(1)), L(x(2)), ⋯ , L

(
x(m)

))
,

P(x) = diag
(
P(x(1)), P(x(2)), ⋯ , P

(
x(m)

))
.



618	 Z. Darvay, P. R. Rigó 

1 3

In the Cartesian SCHLCP a vector pair (x, s) ∈ V × V should be found which 
satisfies

where q ∈ V , Q,R ∶ V → V are linear operators and K is the symmetric cone of 
squares of the Cartesian product space V . Let � ≥ 0 . We say that the pair (Q, R) pos-
sesses the P∗(�)-property if for all (x, s) ∈ V × V

where I+ = {i ∶ ⟨x(i), s(i)⟩ > 0} and I− = {i ∶ ⟨x(i), s(i)⟩ < 0}.
In developing our IPA we assume that the pair (Q, R) possesses the P∗(�)-prop-

erty and the interior-point condition (IPC) holds, which means that there exists 
(x0, s0) , such that

The central path system is characterized by

where 𝜇 > 0 . It has been shown that if the pair (Q, R) possesses the P∗(�)-property 
and the (IPC) holds, then system (1) has unique solution, for each 𝜇 > 0 , see [4] and 
[24].

For the strictly feasible x ∈ intK and s ∈ intK our aim is to find the search direc-
tions (Δx,Δs) such that

where 𝜇 > 0 . Note that system (2) does not necessarily have a unique solution, 
because in general, x and s do not operator commute. Hence, a scaling scheme is 
needed in order to fix this problem. In this paper, we deal with the Monteiro-Zhang 
[26] class of scaling schemes:

Faybusovich [13] generalized this to the symmetric cones case and Alizadeh and 
Schmieta further analysed this question [31]. The following lemma plays important 
role in the determination of the search directions.

Lemma 1  (Lemma 28 in [31]) Let u ∈ intK. Then,

Qx + Rs = q, ⟨x, s⟩ = 0, x ⪰K 0, s ⪰K 0, (SCLCP)

Qx + Rs = 0 implies (1 + 4�)
�

i∈I+

⟨x(i), s(i)⟩ +
�

i∈I−

⟨x(i), s(i)⟩ ≥ 0,

Qx0 + Rs0 = q,

x0 ≻K 0, s0 ≻K 0. (IPC)

(1)
Qx + Rs =q, x ⪰K 0,

x◦s =�e, s ⪰K 0,

(2)
QΔx + RΔs =0,

x◦Δs + s◦Δx =�e − x◦s,

C(x, s) =
{
u|u is invertible and L(P(u)x)L(P(u)−1s) = L(P(u)−1s)L(P(u)x)

}
.

x◦s = �e ⇔ P(u)x◦P(u)−1s = �e.
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Let u ∈ C(x, s) , Q̃ = QP(u)−1 , R̃ = RP(u) . In the paper we consider the NT-scal-
ing scheme. Let u = w

−
1

2 , where w is called the NT-scaling point of x and s:

By using Lemma 1, system (1) can be written as

System (4) has unique solution for each 𝜇 > 0 , if the (IPC) holds, see [4] and [24].

3 � New class of AET functions for Cartesian P∗(�)‑SCHLCPs

In this section the generalization of the AET technique derived in [8] to P∗(�)

-SCHLCP is presented by using techniques and results in [2, 29]. Below we define 
a new class of AET functions that is a modification of the class of AET functions 
proposed in Definition 2.4 of [18]. The main difference is that only two conditions 
are used instead of three as it is the case in [18]. Furthermore, in [18], a relationship 
between the parameters appearing in the definition of the class of AET functions 
was given in order to prove that the IPA is well defined. In this paper we prove that 
the IPA is well defined without any relationship between the parameters.

Definition 1  Let � ∶ (�,∞) → ℝ be a continuously differentiable, invertible func-
tion, such that 𝜑�(t) > 0, ∀t > 𝜉 , where 0 ≤ 𝜉 < 1 . All functions � satisfying the fol-
lowing two conditions belong to the new class of AET functions. There exist two 
positive real numbers L1 > 0 and L2 > 0 , such that the inequalities

and

hold for all t > 𝜉.

Corollary 1  If condition (AET2) is satisfied, then there exists L3 > 0 , such that

for all t > 𝜉.

(3)w = P(x)
1

2

(
P(x)

1

2 s
)−

1

2

= P(s)
−

1

2

(
P(s)

1

2 x
) 1

2

.

(4)
Q̃P(u)x + R̃P(u)−1s =q, P(u)x ⪰K 0,

P(u)x◦P(u)−1s =�e, P(u)−1s ⪰K 0.

|||||

�(1) − �(t2)

2t��(t2)

|||||
≤ L1

|||1 − t2
|||, (AET1)

4t2(�(1) − �(t2))��(t2) − L2
(
�(1) − �(t2)

)2
≤ 4t2(1 − t2)

(
�
�(t2)

)2

≤ 4t2(�(1) − �(t2))��(t2) +
(
�(1) − �(t2)

)2
(AET2)

|||4t
2
�
�(t2)

(
(1 − t2)��(t2) − �(1) + �(t2)

)||| ≤ L3
(
�(1) − �(t2)

)2
, (AET2b)
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Proof  Suppose that (AET2) holds and let L3 = max{1,L2} . Then, the inequality 
(AET2b) is also satisfied. 	�  ◻

Consider the continuously differentiable function � ∶ (�,∞) → ℝ satisfying 
(AET1) and (AET2). Let x =

∑r

i=1
�i(x)ci , where {c1,… , cr} is the corresponding Jor-

dan frame. We define the function � for the elements of the Euclidean Jordan algebra in 
the following way

In this way, (4) can be written as follows:

To determine the search directions we use the method given in [29, 35]. For the 
strictly feasible x ∈ intK and s ∈ intK our aim is to find the search directions 
(Δx,Δs) that satisfy the system

where

and � belongs to the class given in Definition 1.
We use the following notations:

where w is the NT-scaling point defined in (3). From (8) we obtain the scaled system

where

If we define the function f ∶ (�,∞) → ℝ

(5)�(x) ∶= �(�1(x))c1 +…+ �(�r(x))cr.

(6)
Q̃P(u)x + R̃P(u)−1s =q, P(u)x ⪰K 0,

�

(
P(u)x◦P(u)−1s

�

)
=�(e), P(u)−1s ⪰K 0.

(7)
Q̃P(u)Δx + R̃P(u)−1Δs =0, P(u)x ⪰K 0,

P(u)x◦P(u)−1Δs + P(u)−1s◦P(u)Δx =a
�
, P(u)−1s ⪰K 0,

a
�
= �

(
�
�

(
P(u)x◦P(u)−1s

�

)−1
)
◦

(
�(e) − �

(
P(u)x◦P(u)−1s

�

))
,

(8)v ∶=
P(w)

−
1

2 x
√
�

=
P(w)

1

2 s
√
�

, dx ∶=
P(w)

−
1

2Δx
√
�

, ds ∶=
P(w)

1

2Δs
√
�

,

(9)
√
�QP(w)

1

2 dx +
√
�RP(w)

−
1

2 ds =0,

dx + ds =pv,

(10)pv = v−1◦(��(v◦v))−1◦(�(e) − �(v◦v)).
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then the conditions presented in Definition 1 can be written in the following form.

Proposition 1  The conditions (AET1) and (AET2) can be formulated in the follow-
ing equivalent form. There exist L1 > 0 and L2 > 0 such that the inequalities

hold for all t > 𝜉.

Corollary 2  If condition (AETb) is satisfied, then there exists L3 > 0 such that

holds for all t > 𝜉.

Proof  Suppose that (AETb) holds and let L3 = max{1,L2} . Then the inequality 
(AETb2) is also satisfied. 	�  ◻

It needs to be mentioned that most of the functions used in the literature belong 
to the new class of AET functions, in particular the AET functions used in [8, 
11, 20]. The intervals on which the functions � are defined are important in this 
approach. For example, �(t) = t belongs to this new class of AET functions only 
if it is defined on a (�,∞) interval, where � is strictly positive.

Now, we present the class of AET functions proposed in [18] for determining 
search directions in case of IPAs for solving P∗(�)-LCPs.

Definition 2  (Definition 2.4 in [18]) Let � ∶ (�,∞) → ℝ be a continuously differ-
entiable, invertible function, such that 𝜑�(t) > 0, ∀t > 𝜉 , where 0 ≤ 𝜉 < 1 . All func-
tions � satisfying the conditions 

	AETi.	 ∃ c̄1 > 0 , such that 

 for all t > 𝜉.
	AETii.	 ∃ c̄2 > 0 , such that 

(11)f (t) =
�(1) − �(t2)

t(��(t2))
,

|f (t)| ≤ 2L1
|||1 − t2

|||, (AETa)

−L2
f (t)2

4
≤ 1 − t2 − tf (t) ≤

f (t)2

4
, (AETb)

|1 − t2 − tf (t)| ≤ L3
f (t)2

4
(AETb2)

|||||

𝜑(1) − 𝜑(t2)

2t(1 − t2)𝜑�(t2)

|||||
≤ c̄1,
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 for all t > 𝜉.
	AETiii.	 ∃ c̄3 > 0 such that the inequality 

 holds for all t > 𝜉,
belong to the class of AET functions.

It can be seen that Definition 1 is a modification of Definition 2.4 in [18].

Remark 1  Note that parameter L1 from Definition 1 corresponds to c̄1 from Defini-
tion 2. Furthermore, L2 corresponds to c̄3 from Definition 2 and L3 from Corollary 1 
corresponds to c̄2 from Definition 2. Hence, in this paper we modify the conditions 
proposed in [18] in the sense that we delete condition (AETii) from Definition 2 and 
we prove that it holds in Corollary 1.

Remark 2  In [18] the complexity analysis of the proposed IPA is presented for 
c̄2 >

1

2
 , c̄1 <

100c̄2−4

41c̄2+50
 and c̄3 < 16c̄2

2
− 1 . In this paper we generalize the primal-dual 

IPA proposed in [18] to P∗(�)-horizontal LCPs over Cartesian product of symmetric 
cones. However, we prove that the IPA is well defined without any relationship 
between the parameters. Hence, we provide a wider class of functions in the sense, 
that the complexity analysis of the IPA in this paper works for a wider class of 
parameters.

Example 1  If we take �(t) = t , then due to condition c̄1 <
100c̄2−4

41c̄2+50
 given in [18], the 

function �(t) = t defined on (�,∞) , where 𝜉 > 0.205 belongs to the class of AET 
function proposed in Definition 2. This follows from condition (AETi) of Definition 
2, where � can be chosen as 𝜉 =

1

2c̄1
>

41

200
= 0.205 . However, in this paper we do not 

have any relationship between the parameters, hence �(t) = t defined on (�,∞) , 
where 𝜉 > 0 belongs to the class of AET functions given in Definition 1. Therefore, 
we consider a wider class of functions than the one used in [18].

The class of AET functions can be compared to the class of eligible kernel 
functions and self-regular functions, see [6, 27]. Lešaja et  al. [23] presented 
IPAs for P∗(�)-LCPs over symmetric cones based on eligible kernel functions. A 
detailed description about the comparison of the class of AET functions given in 
Definition 1 to the class of eligible kernel and self-regular functions is provided 
in [18].

|||||

4t2𝜑�(t2)
[
(1 − t2)𝜑�(t2) − 𝜑(1) + 𝜑(t2)

]

(𝜑(1) − 𝜑(t2))2

|||||
≤ c̄2,

4t2(𝜑(1) − 𝜑(t2))𝜑�(t2) − c̄3
(
𝜑(1) − 𝜑(t2)

)2
≤ 4t2(1 − t2)

(
𝜑
�(t2)

)2

≤4t2(𝜑(1) − 𝜑(t2))𝜑�(t2) +
(
𝜑(1) − 𝜑(t2)

)2
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4 � Interior‑point algorithm for solving Cartesian P∗(�)‑SCHLCPs

In this section, we present a generic IPA based on the new class of AET functions 
given in Definition 1. The proximity measure to the central path is defined as

The �-neighbourhood of a fixed point on the central path is given by

where 𝜇 > 0 is fixed and � is a threshold parameter.
We determine the search directions using system (9) with functions � satisfying 

(AET1) and (AET2).
We can calculate the search directions Δx and Δs from

Let x+ = x + Δx and s+ = s + Δs be the point after a full NT-step.
Our IPA starts with (x0, s0) ∈ N(�,�).
In Algorithm 4.1 we present a generic IPA for solving Cartesian P∗(�)-SCHLCP 

based on the new class of AET functions given in Definition 1.

The next section is devoted to the complexity analysis of the proposed IPA.

5 � Analysis of Algorithm 4.1

In the first part of this section we provide technical lemmas that are necessary for 
the analysis of the IPA. Let

(12)�(v) = �(x, s;�) ∶=
‖pv‖F
2

.

N(�,�) ∶= {(x, s) ∈ V × V ∶ Qx + Rs = q, x ⪰K 0, s ⪰K 0 ∶ �(x, s;�) ≤ �},

(13)Δx =
√
�P(w)

1

2 dx, Δs =
√
�P(w)

−
1

2 ds.
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hence

In Lemma 2 we get an upper bound for ‖‖qv‖‖F in terms of ‖‖pv‖‖F.

Lemma 2  (Lemma 5.1 in [2])We have ��qv��F ≤

√
1 + 4� ��pv��F.

Let x, s ∈ int K , 𝜇 > 0 and w be the scaling point of x and s. Consider

where 0 ≤ � ≤ 1. We have

Note that x+, s+ ∈ int K if and only if v + dx, v + ds ∈ int K . This follows from the 
fact that P(w)1∕2 and P(w)−1∕2 are automorphisms of int K , see Proposition 2 part 
(ii) from Appendix. Using (17) we have

The next lemma is a technical one which will be used when we prove the strict feasi-
bility of the full-NT step.

Lemma 3  [cf. Lemma 4.1 of [35]] Let x = x(0) ∈ int K , s = s(0) ∈ int K and for 
0 ≤ 𝛼 ≤ 𝛼̄ , x(�)◦s(�) ∈ int K . Then, we have x(𝛼̄) ∈ int K and s(𝛼̄) ∈ int K.

In the following lemma the strict feasibility of the full NT-step is proven.

Lemma 4  Let x ≻K 0 , s ≻K 0 and 𝛿 ∶= 𝛿(x, s;𝜇) <
1√
1+4𝜅

 and suppose that 
𝜆min(v) > 𝜉 . For any function satisfying (AET2), after a full-NT step we have 
x+ ≻K 0 and s+ ≻K 0.

Proof  For 0 ≤ � ≤ 1 , let

From the second equation of the system (9), we get

(14)qv = dx − ds,

(15)dx =
pv + qv

2
, ds =

pv − qv

2
, dx◦ds =

p2
v
− q2

v

4
.

(16)x(�) = x + �Δx, s(�) = s + �Δs,

(17)
x+ ∶= x(1) = x + Δx =

√
�P(w)1∕2(v + dx),

s+ ∶= s(1) = s + Δs =
√
�P(w)−1∕2(v + ds).

(18)x+◦s+ = �(v + dx)◦(v + ds).

vx(�) ∶= v + �dx and vs(�) ∶= v + �ds.
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The right hand side of (AET2) of Proposition 1 yields v2 + v◦pv − e +
p2
v

4
∈ K . 

Using Lemma 2 we have:

Using (20) and the assumption 𝛿 <
1√
1+4𝜅

 we obtain

Lemma 12 from Appendix implies

We know that (1 − �)v2 ∈ int K for 0 ≤ 𝛼 < 1 . Using (19) we get that 
vx(�)◦vs(�) ∈ int K , for � ∈ [0, 1] . If we substitute � = 1 in Lemma 3, we obtain 
v + dx ∈ int K and v + ds ∈ int K . Using (17) and Proposition 2, part (ii) from 
Appendix, the proof of the lemma follows. 	�  ◻

The following lemma will be used later in the complexity analysis of the IPA.

Lemma 5  Let f̄ ∶ (d̄,+∞) → ℝ+ be a function, where d̄ > 0 and |f̄ (t)| ≤ k̄||1 − t2|| , 
for t > d̄ and k̄ > 0 . Assume that v ∈ V . Then,

Proof  Using Theorem  2 from Appendix, we assume that v =
∑r

i=1
�i(v)ci . Then, 

f̄ (v) =
∑r

i=1
f̄ (𝜆i(v))ci and we have

(19)

vx(�)◦vs(�) = v2 + �v◦(dx + ds) + �
2(dx◦ds)

= (1 − �)v2 + �

(
v2 + v◦pv

)
+ �

2
p2
v
−q2

v

4

= (1 − �)v2 + �

(
v2 + v◦pv − e +

p2
v

4

)

+�

(
e − (1 − �)

p2
v

4
− �

q2
v

4

)
.

(20)

‖‖‖‖‖
(1 − �)

p2
v

4
+ �

q2
v

4

‖‖‖‖‖F
≤ (1 − �)

‖‖‖‖‖

p2
v

4

‖‖‖‖‖F
+ �

‖‖‖‖‖

q2
v

4

‖‖‖‖‖F
≤ (1 − �)

‖‖pv‖‖
2

F

4
+ �

‖‖qv‖‖
2

F

4

≤(1 − �)

‖‖pv‖‖
2

F

4
+ �(1 + 4�)

‖‖pv‖‖
2

F

4

= ((1 − �) + �(1 + 4�))�2 = (1 + 4��)�2

≤ (1 + 4�)�2.

‖‖‖‖‖
(1 − 𝛼)

p2
v

4
+ 𝛼

q2
v

4

‖‖‖‖‖F
< 1.

(21)e − (1 − �)
p2
v

4
− �

q2
v

4
∈ int K.

‖‖f̄ (v)‖‖F ≤ k̄
‖‖‖e − v2

‖‖‖F.
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which gives the result. 	�  ◻

Assume that x+ and s+ are the iterates after taking a full-NT step, and w+ is 
their corresponding NT scaling point. The v-vector after a ful-NT step is given by

Lemma 6 gives an upper bound for the proximity measure after a full-NT step.

Lemma 6  Let (x, s) ∈ F
+ , where F+ is the set of strictly feasible solutions and sup-

pose that 𝛿 ∶= 𝛿(x, s;𝜇) <

√
1−𝜉2

1+4𝜅
 and 𝜆min(v) > 𝜉 . For any function � satisfying 

(AET1) and (AET2), we show that after a full-NT step we have 𝜆min(v̄) > 𝜉 and

where L1 > 0 , L2 > 0 and L3 = max{1,L2}.

Proof  By using the proof of Lemma 5.6 in [2] and the right hand side of condition 
(AETb), we get

From this and 𝛿 <

√
1−𝜉2

1+4𝜅
 , we obtain 𝜆min(v̄) > 𝜉 . Using (12) we have

where the function f is given as in (5) using (11). Using (AETa) of Proposition 1 and 
Lemma 5 we get

Substituting � = 1 in (19), we get

From condition (AETb) of Proposition 1 we obtain that condition (AETb2) of Cor-
ollary 2 also holds. Using this, (25) and Lemmas 2 and 5 we get

‖‖f̄ (v)‖‖F =

√√√√
r∑

i=1

(
f̄ (𝜆i(v))

)2
≤ k̄

√√√√
r∑

i=1

(
𝜆i(e − v2)

)2
= k̄

‖‖‖e − v2
‖‖‖F,

(22)v̄ ∶=
P(w+)−1∕2x+

√
𝜇

�
=

P(w+)1∕2s+

√
𝜇

�
.

�(x+, s+;�) ≤ L1(L3 + 2 + 4�)�(x, s;�)2,

𝜆min(v̄) ≥
√
1 − (1 + 4𝜅)𝛿2.

(23)𝛿(x+, s+;𝜇) ∶=
‖pv̄‖F
2

=
‖f (v̄)‖F

2
,

(24)𝛿(x+, s+;𝜇) ≤ L1
‖‖‖e − v̄2

‖‖‖F.

(25)‖‖‖e − v̄2
‖‖‖F =

‖‖‖‖‖
e − v2 − v◦pv −

p2
v

4
+

q2
v

4

‖‖‖‖‖F
.
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From (24) and (26) we have

and the lemma is proven. 	�  ◻

Lemma 7  (Lemma 5.7 in [2]) Let dx and ds be the solutions of the system (9) with pv 
defined as in (10), and � ∶= �(x, s;�) . Then ⟨dx, ds⟩ ≤ �

2.

We provide an upper bound for the duality gap after a full-NT step.

Lemma 8  Let � = �(x, s;�) and x+ and s+ be obtained after a full NT-step. For any 
function � satisfying (AET2) of Definition 1 with L2 > 0 , we have

Proof  In the proof only the left hand side of (AETb) from Proposition 1 will be 
used, namely

where L2 > 0 . Using Corollary 2 we have that condition (AETb2) is also satisfied. 
Using this, (18), (19) and (27) we get

Using (28) and Lemma 7 we have

and the proof is complete. 	� ◻

The next lemma explains the effect of a �-update on the proximity of the new 
iterates to the central path.

Lemma 9  Suppose that 𝛿 ∶= 𝛿(x, s;𝜇) <

√
1−𝜉2

1+4𝜅
 , 𝜆min(v) > 𝜉 and �+ = (1 − �)� . Let 

v+ =
v̄√
1−𝜃

 be the scaled vector v after the full-NT step and the �-update. For any 
function � satisfying (AET1) and (AET2) with L1 > 0 , L2 > 0 , we have 𝜆min

(
v+
)
> 𝜉 

and

(26)
‖‖‖e − v̄2

‖‖‖F ≤
‖‖‖e − v2 − v◦pv

‖‖‖F +

‖‖‖‖‖

p2
v

4

‖‖‖‖‖F
+

‖‖‖‖‖

q2
v

4

‖‖‖‖‖F
≤(2 + L3 + 4𝜅)𝛿2.

�(x+, s+;�) ≤ L1(L3 + 2 + 4�)�(x, s;�)2,

⟨x+, s+⟩ ≤ �

�
r + (L2 + 1)�2

�
.

(27)tf (t) − L2
f (t)2

4
≤ 1 − t2, t > 𝜉,

(28)
1

�

x+◦s+ = v2 + v◦pv + dx◦ds ⪯K e +
L2

4
p2
v
+ dx◦ds.

(29)
⟨x+, s+⟩ = ⟨e, x+◦s+⟩ ≤ �⟨e, e +

L2

4
p2
v
+ dx◦ds⟩

≤ �

�
r + L2�

2 + ⟨dx, ds⟩
�
≤ �

�
r + (L2 + 1)�2

�
,
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where L3 = max{1,L2}.

Proof  Using Lemma 6 we have 𝜆min(v̄) > 𝜉 . From this and 0 < 𝜃 < 1 we obtain 
𝜆min

(
v+
)
> 𝜉 . From (12) we get

Using condition (AETa) of Proposition 1 and Lemma 5, we have

Using (18) and (19) we get

From (30), (31), condition (AETb) of Proposition 1 and Lemma 5 we obtain

and the lemma is proven. 	�  ◻

We will set the values of the parameters � and � and we show that for these val-
ues the IPA using the new class of AET functions is well defined.

Lemma 10  Assume that � ∶ (�,∞) → ℝ satisfies (AET1) and (AET2). Consider 
L4 = max{L1,

1

4
} , � =

√
1−�2

4L4(L3+2+4�)
 , � =

√
1−�2

16L2
4
(L3+2+4�)

√
r
 . Assume also that 

�(x, s;�) ≤ � . Then, we have

hence the IPA defined in Algorithm 4.1 is well defined.

�(x+, s+;�+) ≤
L1

1 − �

�
�

√
r + (L3 + 2 + 4�)�2

�
,

�(x+, s+;�+) =

‖‖‖f
(
v+
)‖‖‖F

2
.

(30)�(x+, s+;�+) ≤ L1
‖‖‖e −

(
v+
)
2‖‖‖F.

(31)

‖‖‖e − (v+)2
‖‖‖F =

‖‖‖‖
e −

x+◦s+

(1 − �)�

‖‖‖‖F

=

‖‖‖‖‖‖
e −

1

1 − �

(
v2 + v◦pv +

p2
v

4
−

q2
v

4

)‖‖‖‖‖‖F

=
1

1 − �

‖‖‖‖‖
−�e + e − v2 − v◦pv −

p2
v

4
+

q2
v

4

‖‖‖‖‖F
.

(32)
�(x+, s+;�+) ≤

L1

1 − �

�
‖�e‖F +

���e − v2 − v◦pv
���F +

�����

p2
v

4

�����F
+

�����

q2
v

4

�����F

�

≤
L1

1 − �

�
�

√
r + (L3 + 2 + 4�)�2

�
,

�(x+, s+;�+) ≤ �,
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Proof  By using � ≥ 0 , L4 = max{L1,
1

4
} and L3 = max{1,L2} , we have 

𝜏 =

√
1−𝜉2

4L4(L3+2+4𝜅)
<

1√
1+4𝜅

. Using this and the assumption conditions (AET1) and 
(AET2), from Lemma 4 we get that (x+, s+) ∈ F

+ , where F+ is the set of strictly fea-
sible solutions.

By using Lemma 9 and L1 ≤ L4 , we have

From � ≥ 0 , r ≥ 1 , L4 = max{L1,
1

4
} and L3 = max{1,L2} we conclude that 

� =

√
1−�2

16L2
4
(L3+2+4�)

√
r
≤

1

2
 and 1

1−�
≤ 2 . Using this and the values of � and � we have

Furthermore, from 1

1−�
≤ 2 and � =

√
1−�2

4L4(L3+2+4�)
 we obtain

From (33), (34) and (35) we obtain

proving the lemma 	�  ◻

The following lemma gives upper bound on the number of iterations.

Lemma 11  Assume that � ∶ (�,∞) → ℝ satisfies (AET1) and (AET2). Consider 
L4 = max{L1,

1

4
} , � =

√
1−�2

4L4(L3+2+4�)
 , L3 = max{L2, 1} and � =

√
1−�2

16L2
4
(L3+2+4�)

√
r
 . We 

assume that the pair (x0, s0) is strictly feasible, �0 =
⟨x0,s0⟩

r
 and �(x0, s0;�0) ≤ � . Let 

xk and sk be the k-th iteration of Algorithm 4.1. Then, for

we have ⟨xk, sk⟩ < 𝜀.

Proof  By using L3 = max{L2, 1} , � ≥ 0 , we have

From (37) and Lemma 8 we have

(33)�(x+, s+;�+) ≤
L4

1 − �

�
�

√
r + (L3 + 2 + 4�)�2

�
.

(34)
L4�

√
r

1 − �

≤
2L4

√
1 − �

2

16L2
4
(L3 + 2 + 4�)

≤
1

2
�.

(35)
L4(L3 + 2 + 4�)�2

1 − �

≤ 2L4(L3 + 2 + 4�)
1 − �

2

16L2
4
(L3 + 2 + 4�)2

≤
1

2
�.

(36)�(x+, s+;�+) ≤ �,

k ≥

⌈
1

�

log

�
0
(
r +

L2+1

9

)

�

⌉

(37)𝜏 <

1

4L4(L3 + 2 + 4𝜅)
≤

1

3
.
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The condition ⟨xk, sk⟩ < 𝜀 holds if

We take the logarithm of both sides of (38) and we get

From − log (1 − �) ≥ � we have that (39) holds if

which proves the lemma. 	�  ◻

The results in this section are summarized in the following main theorem.

Theorem  1  Assume that � ∶ (�,∞) → ℝ satisfies (AET1) and (AET2). Consider 
L4 = max{L1,

1

4
} , � =

√
1−�2

4L4(L3+2+4�)
 , L3 = max{L2, 1} and � =

√
1−�2

16L2
4
(L3+2+4�)

√
r
 . We 

assume that the pair (x0, s0) is strictly feasible, �0 =
⟨x0,s0⟩

r
 and �(x0, s0;�0) ≤ � . 

Then, the IPA given in Algorithm 4.1 requires no more than

interior-point iterations.

6 � Concluding remarks

In this paper, we generalized a full-NT step feasible IPA proposed in [18] to Carte-
sian P∗(�)-horizontal LCPs. We also extended and modified the class of AET functions 
defined in [18] to a new class of AET functions defined in Definition 1 and applied it to 
the Cartesian P∗(�)-SCHCP framework by using the theory of Euclidean Jordan alge-
bras and symmetric cones. We designed and analyzed an IPA in Algorithm 4.1 based 
on a general AET function belonging to the class in Definition 1. Hence, we obtain a 
class of IPAs, that is, for each AET function we get a specific variant of generic IPA. 
The complexity analysis of the proposed IPA is presented and it is proved that the 

⟨xk, sk⟩ ≤�k

�
r +

L2 + 1

9

�
= (1 − �)k�0

�
r +

L2 + 1

9

�
.

(38)(1 − 𝜃)k𝜇0

(
r +

L2 + 1

9

)
< 𝜀.

(39)k log (1 − 𝜃) + log

(
𝜇
0

(
r +

L2 + 1

9

))
< log 𝜀.

k� ≥ log

(
�
0

(
r +

L2 + 1

9

))
− log � = log

�
0(r +

L2+1

9
)

�

,

�
16L2

4
(L3 + 2 + 4�)
√
1 − �

2

√
r log

�
0
�
r +

L2+1

9

�

�

�
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derived iteration bound matches the best known iteration bound for IPAs solving these 
types of problems. Furthermore, it is proved that Algorithm 4.1 is well defined without 
any relationship between the parameters L1 and L2 from Definition 1, which was not the 
case in the analysis of the IPA in [18]. Hence, the class of AET functions in Definition 
1 is wider than the one used in [18].

We briefly mention few possible topics for further research. One interesting topic 
would be to extend the obtained results to non-symmetric cone optimization and to 
nonlinear complementarity problems over symmetric cones. Furthermore, it would be 
worth considering a more general framework where we do not assume the P∗(�)-prop-
erty of the pair (Q, R), but rather consider problems similar to general LCPs given in 
[16, 17].

Appendix

In this part results relevant to this paper related to the theory of Euclidean Jordan alge-
bras and symmetric cones [12, 13, 32, 34] are presented.

Consider V as an n-dimensional vector space over ℝ with the bilinear map 
◦ ∶ (x, y) → x◦y ∈ V . Then, (V, ◦) is said to be a Jordan algebra if for all x, y ∈ V , we 
have x◦y = y◦x and x◦(x2◦y) = x2◦(x◦y) , where x2 = x◦x . Note that e ∈ V is the iden-
tity element of V if and only if e◦x = x◦e = x , for all x ∈ V . We call the element x 
invertible if there exists a unique element x̄ , such that x◦x̄ = e and x̄ is a polynomial in 
x. We denote the inverse of x by x−1 . If we have V with an identity element, then we call 
it Euclidean Jordan algebra if there exists a symmetric positive definite quadratic form 
Q̄ on V , for which Q̄(x◦y, z)= Q̄(x, y◦z) is satisfied. Let x ∈ V , Then, the Lyapunov 
transformation L(x) is defined as L(x)y ∶= x◦y, for all y ∈ V . The quadratic represen-
tation P(x) of x is can be written as P(x) ∶= 2 L(x)2 − L(x2) , where L(x)2 = L(x)L(x). 
The degree of an element x, denoted by deg(x), is the smallest integer r such that 
{e, x,⋯ , xr} is linearly dependent. The rank of V is denoted by rank (V) and is the larg-
est deg(x) for all x ∈ V . We call a subset {c1, c2,⋯ , cr} of V a Jordan frame if it is 
a complete system of orthogonal primitive idempotents. The following theorem plays 
important role in the theory of Euclidean Jordan algebras.

Theorem  2  (Theorem III.1.2 of [12]) Suppose rank (V) = r . Then, for any x 
in V there exists a Jordan frame c1, ⋯ , cr and real numbers �1, ⋯ , �r such that 
x =

∑r

i=1
�ici.

The numbers �i are named eigenvalues. Let tr(x) =
∑r

i=1
�i and det(x) =

∏r

i=1
�i. 

For any Euclidean Jordan algebra V , we consider the corresponding cone of squares 
K(V) ∶= {x2 ∶ x ∈ V} . It can be proven that this is a symmetric cone, i.e. it is self-
dual and homogeneous, see [12]. We also use

and

x ⪰K 0 ⇔ x ∈ K and x ≻K 0 ⇔ x ∈ intK,
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The inner product is given as ⟨x, y⟩ = tr(x◦y) . The induced Frobenius norm is

We use the following lemmas in the complexity analysis of the IPAs.

Proposition 2  The following statements hold: 

	 (i)	   x ∈ V  is invertible if and only if P(x) is invertible, in which case 
P(x)−1 = P(x−1).

	 (ii)	  If x ∈ V is invertible, then P(x)K = K and P(x)int K = int K.
	 (iii)	  If x ∈ K , then P(x)1∕2 = P(x1∕2).
	 (iv)	  If x ∈ V , then x ∈ K ( x ⪰K 0) if and only if �i(x) ≥ 0

and x ∈ int K (x ≻K 0) if and only if 𝜆i(x) > 0 , for all i = 1,⋯ , r.
Lemma 12  (Corollary 2.4 of [35]) If x ∈ V and ‖x‖F < 1 , then  e − x ∈ int K.

Lemma 13  (Lemma 14 of [31]) If x, s ∈ V , then
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(40)‖x‖F = ⟨x, x⟩1∕2 =
√
tr(x2) =

����
r�

i=1

�
2
i
(x).

�min(x + s) ≥ �min(x) + �min(s) ≥ �min(x) − ‖s‖F.
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