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Abstract
We analyze a class of exact distributed first order methods under a general setting on 
the underlying network and step-sizes. In more detail, we allow simultaneously for 
time-varying uncoordinated step sizes and time-varying directed weight-balanced 
networks, jointly connected over bounded intervals. The analyzed class of meth-
ods subsumes several existing algorithms like the unified Extra and unified DIG-
ing (Jakovetić in IEEE Trans Signal Inf Process Netw 5(1):31–46, 2019), or the 
exact spectral gradient method (Jakovetić et al. in Comput Optim Appl 74:703–728, 
2019) that have been analyzed before under more restrictive assumptions. Under the 
assumed setting, we establish R-linear convergence of the methods and present sev-
eral implications that our results have on the literature. Most notably, we show that 
the unification strategy in Jakovetić (2019) and the spectral step-size selection strat-
egy in Jakovetić et al. (2019) exhibit a high degree of robustness to uncoordinated 
time-varying step sizes and to time-varying networks.
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1  Introduction

We consider a set of n computational agents and the following unconstrained opti-
mization problem

where each fj is a real-valued function of ℝd and is held privately by one of the 
agents, and the agents can communicate according to a given network. Problems 
of this form arise in many practical applications such as sensor networks [15], dis-
tributed control [17], distributed learning [4] and many others. Several distributed 
methods [10–13, 18, 21, 26, 28, 35] have been proposed in literature for the solution 
of (1) that achieve exact convergence to the minimizer with fixed step-size, when the 
objective function is convex and Lipschitz-differentiable. In [18, 21, 26] two exact 
gradient-based methods where proposed, and the convergence was proved for the 
case where the underlying network is undirected, connected, and remains constant 
through the entire execution of the algorithm. In [13] a unified analysis of a class of 
first-order distributed methods is presented. In [28] the convergence of several first-
order methods was generalized to the case of a time-varying network, provided that 
the network is connected at each iteration, while in [18] the convergence analysis of 
[21] is extended to the time-varying and directed case, assuming joint-connectivity 
of the sequence of networks and weight-balance of each graph.1 Interestingly, the 
exact first order methods are also related with augmented Lagrangian algorithms, 
e.g., [20]. For example, the methods in [13, 18, 21] have been shown to be equiva-
lent to certain primal-dual methods that optimize an augmented Lagrangian func-
tion associated with the original problem. In [24] an accelerated gradient-based 
method for the time-varying directed case is proposed, with weaker assumptions 
over the underlying networks. In [16] the authors propose a mirror descent method 
that assumes time-varying jointly-strongly-connected networks. In [8] the authors 
considered the problem of minimizing f (y) + G(y) over a closed and convex set K , 
where f is a possibly non-convex function as in (1) and G is a convex non-separa-
ble term, and they propose a gradient-tracking method that achieves convergence in 
the case of time-varying directed jointly-connected networks for diminishing syn-
chronized step sizes. In [25] the method proposed in [8] is extended with constant 
step-sizes to a more general framework while in [27] R-linear convergence is proved 
for [25] with strongly convex f(y). A unifying framework of these methods is pre-
sented in [34] and, for the case of constant and undirected networks, in [1]. In all 
the above methods the sequence of the step-sizes is assumed to be fixed and coordi-
nated among all the agents. In [19, 32, 33, 35, 36] the case of uncoordinated time-
constant step sizes is considered, that is, each node has a different step-size but these 
step sizes are constant in all iterations. In [14] a modification of [21] is proposed, 
with step-sizes varying both across nodes and iterations, and it is proved that there 

(1)min
ℝd

f (y) f (y) =

n∑
j=1

fj(y)

1  That is, we assume that it is possible to define a doubly stochastic consensus matrix associated with 
each of the networks.
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exist suitable safeguards for the steps, depending on the regularity properties of the 
objective function and the network, such that R-linear convergence of the generated 
sequence to the solution of (1) holds. This result is obtained for undirected and sta-
tionary network. In [29, 30] asynchronous modifications of [25] are proposed.

Of special interest to the current paper is the spectral gradient method (or Bar-
zilai and Borwein method). This method is very popular in centralized optimiza-
tion due to its efficiency, as reported in numerous studies, for example [5, 9]. In 
general, the method avoids the famous zig-zag behaviour of the steepest descent and 
converges much faster. The method was first proposed by Barzilai and Borwein [3]. 
This reference proves the method’s convergence for two-dimensional problems and 
convex quadratic functions. The analysis is then extended to arbitrary dimensions 
and convex quadratic functions by Raydan [22]. Minimization of generic functions 
is considered in [23] in combination with a nonmonotone line search. R-linear con-
vergence for convex quadratic functions has been proved in [6]. In summary, despite 
its excellent numerical performance, spectral gradient methods are proved to con-
verge without any safeguarding lower and upper bounds on the step size only for 
strongly convex quadratic costs. Convergence for generic functions beyond convex 
quadratic is proved only under step size safeguarding, coupled with a line search 
strategy. Distributed variants of spectral gradient methods and fixed network topolo-
gies are studied in [14].

We now summarize this paper’s contributions. We establish R-linear convergence 
of a class of exact distributed first-order methods under the general setting of time-
varying directed weight-balanced networks, without the requirement of network 
connectedness at each iteration, and in the presence of time-varying uncoordinated 
step sizes. While there have been several existing studies of exact distributed meth-
ods under general settings, our study implies several new contributions to the litera-
ture; these contributions cannot be derived from existing works and are novelties of 
this paper.

•	 We prove that the methods proposed in [13], referred to here (and also in [28]) as 
the unified Extra and the unified DIGing are robust to time-varying directed net-
works and time-varying uncoordinated step sizes, i.e., they converge R-linearly 
in this setting. Up to now, it is only known that these methods converge under 
static undirected networks [13] or time-varying networks where the network is 
connected at each iteration [28]. These methods have been previously considered 
only for time-invariant coordinated step sizes.

•	 We prove that the method proposed in [14] is robust to time-varying directed 
networks. Before the current paper, the method was only known to converge for 
static, undirected networks.

•	 It is shown in [28] that the Extra method [26] may diverge over time-varying net-
works, even when the network is connected at every iteration. On the other hand, 
as we show here, the unified Extra, a variant of Extra proposed in [13], is robust 
to time-varying networks. Hence, our results reveal that the unified Extra can be 
considered as a mean to modify Extra and make it robust.

•	 We provide a thorough numerical study and an analytical study for a special prob-
lem structure that demonstrates that the unification strategy in [13] and the spectral 
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gradient-like step-size selection strategy in [14] exhibit a high degree of robust-
ness to time-varying networks and uncoordinated time-varying step-sizes. More 
precisely, we show that these strategies converge, when working on time-varying 
networks, for wider step-size ranges than commonly used strategies such as con-
stant coordinated step-sizes and DIGing algorithmic forms. In addition, we show by 
simulation that actually a combination of the unification and the spectral step-size 
strategies further improves robustness.

Technically, while considering weight-balanced digraphs instead of undirected graphs 
does not lead to a significant analysis difference, major technical differences here with 
respect to prior work correspond to the analysis of the unification strategy [13] under 
time varying networks and time-and-node-varying step-sizes and spectral strategies 
[14] under time-varying networks.

This paper is organized as follows. In Sect. 2 we describe the computational frame-
work that we consider and we present the methods that we analyse. In Sect. 3 we recall 
a few preliminary results from the literature and we prove a convergence theorem for 
the methods introduced in Sect. 2. In Sect. 4, we show analytically and by simulation 
that the unification and spectral step-size selection strategies increase robustness of the 
methods to time-varying networks and uncoordinated step-sizes. Finally, in Sect. 5, we 
conclude the paper and outline some future research directions.

2 � The model and the class of considered methods

We make the following regularity assumptions for the local cost functions fi.

Assumption A1 

•	 Each function fi ∶ ℝ
d
→ ℝ , i = 1,… , n, is twice continuously differentiable;

•	 There exists 0 ≤ �i ≤ Li such that for every i = 1,… , n and every y ∈ ℝ
d,

where we write A ⪯ B if the matrix B − A is positive semi-definite. That is, we 
assume that each of the local functions is �i-strongly convex, and has Lipschitz con-
tinuous gradient with constant Li . Denoting with L =

∑n

i=1
Li and � =

∑n

i=1
�i, we 

have that the aggregate function f is �-strongly convex and ∇f  is Lipschitz-continu-
ous with the constant L.

Given x1,… , xn ∈ ℝ
d we define

(2)�iI ⪯ ∇2fi(y) ⪯ LiI

(3)x ∶=

⎛⎜⎜⎝

x1
⋮

xn

⎞⎟⎟⎠
∈ ℝ

nd F(x) =

n�
j=1

fj(xj).
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We denote with e the vector of length n with all components equal to 1. For a matrix 
A ∈ ℝ

n×n we denote with �max(A) the largest singular value of A. Moreover, given a 
sequence of matrices {Mk}k and m ∈ ℕ , let

It is assumed that at iteration k the n agents are the nodes of a given network 
Gk = ({1,… , n},Ek) , where Ek denotes the set of the edges of the network, and 
to each Gk we associate a consensus matrix Wk ∈ ℝ

n×n . The assumptions over the 
sequences {Gk} and {Wk}, which are the same hypotheses considered in [18], are 
stated below.

Assumption A2  For every k = 0, 1,… , Gk = ({1,… , n},Ek) is a directed graph 
and Wk is an n × n doubly stochastic matrix with wij = 0 if i ≠ j and (i, j) ∉ Ek . 
Moreover, there exists a positive integer m such that supk=0∶m−1 𝜈k < 1 , where 
�k = �max(W

k
m
−

1

n
eeT ).

Remark 2.1  Assumption A2 is weaker than requiring each graph Gk to be connected. 
For example, it can be proved (see [18]) that in the case of undirected networks, if 
the sequence is jointly-connected then we can ensure Assumption A2 by taking Wk 
as, e.g., the Metropolis matrix, Xiao et al. [31], associated with Gk. In more detail, 
the following can be shown. Assume that the positive entries of the weight matrices 
Wk ’s are always bounded from below by a positive constant w - (including also the 
diagonal entries, i.e., assume that the diagonal entries of Wk are always greater than 
or equal to w ). Furthermore, assume network connectedness over bounded inter-
communication intervals. That is, for any fixed iteration k, consider the graph 
Gm

k
= ({1,… , n},Em

k
) , Em

k
= ∪k

�=k−m+1
Ek , whose set of links is the union of the sets 

of links of graphs at time instances � = k − m + 1, ..., k . Assume that Gm
k
 is strongly 

connected, for every k. Now, it is easy to show that the above assumptions imply that 
𝜈max

(
Wm

k
−

1

n
eeT

)
< 1.2

We also comment on the role of quantity m on the convergence of (5). Our main 
result, Theorem 2 ahead, certifies that there exists choice of step size lower and upper 
bounds dmin and dmax such that R-linear convergence of the method (5) holds. The result 
holds for any choice of m. Clearly, the specific values of dmin and dmax in general depend 
on m. Intuitively, we can expect that for larger m, the maximal admissible step-size is 
lower; also, for fixed step-size choices dmin and dmax that lead to R-linear convergence, 
larger m leads to slower R-linear convergence, i.e., it leads to a worse R-linear conver-
gence factor.

(4)Mk
m
∶= MkMk−1 …Mk−m+1, Mk

0
= I

2  To see this, first note that, clearly, matrix Wm
k

 is doubly stochastic. Furthermore, it is easy to show (e.g., 
by induction) that, for any (i, j) ∈ Em

k
 , and for any i = 1, ..., n , we have that [Wm

k
]ij ≥ wm . This means that 

Wm
k

 is a doubly stochastic matrix with positive diagonal entries, and, moreover, all its off-diagonal entries 
at the positions that correspond to links of Gm

k
 are strictly positive. Using standard arguments on doubly 

stochastic matrices, this implies that �max

(
Wm

k
−

1

n
eeT

)
.
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We consider the following class of methods. Assume that at each iteration node i 
holds two vectors xk

i
 and uk

i
 in Rd and that the global vectors xk, uk ∈ ℝ

nd , defined as 
in (3), are updated according to the following rules:

where Wk ∶= (Wk ⊗ I) ∈ ℝ
nd×nd , Dk = diag(dk

1
I,… , dk

n
I) with dk

i
 being the step-

size for node i at iteration k and Bk is a symmetric n × n matrix that respects the 
sparsity structure of the communication network Gk and such that for every y ∈ ℝ

d 
we have Bk(1⊗ y) = c(1⊗ y) for some c ∈ ℝ . Moreover, we assume that x0 ∈ ℝ

nd 
is an arbitrary vector and u0 = 0 ∈ ℝ

nd.
For Bk = 0 and appropriate choice of the step-sizes dk

i
 we get the method intro-

duced in [14]. For Dk = �I , if Bk = bI or Bk = bW we retrieve the class of methods 
analyzed in [13] while if Bk = 0 we retrieve the DIGing method proposed in [18, 
21]. For Dk = �I and Bk = bW with b =

1

�
 we have the EXTRA method [26], but 

while this method can be described with this choice of the parameters in Eq. (5), it 
is not included in the class of methods we consider. Namely, the theoretical analy-
sis that we carry out in Sect. 3 requires the parameter b to be independent on the 
step-sizes, thus ruling out the choice b =

1

�
 that yields EXTRA method. This is in 

line with [28] that shows that EXTRA may not converge in general for time-varying 
networks.

In our analysis, we consider the case Bk = bI and Bk = bWk with b non-nega-
tive constant and dmin ≤ dk

j
≤ dmax for every k and every j = 1,… , n for appropri-

ately chosen safeguards 0 < dmin < dmax.

A possible choice for uncoordinated and time-varying step-sizes was proposed 
in [14] where we have dk

i
= (�k

i
)−1 with �k

i
 given by

where sk−1
i

= xk
i
− xk−1

i
 and yk−1

i
= ∇fi(x

k
i
) − ∇fi(x

k−1
i

) . Here, PU denotes the projec-
tion onto the closed set U, �min = 1∕dmax , and �max = 1∕dmin . We refer to [14] for 
details on the derivation and intuition behind this step-size choice. For static net-
works, this step size choice incurs no communication overhead per iteration; see 
[14] However, for time-varying networks, the communication and storage protocol 
to implement this step size needs to be adapted. One way to ensure at node i and 
iteration k the availability of sk−1

j
 for (i, j) ∈ Ek , is that node i receives sk−1

j
 for all j 

such that (i, j) ∈ Ek . That is, each node j per iteration additionally broadcasts one 
d-dimensional vector sk

j
 to all its current neighbors. Therefore the method described 

by Eq. (5) combines [13, 14] into a more general method.

(5)
{

xk+1 = W
kxk − Dk(uk + ∇F(xk))

uk+1 = uk + (Wk − I)(∇F(xk) + uk − Bkxk)

�k
i
= P[�min,�max]

(
(sk−1

i
)Tyk−1

i

(sk−1
i

)Tsk−1
i

+ �k−1
i

n∑
j=1

wk
ij

(
1 −

(sk−1
i

)Tsk−1
j

(sk−1
i

)Tsk−1
i

))
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3 � Convergence analysis

We now study the convergence of the method described in (5). Specifically, 
denoting with y∗ the solution of (1) and defining

we prove that, if Assumptions A1 and A2 hold, there exist 0 < dmin < dmax such that 
the sequence {xk} generated by (5) converges to x∗.

Given a vector v ∈ ℝ
nd, denote with v̄ the average v̄ = 1

n

∑n

j=1
vj ∈ ℝ

d and with 
J the n × n matrix (I − 1

n
eeT ) , where eT = (1,… , 1) ∈ ℝ

n . Recalling the definition 
of xk and uk given in (5), we define the following quantities, which will be used 
further on:

To simplify the notation, in the rest of the section we assume that the dimension d of 
the problem is given by d = 1 , but the same results can be proved analogously in the 
general case.

A few results listed below will be needed for the convergence result presented 
in this paper. Since Wk is doubly stochastic, we have that 1

n
eet(Wk − I) = 0 . Using 

this equality and the definition of uk+1 we get

and by the initialization u0 = 0 , we have that

Directly by the definition of ũk and (9) we get

From Assumption A1, for every k there exists a matrix Hk ⪯ LI such that

Lemma 1  [18]  If the matrix sequence {Wk}k  satisfies Assumption A2, then for every 
k ≥ m we have

x∗ ∶=

⎛
⎜⎜⎝

y∗

⋮

y∗

⎞
⎟⎟⎠
∈ ℝ

nd

(6)x̃k = xk − ex̄k ∈ ℝ
nd,

(7)ũk = uk + ∇F(x∗) ∈ ℝ
nd,

(8)qk = xk − x∗ = x̃k + eq̄k ∈ ℝ
nd.

ūk+1 =
1

n
eeTuk+1 =

1

n
eeTuk +

1

n
eeT (Wk − I)(uk + ∇F(xk) − Bkxk) = ūk

(9)ūk = 0.

(10)
1

n
eeT ũk =

1

n
eeT (uk + ∇F(x∗)) = ūk +

1

n
∇f (y∗) = 0.

(11)∇F(xk) − ∇F(x∗) = Hk(x
k − x∗).
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Lemma 2  [2]  If the function f  satisfies Assumption A1 and 0 < 𝛼 <
1

L
 , then

 where � = max{|1 − ��|, |1 − �L|}

Following the idea presented in [18], our convergence result relies on the Small 
Gain Theorem [7], which we now briefly recall. Denote by a ∶= {ak} an infinite 
sequence of vectors, ak ∈ ℝ

d for k = 0, 1,… . For a fixed � ∈ (0, 1) we define

Theorem  1  [7] Let a = {ak} and b = {bk}  be two vector sequences, with 
ak, bk ∈ ℝ

d.  If there exists � ∈ (0, 1)  such that for all K = 0, 1,… ,  the following 
inequalities hold

 with �1 ⋅ �2 ∈ [0, 1) ,  then

and

We will use the following technical Lemma to show that the sequences ‖q̄k‖ and 
‖x̃k‖ satisfy the hypotheses of Theorem 1.

Lemma 3  Given b,�, L ≥ 0 , � ∈ (0, 1) and n,m ∈ ℕ , where we denote with ℕ  the 
set of positive integers, there exists � ∈ (0, 1)  and 0 ≤ dmin < dmax  such that the fol-
lowing conditions hold: 

1.	 𝜈 < 𝜆m;

2.	 dmin

n
<

2

L
;

3.	 1 − 𝜇dmin + ΔL < 𝜆;

4.	 𝛾𝛽2 < 1;

5.	 𝛽3 < 1;

���JW
k
m
y
��� ≤ �k‖Jy‖

‖y − �∇f (y) − y∗‖ ≤ �‖y − y∗‖

‖a‖�,K = max
k=0,1,…,K

�
1

�k
‖ak‖

�

‖a‖� = sup
k≥0

�
1

�k
‖ak‖

�
.

(12)
‖a‖�,K ≤ �1‖b‖�,K + w1,

‖b‖�,K ≤ �2‖a‖�,K + w2,

‖a‖� ≤ 1

1 − �1�2
(w1�2 + w2).

lim
k→∞

ak = 0 R-linearly.
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6.	 𝛽5𝛾

1−𝛽3
< 1;

7.	 𝛽1+𝛾𝛽2

1−𝛾𝛽2
⋅

𝛽4+𝛾𝛽5

1−𝛽3−𝛾𝛽5
< 1,

  where

Proof  Take 𝜆m > 𝜈 and dmin <
2n

L
 so that 1 and 2 hold. For dmax > dmin and close 

enough to dmin one can ensure that

holds. By the previous inequality, we have 1 − 𝜇dmin + ΔL < 1 and therefore, for 
fixed dmax and dmin we can always take � ∈ (0, 1) such that 3 is satisfied and 1 still 
holds. Moreover, we can take dmin arbitrarily small and dmax arbitrarily close to dmin 
without violating conditions 1–3 Notice that C =

�(1−�m)

1−�
 is an increasing function of 

�.
Let us now consider condition 4 given by

The left hand side expression is an increasing function of Δ and it is equal to 0 for 
Δ = 0. Therefore, taking dmax close enough to dmin , condition 4 holds.

Condition 5 holds for dmax <
𝜆m−𝜈

𝜆mLC
.

Consider now condition 6,

The left hand side expression is an increasing function of dmax and taking dmax small 
enough we conclude that the previous inequality holds. Since we need dmax > dmin , 
in order to be able to take dmax small, we need to take dmin small enough, but this can 
be done without violating the previous conditions.

By definition, �2+��3
1−��3

 and �5+��6

1−�4−��6
 are also increasing functions of dmax and Δ . Thus, 

we can apply the same reasoning that we applied to 4 and 6 to get 𝛾2 < 1 and 𝛾3 < 1 . 
In particular, we can take dmin and dmax such that condition 7 holds. 	�  ◻

� =
(b + L)C

�m − �
, �1 =

Ldmax

� − 1 + �dmin − ΔL
,

�2 =
Δ

Ldmax
�1, �3 =

�

�m
+ �4,

�4 = L�5, �5 =
Cdmax

�m
,

Δ = dmax − dmin, C =
�(1 − �m)

1 − �
.

(13)
dmax

dmin
< 1 +

𝜇

L

(b + L)CΔ

(𝜆m − 𝜈)(𝜆 − 1 + 𝜇dmin − ΔL)
< 1.

(b + L)C2dmax

(𝜆m − 𝜈)(𝜆m − 𝜈)(𝜆m − 𝜈 − LdmaxC)
< 1
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Theorem 2  Let Bk be defined as Bk = bWk or Bk = bI for a positive constant b,  or 
Bk = 0. If Assumptions A1 and A2 hold then there exists dmin < dmax such that the 
sequence {xk} generated by (5) converges R-linearly to x∗.

Proof  Define 𝜈 = sup
k=0∶m−1

𝜈k < 1 where �k, m are given in Assumption A2, and take 

𝜆 ∈ (0, 1), 0 ≤ dmin < dmax given by Lemma 3. We prove that n1∕2q̄k and x̃k satisfy 
inequalities (12), thus ensuring R-linear convergence by Theorem 1.

We have Bk = bI or Bk = bWk , in both cases, Bkx∗ = bx∗ , therefore 
(Wk − I)Bkx∗ = 0 and thus

For k ≥ m − 1 , using (5), the previous equality and (11), we get

By (10) and Lemma 1,

and by (11), the definition of Bk and the fact that Wk is doubly stochastic, we get

Taking the norm in (14) and using the two previous inequalities, we have that for 
k ≥ m − 1

Notice that the above inequality also holds for the third case considered, i.e. for 
Bk = 0, taking b = 0 . Multiplying by 1

�k+1
 , taking the maximum for k = −1 ∶ k̄ − 1 , 

and defining

we get

(Wk − I)Bkxk = (Wk − I)Bk(xk − x∗) = (Wk − I)Bkqk

(14)

ũk+1 = uk+1 + ∇F(x∗)

= uk + (Wk − I)(uk + ∇F(xk) − Bkxk) + ∇F(x∗)

= Wk(uk + ∇F(x∗)) + (Wk − I)(∇F(xk) − ∇F(x∗))

+ −(Wk − I)Bkxk

= Wkũk + (Wk − I)Hkq
k − (Wk − I)Bkqk

= Wk
m
ũk−m+1 +

m−1∑
t=0

Wk
t
(Wk−t − I)

(
Hk−t − Bk−t

)
qk−t

‖Wk
m
ũk−m+1‖ = ‖Wk

m
Jũk−m+1‖ ≤ 𝜈‖Jũk−m+1‖

= 𝜈‖ũk−m+1‖

‖Wk
t
(Wk−t − I)(Hk−t − Bk)qk−t‖ ≤ (L + b)‖qk−t‖.

‖ũk+1‖ ≤ 𝜈‖ũk−m+1‖ + (b + L)

m−1�
t=0

‖qk−t‖.

𝜔̃1 = max
k=−1∶m−1

�
1

𝜆k+1
‖ũk+1‖

�
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Since by condition 1 in Lemma 3 we have 𝜈 < 𝜆m , reordering the terms in the previ-
ous inequality and using the fact that qk = x̃k + eq̄k , we get

with

Let us now consider q̄k.

Taking the norm, by Lipschitz continuity of the gradient and denoting with 
Δ = dmax − dmin , we have

‖ũ‖𝜆k̄ = max
k=−1∶m−1

�
1

𝜆k+1
‖ũk+1‖

�
+ max

k=m∶k̄

�
1

𝜆k+1
‖ũk+1‖

�

≤
𝜈

𝜆m
max
k=m∶k̄

�
1

𝜆k−m+1
‖ũk−m+1‖

�

+ (b + L)

m−1�
t=0

1

𝜆t
max
k=m∶k̄

�
1

𝜆k−t
‖qk−t‖

�
+ 𝜔̃1

≤
𝜈

𝜆m
‖ũ‖𝜆k̄ + (b + L)

𝜆m

𝜆(1 − 𝜆m)

(1 − 𝜆)
‖q‖𝜆k̄ + 𝜔̃1.

(15)
‖ũ‖𝜆k̄ ≤ 𝛾1‖q‖𝜆k̄ + 𝜔1

≤ 𝛾1‖x̃‖𝜆k̄ + 𝛾1n
1∕2‖q̄‖𝜆k̄ + 𝜔1

𝛾1 =
(b + L)𝜆(1 − 𝜆m)

(1 − 𝜆)(𝜆m − 𝜈)
, 𝜔1 =

𝜆m

𝜆m − 𝜈
𝜔̃1.

q̄k+1 = x̄k+1 − y∗ =
1

n
eeTxk+1 − y∗

=
1

n
eeT

(
Wkxk − Dk(uk + ∇F(xk)

)
− y∗

= x̄k − y∗ −
dmin

n
∇F(x̄k)

+
dmin

n

n∑
j=1

(∇fj(x̄
k) − ∇fj(y

∗))

+ −
1

n

n∑
j=1

(dk
j
− dmin)(∇fj(x

k
j
) − ∇fj(y

∗))

+
1

n

n∑
j=1

(dmin − dk
j
)ũk

j
.

‖q̄k+1‖ =
����x̄

k − y∗ −
dmin

n
∇F(x̄k)

���� +
Ldmin

n
‖x̄k − y∗‖1

+
LΔ

n
‖xk − x∗‖1 + Δ

n
‖ũk

j
‖1.
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Now dmin
n

<
2

L
 , thus Lemma 2 gives a bound for the first term in the right hand side of 

the last inequality, and we get

Multiplying by 1

�k+1
 and taking the maximum for k = −1 ∶ k̄ − 1 we get

By Lemma  3 we have � = 1 − �dmin and 𝜏 + ΔL < 𝜆 , thus reordering and using 
(15), we get

where �1 and �2 are defined in Lemma 3. Take

From 4 in Lemma 3 we get

Finally, let us consider x̃k.For k ≥ m − 1 , by definition of xk, ũk and qk, and Eq. (11) 
we have

Taking the norm, applying Lemma 1 and (11), we get

Multiplying by 1

�k+1
 and taking the maximum for k = −1 ∶ k̄ − 1 we get

n1∕2‖q̄k+1‖ ≤ n1∕2𝜏‖x̄k − y∗‖ + Ldmin‖x̄k − y∗‖
+ LΔ‖xk − x∗‖ + Δ‖ũk

j
‖

≤ n1∕2(𝜏 + ΔL)‖q̄k‖ + Ldmax‖x̃k‖ + Δ‖ũk‖.

n1∕2‖q̄‖𝜆k̄ ≤ 𝜏 + ΔL

𝜆
n1∕2‖q̄‖𝜆k̄ + Ldmax

𝜆
‖x̃‖𝜆k̄ + Δ

𝜆
‖ũ‖𝜆k̄.

n1∕2‖q̄‖𝜆k̄ ≤ Ldmax

𝜆 − 𝜏 − ΔL
‖x̃‖𝜆k̄ + Δ

𝜆 − 𝜏 − ΔL
‖ũ‖𝜆k̄

≤ (𝛽1 + 𝛾1𝛽2)‖x̃‖𝜆k̄ + 𝛾1𝛽2n
1∕2‖q̄‖𝜆k̄ + 𝛽2𝜔1

�2 =
�1 + �1�2

1 − �1�2
, �2 =

�2�1

1 − �1�2
.

(16)n1∕2‖q̄‖𝜆k̄ ≤ 𝛾2‖x̃‖𝜆k̄ + 𝜔2.

x̃k+1 = J(Wkxk − Dk(uk + ∇F(xk))

= JWkWk−1xk−1 − JWkDk−1(uk−1 + ∇F(xk−1))

+ −JDk(uk + ∇F(xk))

= JWk
m
xk−m+1 − J

m−1∑
t=0

Wk
t
Dk−t(ũk−t + Hk−tq

k−t).

‖x̃k+1‖ ≤ 𝜈‖x̃k−m+1‖ + dmax

m−1�
t=0

(‖ũk−t‖ + L‖qk−t‖).
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where 𝜔̃3 = maxk=−1∶m−1

�
1

𝜆k+1
‖x̃k+1‖

�
 and �3, �4, �5 are defined in Lemma  3. In 

particular, we have 𝛽3 < 1 , and can rearrange the terms of the previous inequality to 
get

Now, applying (15) and 6 from Lemma 3, we obtain

with

We thus proved

with 𝛾2𝛾3 < 1 by condition 7 in Lemma 3. By the Small Gain Theorem, we have that 
‖q̄k‖ and ‖x̃k‖ converge to 0, and thus ‖qk‖ converges to zeros, which gives the thesis. 	
� ◻

The above theorem states the R-linear convergence of the method and hence 
one might naturally ask what is the convergence factor and how it compares with 
similar methods, in particular with DIGing. Given that the setting here is rather 
general – allowing for node-specific and iteration-specific step sizes on time var-
ying networks, the generality of the encompassed methods and settings makes 
analytical close-form expression of the convergence factor unfeasible. One com-
parison between the convergence factors of DIGing and a method of the class 
considered here under restrictive assumptions of a static network is given in 
[13],  Remark 5. Therein, it is shown that the class of methods considered here 
can have a better convergence factor than DIGing. Specifically, the favorable con-
vergence factor is achieved in [13] for a method instance within the class when 
parameter b is set differently than the choice that recovers DIGing. Although such 
comparison is derived for a narrow class of problems, contrary to the more gen-
eral setting of DIGIng and the setting considered here, with fixed stepsizes and 
static networks, it serves as an indication for the comparison between DIGing and 

‖x̃‖𝜆k̄ ≤ 𝜈

𝜆m
‖x̃k−m+1‖ + dmax

𝜆(1 − 𝜆m)

𝜆m(1 − 𝜆)
‖ũ‖𝜆k̄

+ Ldmax
𝜆(1 − 𝜆m)

𝜆m(1 − 𝜆)
‖q‖𝜆k̄ + 𝜔̃3

≤ 𝛽3‖x̃k−m+1‖ + 𝛽4n
1∕2‖q̄‖𝜆k̄ + 𝛽5‖ũ‖𝜆k̄ + 𝜔̃3.

‖x̃‖𝜆k̄ ≤ 𝛽4

1 − 𝛽3
n1∕2‖q̄‖𝜆k̄ + 𝛽5

1 − 𝛽3
‖ũ‖𝜆k̄ + 𝜔̃3

1 − 𝛽3
.

‖x̃‖𝜆k̄ ≤ 𝛾3n
1∕2‖q̄‖𝜆k̄ + 𝜔3

𝛾3 =
𝛽4 + 𝛽5𝛾1

1 − 𝛽3 − 𝛾1𝛽5
, 𝜔3 =

𝜔̃3 + 𝛽5𝜔1

1 − 𝛽3 − 𝛾1𝛽5
.

n1∕2‖q̄‖𝜆k̄ ≤ 𝛾2‖x̃‖𝜆k̄ + 𝜔2

‖x̃‖𝜆k̄ ≤ 𝛾3n
1∕2‖q̄‖𝜆k̄ + 𝜔3



838	 G. Malaspina et al.

1 3

the method considered here. Furthermore, numerical experiments presented in 
Sect. 4 contain the comparison between the method considered here and DIGing 
and show faster convergence and an increased degree of robustness of the method 
considered here.

4 � Analytical and numerical studies of robustness of the methods

Theorem  2 and Lemma  3 ensure convergence of the considered class of meth-
ods. Namely, they establish existence of bounds dmin < dmax such that the methods 
converge R-linearly under the given assumptions. However they do not provide 
any information about the difference Δ = dmax − dmin and thus about how much 
the steps employed by different nodes and at different iterations can differ. In this 
section we try to address this issue by investigating in practice the length of the 
interval of admissible step-sizes. Firt we show a particular example where the 
method converges without any upper bound dmax, then we present a set of numeri-
cal results that show how the step bounds influence the convergence and the per-
formance of the methods.

We consider the same framework considered in [14] (Sect. 4.2) and we prove 
that even if we allow the consensus matrix to change from iteration to iteration, 
the method converges. Consider the following objective function

and assume that at iteration k the consensus matrix is given by

Lemma 4  Assume that �k ∈ (
1

3
,
3

4
) for every k,  and that {xk}  is the sequence gener-

ated by (5)  with b = 0 , eTx0 = eTa  and eT (u0 + ∇F(x0)) = 0.
If dk

i
= � for every i = 1,… , n and for every k, then the method converges R-lin-

early to the solution of (17) if �min ≤ � ≤
2

3
 and 𝛼min > 0 small enough. On the other 

hand, for any 𝛼 > 2 , there exists a sequence {�k}, k = 0, 1, 2,… that satisfies the 
assumptions of the Lemma such that the method diverges, i.e., ‖xk‖ → ∞.

If dk
i
= (�k

i
)−1 with

with sk
i
= xk+1

i
− xk

i
 , �min = 0 , �max = 3∕2 and �0

i
= � ∈ (�min, �max) for every 

1,… , n , then {xk} converges R-linearly to the solution of (17).

Proof  In the case we are considering, (5) is equivalent to

(17)f (y) =

n∑
i=1

fi(y) with fi(y) =
1

2
(y − ai)

2 and a ∈ ℝ
n

Wk = (1 − �k)I + �kJ, with � ∈ (0, 1).

(18)�k+1
i

= P[�min,�max]

(
1 + �k

i

n∑
j=1

wk
ij

(
1 −

sk
j

sk
i

))
,
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where Dk = diag(dk
1
I,… , dk

n
I).

Let us consider the case with fixed step-size dk
i
= � and let us denote with �k the 

vector (qk, zk) ∈ ℝ
2n . We can see that for every k we have �k+1 = Ak�

k where the 
matrix Ak is given by

In order to prove the first part of the Lemma, it is enough to show that there exists 
𝜇 < 1 such that ‖Ak‖22 < 𝜇 for every iteration index k. That is, we have to prove that 
there exists 𝜇 < 1 such that the spectral radius of AT

k
Ak is smaller than � for every k. 

Denoting with 1, �k
2
,… , �k

n
 the eigenvalues of Wk , it can be proved that the eigenval-

ues of AT
k
Ak are given by the eigenvalues of the 2 × 2 matrices Mk

i
 defined as

for i = 2,… , n . By direct computation we can see that the eigenvalues of Mk
1
 

are given by 0 and 2𝛼2 − 2𝛼 + 1 < 1 −
2

3
𝛼min and therefore it is enough to take 

𝜇 > 1 −
2

3
𝛼min. Denoting with pk

i
(t) the characteristic polynomial of Dk

i
 we can see 

that with the values of �min, �max and �max given by the assumptions, we can always 
find 1 − 2

3
𝛼min < 𝜇 < 1 such that pk

i
(𝜇) > 0 and pk

i
(−𝜇) > 0 and thus such that the 

eigenvalues of Mk
i
 belong to (−� and �) for every k and for every i = 1,… , n. To 

prove that if 𝛼 > 2 the method is in general not convergent it is enough to consider 
the case when �k = �0 for every iteration index k. In this case we have that Ak = A0 
for every k and thus �k = Ak

0
�0 . In this case we can see [14] that 1 − � is an eigen-

value of A0 an therefore if 𝛼 > 2 we have that 𝜌(A0) > 1 and thus the sequence {�k} 
does not converge. This concludes the first part of the proof.

Assume now that the step-sizes are computed as in (18). Proceeding as in the 
proof of Proposition 4.3 in [14] we can prove that �k+1

i
= �k+1 for every i with �k+1 

given by

where 𝜎̂k+1 = 1 + 𝜃k + 𝜃k𝜃k − 1 +⋯ +
∏k

j=1
𝜃j + 𝜎0

∏k

j=0
𝜃j . By using the fact 

that 𝜃k > 1∕3 and �max = 3∕2 we can prove that there exists k̄ such that �k = �max 
for every k > k̄. Therefore, for k > k̄ the step-size becomes the same for all nodes 
and equal to dk

i
= �−1

max
= 2∕3 and thus the method converges by the first part of the 

Lemma. 	� ◻

(19)
{

xk+1 = Wkxk − Dkzk

zk+1 = Wkzk + xk+1 − xk

Ak =

(
Wk − J − �I

Wk − I Wk − �I

)
∈ ℝ

2n×2n.

Mk
1
=

(
�2 �(� − 1)

�(� − 1) (� − 1)2

)

Mk
i
=

(
(�k

i
)2 + �2 (�k

i
)2 − (1 + �)�k

i
+ �2

(�k
i
)2 − (1 + �)�k

i
+ �2 2(�k

i
)2 − 2(1 + �)�k

i
+ 1 + �2

)

𝜎k+1 =

{
min{𝜎max, 1 + 𝜎max𝜃k} if 𝜎k = 𝜎max
min{𝜎max, 𝜎̂

k+1} otherwise



840	 G. Malaspina et al.

1 3

The above Lemma certifies convergence of the spectral-like method [14] for 
time-varying networks and a very specific problem structure with all-to-all com-
munication network and consensus quadratic costs. It is worth noting that, for 
generic quadratic cost functions and sparse time-varying networks, an upper 
bound on the step-size is necessary (see Figs. 1 and 2 below). We now make an 
analogy on the achieved results for the distributed spectral-like method [14] and 
the spectral (Barzilei-Borwein) gradient method from the centralized optimiza-
tion. Namely, in centralized settings, the spectral gradient method’s convergence 
without step size safeguarding has been proved only for a strictly convex quad-
ratic cost function. In the case of generic functions beyond strictly convex quad-
ratic, some safeguards Δmin and Δmax are necessary, even in the centralized case. 
Though, in the centralized case, these safeguards can be arbitrarily small ( Δmin ) 
and arbitrarily large ( Δmax ). Therefore, the need for safeguards is to be expected 
in the distributed optimization scenario as well. This matches with the results 
that we present here. It turns our that the price to be payed in the distributed 
time-varying networks scenario is two-fold: (1) the no-safeguards case happens 
in a more restricted cost functions setting, namely the consensus quadratic costs 
(see Lemma 4); and (2) the safeguard step size bounds in the general case are no 
longer arbitrary and take a network-dependent form.

We also have the following Lemma where we continue to assume the consen-
sus problem but relax the requirement that the network is fully connected at all 
times. When the network is not fully connected, in general we need safeguarding 
for global convergence. However, as explained below, the following Lemma sheds 

Fig. 1   Number of iterations performed by the methods for different values of the maximum stepsize
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some light on the behavior of the spectral-like distributed method. While it is not to 
be considered as a global convergence result, it highlights that the next step size has 
a controlled length provided that the current solution estimate is close to consensus.

Lemma 5  Let us assume that the objective function is given by (17), and that x0, z0 
are such that eTx0 = eTa , z0

i
= ∇f (x0

i
) = x0

i
 . Moreover, for every i = 1,… , n let the 

local stepsize dk
i
 be defined as d0

i
= d0 > 0 and, for every k ≥ 1 , dk

i
= 1∕�k

i
 , with

 where sk
j
= xk+1

j
− xk

j
 . Moreover, let us assume that at each iteration Assumption A2 

holds with m = 1.
Given any d̂ > 1 , if ‖x0 − ex̄0‖ ≤ 𝜀̂ with 𝜀̂ satisfying

then d1
i
≤ d̂ for every i = 1,… , n.

Proof  Let us denote with J ∈ ℝ
n×n the matrix 1

n
eet and with vk = sk − es̄k . From the 

assumptions and the double stochasticity of the matrix Wk , we have

(20)�k+1
i

= 1 + �k
i

n∑
j=1

wk
ij

(
1 −

sk
j

sk
i

)

𝜀̂ ≤
1

𝜈0 + d0

(d0)2(d̂ − 1)|x̄0|
2d̂ + d0(d̂ − 1)

Fig. 2   Results presented in Fig. 1, with y-axis cut at 2000
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Where we defined 𝜀 = (𝜈0 + d0)𝜀̂ . Moreover,

These imply that, for every j = 1,… , n

Replacing these bounds in (20), and defining �0 = 1∕d0 , we get

It’s easy to see that the first inequality, together with the assumption over 𝜀̂ , imply 
𝜎1
i
≥ 1∕d̂ , which in turn implies the thesis. 	�  ◻

Intuitively, the Lemma above says that, for the considered problem, if algorithm (5) 
with stepsize (20) starts from a point close to consensus (i.e., a point where solution 
estimates across different nodes are mutually close), then the next step size at each node 
will not be too large. More precisely, the size of the next step size is controlled by the 
consensus neighborhood 𝜖 that we start from. In other words, if the next step size is to 
be upper bounded by an arbitrary constant d̂ > 1 , we can find a problem-dependent 
constant 𝜖 such that, starting at most 𝜖 away from consensus, the next step size at each 
node is at most d̂ . To further explain this, suppose that all the quantities sk

j
∕sk

i
 ’s are �′-

close to one, |sk
j
∕sk

i
| ∈ (1 − ��, 1 + ��) , for all nodes i, j. Then, in view of (21), quantity 

�k+1
i

 , for all nodes i, is approximated as:

In other words, for the special case of the consensus problem, provided that all the 
quantities sk

j
∕sk

i
 ’s are �′-close to one, the next step-size 1∕�k+1

i
 is in a neighborhood 

of one, and is hence bounded.
We now present some numerical results. We consider the problem of minimizing a 

logistic loss function with l2 regularization, that is, we assume the local objective func-
tion fi at node i is given by

‖v0‖ = ‖(I − J)(x1 − x0)‖ = ‖(I −W)(W0x0 − x0 − d0z0)‖
= ‖(I − J)(W0 − I − d0I)x0‖ ≤ ‖(W0 − I)x0‖ + d0‖(I − J)x0‖
≤ (𝜈0 + d0)‖x0 − ex̄0‖ ≤ (𝜈0 + d0)𝜀̂ = 𝜀

|s̄0| = 1

n
|et(W0x0 − d0x0 − x0)| = d0|x̄0|.

1 −
2𝜀

d0|x̄0| − 𝜀
≤

s0
j

s0
i

≤ 1 +
2𝜀

d0|x̄0| − 𝜀
.

(21)1 −
2𝜀𝜎0

d0|x̄0| − 𝜀
≤ 𝜎1

i
≤ 1 +

2𝜀𝜎0

d0|x̄0| − 𝜀
.

1 ± �k
i
n ��.

(22)fi(y) = ln
�
1 + exp(−bia

T
i
y)
�
+

1

2
R‖y‖2

2
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where ai ∈ ℝ
d, bi ∈ {−1, 1} and R > 0. We compare 3 different choices of the 

matrix B in (5) and three different definitions of the step-sizes dk
i
 , resulting in nine 

methods. For increasing values of dmax we run each method on the given problem 
and we plot in Fig. 1 the number of iterations necessary to arrive at convergence.

The problem is generated as follows. The convergence analysis we carried out in 
Sect. 3 does not rely on any particular definition of the step-sizes dk

i
, therefore we 

need to specify how each node chooses the step-size at each iteration. We consider 
here two cases. The first one, referred to as spectral in Fig.  1, is the case where 
dk
i
= (�k

i
)−1 with �k

i
 as in (18). The second case we consider is the one where each 

node performs local line search by employing a backtracking strategy starting at 
dmax to satisfy classical Armijo condition on the local objective function. That is, to 
satisfy

with c = 10−3 and zk
i
= uk

i
+ ∇fi(x

k
i
). We refer to this method as line search. It is 

worth noting that there are no convergence guarantees for the line search method. 
The rationale for including a comparison with it is to show that the method [14] 
exhibits a significantly higher degree of robustness with respect to a meaningful, 
time-varying and node-varying, local step size strategy that can be employed. For 
comparison, we also consider the method with fixed step-size dk

i
= dmax for every k 

and every i = 1,… , n. The choices of the matrix Bk are given by Bk = 0 (plot (a) in 
Fig. 1), Bk = d−1

max
I (plot (b)) and Bk = d−1

max
W

k (plot(c)), where for the case B ≠ 0 
the choice is made following [13]. Notice that the case dk

i
= dmax and Bk = 0 corre-

sponds to [18, 21] with constant, coordinated step-sizes. We consider increasing val-
ues of dmax in [ 1

50L
,
10

L
] , while we fix dmin = 10−8 as, in the considered framework, we 

saw that its choice does not influence the performance of the methods significantly.
In Fig. 1 we plot the results in the case where the underlying network is symmet-

ric and timevarying, defined as follows: we consider a network G with n = 25 nodes 
undirected and connected, generated as a random geometric graph with communi-
cation radius 

√
n−1 ln(n) , and we define the sequence of networks {Gk} by deleting 

each edge with probability 1
4
. We carried out analogous tests in the cases where G 

is symmetric and constant and in the case where it is given by a directed ring. The 
obtained results were comparable to the ones that we present. We also observed in 
practice that double stochasticity of the underlying network appears to be essential 
for the convergence of the considered methods.

We set the dimension d as equal to 10 and we generate the quantities involved 
in the definition of the local objective functions (22) as follows. For i = 1,… , n we 
define ai = (ai1,… , ai,d−1, 1)

T where the components aij are independent and come 
from the standard normal distribution, and bi = sign(aT

i
y∗ + �i) where y∗ ∈ ℝ

d with 
independent components drawn from the standard normal distribution, and �i are 
generated according to the normal distribution with mean 0 and standard deviation 

fi

(
n∑
j=1

wk
ij
xk
j
− dk

i
zk
i

)
≤ fi(x

k
i
) − cdk

i
∇fi(x

k
i
)Tzk

i



844	 G. Malaspina et al.

1 3

0.4. Finally, we take the regularization parameter R = 0.25. The initial vectors x0
i
 

are generated independently, with components drawn from the uniform distribution 
on [0, 1], and at each iteration we define the consensus matrix Wk as the Metropolis 
matrix [31].

We are interested in the number of iterations required by each method to reach 
a prescribed accuracy. More precisely, we evaluate the iteration number k̄ at which 
maxi=1,...,n ‖xk̄i − y∗‖ < 𝜀 , where � = 10−5 . In Fig. 1, on the x-axis we show the upper 
bound dmax while on the y-axis we show k̄ for each method. To facilitate the compar-
ison among the methods, in Fig. 2 we plot the same results, with y-axis cut at 2000.

We can see from Fig. 1 that for all considered choices of the matrix B the spectral 
method allows for maximum step-size that is at least 10 times larger than the method 
with fixed step-size, while line search allows for maximum step-size equal to 2 
and 3 times the maximum step-size allowed by the method with fixed steplength, 
for B equal to 0 and bI or bW respectively. Moreover, we can see that choosing 
B = bI seems to increase the maximum value of dmax that yields convergence for 
all the considered methods. Finally, in Fig.  2, we can notice that for most of the 
tested values of dmax the spectral methods requires a smaller number of iterations 
than the method with fixed step-size. That is, in the considered framework, using 
uncoordinated time-varying step-sizes given by [14] helps to significantly improve 
the robustness of the method and also the performance. Notice also that the spectral 
step-size strategy exhibits a “stable", practically unchanged, performance for a wide 
range of dmax ; hence, it is not sensitive to tuning of dmax . This is in contrast with the 
constant step-size strategy that is very sensitive to the step-size choice dmax . It is also 
worth noting that Theorem 2 requires a conservative upper bound on the step-size 
dmax and a conservative upper bound on step-size differences Δ and that both depend 
on multiple global system parameters (Lemma 3). However, simulations presented 
here and other extensive numerical studies suggest that an a priori upper bound on 
Δ is not required for convergence. In addition, dmin can be set to a small value inde-
pendent of system parameters, e.g., dmin = 10−8 , and setting dmax requires only a 
coarse upper bound on quantity 1/L.

5 � Conclusions

We proved that a class of distributed first-order methods, including those proposed 
in [13, 14], is robust to time-varying and uncoordinated step-sizes and time-varying 
weight-balanced digraphs, wherein connectedness of the network at each iteration, 
unlike, e.g., the recent work [28], is not required. The achieved results provide a 
solid improvement in understanding of the robustness of exact distributed first-order 
methods to time-varying networks and uncoordinated time-varying step-sizes. Most 
notably, we show that the unification strategy in [13] and the spectral-like step-size 
selection strategy in [14], as well as combination of those, exhibits a high degree 
of robustness. This paper considers weight-balanced directed networks. Extensions 
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to weight-imbalanced networks requires redefining the algorithmic class and the 
respective analysis, and represents an interesting future research direction.
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