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Abstract
In this paper, we derive a new linear convergence rate for the gradient method with 
fixed step lengths for non-convex smooth optimization problems satisfying the 
Polyak-Łojasiewicz (PŁ) inequality. We establish that the PŁ inequality is a nec-
essary and sufficient condition for linear convergence to the optimal value for this 
class of problems. We list some related classes of functions for which the gradient 
method may enjoy linear convergence rate. Moreover, we investigate their relation-
ship with the PŁ inequality.

Keywords  Weakly convex optimization · Gradient method · Performance estimation 
problem · Polyak-Łojasiewicz inequality · Semidefinite programming

1  Introduction

We consider the gradient method for the unconstrained optimization problem

where f ∶ ℝ
n
→ ℝ is differentiable, and f⋆ is finite. The gradient method with fixed 

step lengths may be described as follows.

(1)f⋆ ∶= inf
x∈ℝn

f (x),
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In addition, we assume that f has a maximum curvature L ∈ (0,∞) and a mini-
mum curvature � ∈ (−∞,L) . Recall that f has a maximum curvature L if L

2
‖.‖2 − f  

is convex. Similarly, f has a minimum curvature � if f − �

2
‖.‖2 is convex. We denote 

smooth functions with curvature belonging to the interval [�, L] by F�,L(ℝ
n) . The 

class F�,L(ℝ
n) includes all smooth functions with Lipschitz gradient (note that � ≥ 0 

corresponds to convexity). Indeed, f is L-smooth on ℝn if and only if f has a maxi-
mum and minimum curvature L̄ > 0 and 𝜇̄ , respectively, with max(L̄, |𝜇̄|) ≤ L . This 
class of functions is broad and appears naturally in many models in machine learn-
ing, see [8] and the references therein.

For f ∈ F�,L(ℝ
n) , we have the following inequalities for x, y ∈ ℝ

n

see Lemma 2.5 in [21].
It is known that the lower bound of first order methods for obtaining an �-station-

ary point is of the order Ω
(
�−2

)
 for L-smooth functions [6]. Hence, it is of interest 

to investigate the classes of functions for which the gradient method enjoys linear 
convergence rate. This subject has been investigated by some scholars and some 
classes of functions have been introduced where linear convergence is possible; see 
[7, 14–16] and the references therein. This includes the class of functions satisfying 
the Polyak-Łojasiewicz (PŁ) inequality [16, 20].

Definition 1  A function f is said to satisfy the PŁ inequality on X ⊆ ℝ
n if there 

exists 𝜇p > 0 such that

Note that the PŁ inequality is also known as  gradient dominated; see [19, Defini-
tion 4.1.3]. Strongly convex functions satisfy the PŁ inequality, but some classes of 
non-convex functions also fulfill this inequality. For instance, consider a differentia-
ble function G ∶ ℝ

n
→ ℝ

m with m ≤ n . Suppose that the non-linear system G(x) = 0 
has some solution. If

where JG(x) is the Jacobian matrix of G at x, then the function f (x) = ‖G(x)‖2 ful-
fils the PŁ inequality; see [19, Example 4.1.3]. Here, �min(A) denotes the smallest 

(2)f (y) ≤ f (x) + ⟨∇f (x), y − x⟩ + L

2
‖y − x‖2,

(3)f (y) ≥ f (x) + ⟨∇f (x), y − x⟩ + �

2
‖y − x‖2;

(4)f (x) − f⋆ ≤ 1

2𝜇p

‖∇f (x)‖2, ∀x ∈ X.

min
x∈ℝn

𝜆min

(
JG(x)JG(x)

T
)
= 𝜎 > 0,
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eigenvalue of symmetric matrix A. In other words, nonlinear least squares problems 
often correspond to instances of (1) where the objective satisfies the PŁ inequality.

The following classical theorem provides a linear convergence rate for Algo-
rithm 1 under the PŁ inequality.

Theorem  1  [20, Theorem  4] Let f be L-smooth and let f satisfy PŁ inequality on 
X = {x ∶ f (x) ≤ f (x1)} . If t1 ∈ (0,

2

L
) and x2 is generated by Algorithm 1, then

In particular, if t1 =
1

L
 , we have

In this paper we will sharpen this bound; see Theorem 3. Under the assump-
tions of Theorem  1, Karimi et  al. [16] established linear convergence rates for 
some other methods including the randomized coordinate descent. We refer the 
interested reader to the recent survey [7] for more details on the convergence of 
non-convex algorithms under the PŁ inequality.

In this paper, we analyse the gradient method from black-box perspective, 
which means that we have access to the gradient and the function value at the 
given point. Furthermore, we study the convergence rate of Algorithm 1 by using 
performance estimation.

In recent years, performance estimation has been used to find worst-case con-
vergence rates of first order methods [1, 2, 9, 10, 13, 23], to name but a few. This 
strong tool first has been introduced by Drori and Teboulle in their seminal paper 
[12]. The idea of performance estimation is that the infinite dimensional optimi-
zation problem concerning the computation of convergence rate may be formu-
lated as a finite dimensional optimization problem (often semidefinite programs) 
by using interpolation theorems. The interested reader may consult the PhD the-
ses of Drori [11] and Taylor [22] for an introduction to, and review of the topic.

The rest of the paper is organized as follows. In Sect.  2, we consider prob-
lem (1) when f satisfies the PŁ inequality. We derive a new linear convergence 
rate for Algorithm 1 by using performance estimation. Furthermore, we provide 
an optimal step length with respect to the given bound. We also show that the 
PŁ inequality is necessary and sufficient for linear convergence, in a well-defined 
sense. Sect.  3 lists some other situations where Algorithm  1 is linearly conver-
gent. Moreover, we study the relationships between these situations. Finally, we 
conclude the paper with some remarks and questions for future research.

Notation
The n-dimensional Euclidean space is denoted by ℝn . Vectors are considered 

to be column vectors and the superscript T denotes the transpose operation. We 
use ⟨⋅, ⋅⟩ and ‖ ⋅ ‖ to denote the Euclidean inner product and norm, respectively. 
For a matrix A, Aij denotes its (i, j)-th entry. The notation A ⪰ 0 means the matrix 
A is symmetric positive semi-definite, and tr(A) stands for the trace of A.

(5)f (x2) − f⋆ ≤ (
1 − t1𝜇p(2 − t1L)

)(
f (x1) − f⋆

)
.

(6)f (x2) − f⋆ ≤ (
1 −

𝜇p

L

)(
f (x1) − f⋆

)
.
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2 � Linear convergence under the PŁ inequality

This section studies linear convergence of the gradient descent under the PŁ ine-
quality. It is readily seen that the PŁ inequality implies that every stationary point 
is a global minimum on X. By virtue of the descent lemma [19, Page 29], we have

Hence, �p can take value in (0, L]. On the other hand, we may assume without loss 
of generality � ≤ �p . The inequality is trivial if � ≤ 0 , and we therefore assume that 
𝜇 > 0 . By taking the minimum with respect to y from both side of inequality (3), we 
get

Hence, one may assume without loss of generality �p = max{�,�p} in inequality 
(4).

In what follows, we employ performance estimation to get a new bound under 
the assumptions of Theorem 1. In this setting, the worst-case convergence rate of 
Algorithm 1 may be cast as the following optimization problem,

In problem (7), f and x1 are decision variables and X = {x ∶ f (x) ≤ f (x1)} . We may 
replace the infinite dimensional condition f ∈ F�,L(ℝ

n) by a finite set of constraints, 
by using interpolation. Theorem 2 gives some necessary and sufficient conditions 
for the interpolation of given data by some f ∈ F�,L(ℝ

n).

Theorem 2  [21, Theorem 3.1] Let {(xi;gi;f i)}i∈I ⊆ ℝ
n ×ℝ

n ×ℝ with a given index 
set I and let L ∈ (0,∞] and � ∈ (−∞,L) . There exists a function f ∈ F�,L(ℝ

n) with

if and only if for every i, j ∈ I

f (x) − f⋆ ≥ 1

2L
‖∇f (x)‖2, ∀x ∈ ℝ

n.

f (x) − f⋆ ≤ 1

2𝜇
‖∇f (x)‖2.

(7)

max
f (x2)−f⋆

f (x1)−f⋆

x2 is generated by Algorithm 1 w.r.t. f , x1

f (x) ≥ f⋆ ∀x ∈ ℝ
n

f (x) − f⋆ ≤ 1

2𝜇p

‖∇f (x)‖2, ∀x ∈ X

f ∈ F𝜇,L(ℝ
n)

x1 ∈ ℝ
n.

(8)f (xi) = f i,∇f (xi) = gi i ∈ I,

(9)
1

2
(
1−

�

L

)
(

1

L

‖‖‖g
i − gj

‖‖‖
2

+ �
‖‖‖x

i − xj
‖‖‖
2

−
2�

L

⟨
gj − gi, xj − xi

⟩)

≤ f i − f j −
⟨
gj, xi − xj

⟩
.
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It is worth noting that Theorem 2 addresses non-smooth functions as well. In fact, 
L = ∞ covers non-smooth functions. Note that we only investigate the smooth case in 
this paper, that is L ∈ (0,∞) and � ∈ (−∞, 0].

By Theorem 2, problem (7) may be relaxed as follows,

As we replace the constraint f (x) − f⋆ ≤ 1

2𝜇p

‖∇f (x)‖2 for each x ∈ X by 
f 1 − f⋆ ≤ 1

2𝜇p

‖g1‖2 and f 2 − f⋆ ≤ 1

2𝜇p

‖g2‖2 , problem (10) is a relaxation of prob-
lem (7). By using the constraint x2 = x1 − t1g

1 , problem (10) may be reformulated 
as,

By using the Gram matrix,

problem (11) can be relaxed as follows,

(10)

max
f 2−f⋆

f 1−f⋆

s.t.
1

2(1−
𝜇

L
)

�
1

L
��gi − gj��2 + 𝜇��xi − xj��2 − 2𝜇

L

�
gj − gi, xj − xi

�� ≤
f i − f j −

�
gj, xi − xj

�
i, j ∈ {1, 2}

x2 = x1 − t1g
1

f k ≥ f⋆ k ∈ {1, 2}

f k − f⋆ ≤ 1

2𝜇p

‖gk‖2, k ∈ {1, 2}.

(11)

max
f 2−f⋆

f 1−f⋆

s.t.
1

2(L−𝜇)

�‖g2‖2 + (1 + 𝜇Lt2
1
− 2𝜇t1)‖g1‖2 + 2(𝜇t1 − 1)⟨g1, g2⟩�

− f 2 + f 1 −
�
g1, t1g

1
� ≤ 0

1

2(L−𝜇)

�‖g2‖2 + (1 + 𝜇Lt2
1
− 2𝜇t1)‖g1‖2 + 2(𝜇t1 − 1)⟨g1, g2⟩�

− f 1 + f 2 +
�
g2, t1g

1
� ≤ 0

f⋆ − f k ≤ 0 k ∈ {1, 2}

f k − f⋆ −
1

2𝜇p

‖gk‖2 ≤ 0, k ∈ {1, 2}.

X =

�
(g1)T

(g2)T

��
g1 g2

�
=

� ‖g1‖1 ⟨g1, g2⟩
⟨g1, g2⟩ ‖g2‖2

�
,

(12)

max
f 2−f⋆

f 1−f⋆

s.t. tr(A1X) − f 2 + f 1 ≤ 0

tr(A2X) − f 1 + f 2 ≤ 0

f 1 − f⋆ + tr(A3X) ≤ 0

f 2 − f⋆ + tr(A4X) ≤ 0

f 1, f 2 ≥ f⋆,X ⪰ 0,
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where

In addition, X, f 1, f 2 are decision variables in this formulation. In the next theorem, 
we obtain an upper bound for problem (11) by using weak duality. This bound gives 
a new convergence rate for Algorithm 1 for a wide variety of functions.

Theorem 3  Let f ∈ F�,L(ℝ
n) with L ∈ (0,∞),� ∈ (−∞, 0] and let f satisfy the PŁ 

inequality on X = {x ∶ f (x) ≤ f (x1)} . Suppose that x2 is generated by Algorithm 1. 

i)	 If t1 ∈
(
0,

1

L

)
 , then 

ii)	 If t1 ∈
�
1

L
,

3

�+L+
√
�2−L�+L2

�
 , then 

iii)	 If t1 ∈
�

3

�+L+
√
�2−L�+L2

,
2

L

�
 , then 

In particular, if t1 =
1

L
 and � = −L , we have

Proof  First we consider t1 ∈
(
0,

1

L

)
 . Let

A1 =

⎛
⎜⎜⎝

1+�Lt2
1
−2�t1

2(L−�)
− t1

�t1−1

2(L−�)
�t1−1

2(L−�)

1

2(L−�)

⎞
⎟⎟⎠

A2 =

⎛
⎜⎜⎝

1+�Lt2
1
−2�t1

2(L−�)

�t1−1

2(L−�)
+

t1

2
�t1−1

2(L−�)
+

t1

2

1

2(L−�)

⎞
⎟⎟⎠

A3 =

�
−1

�2
p

0

0 0

�
A4 =

�
0 0

0
−1

�2
p

�
.

f (x2) − f⋆

f (x1) − f⋆

≤
⎛
⎜⎜⎜⎝

𝜇p

�
1 − Lt1

�
+

�
(L − 𝜇)

�
𝜇 − 𝜇p

��
2 − Lt1

�
𝜇pt1 + (L − 𝜇)

2

L − 𝜇 + 𝜇p

⎞
⎟⎟⎟⎠

2

.

f (x2) − f⋆

f (x1) − f⋆
≤
(
(Lt1 − 2)(𝜇t1 − 2)𝜇pt1(

L + 𝜇 − 𝜇p

)
t1 − 2

+ 1

)
.

f (x2) − f⋆

f (x1) − f⋆
≤ (Lt1 − 1)2

(Lt1 − 1)2 + 𝜇pt1(2 − Lt1)
.

(13)f (x2) − f⋆ ≤
(
2L − 2𝜇p

2L + 𝜇p

)(
f (x1) − f⋆

)
.
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where

It is readily seen that b1, b2 ≥ 0 . Furthermore,

Therefore, for any feasible solution of problem (11), we have

and the proof of this part is complete. Now, we consider the case that 
t1 ∈

�
1

L
,

3

�+L+
√
�2−L�+L2

�
 . Suppose that

It is readily seen that a1, a2, a3, a4 ≥ 0 . Furthermore,

b1 =
(L − �)

(
� + �p

(
1 − Lt1

))

�
(
L − � + �p

)

b2 = b1 −

(
�

L − �
b1

)2

,

� =

√
(L − �)

(
�pt1

(
�p − �

)(
Lt1 − 2

)
+ (L − �)

)
.

f 2 − f⋆ − (b1 − b2)
�
f 1 − f⋆

�
− b2

�
−

1

2𝜇p

���g
1���

2

+ f 1 − f⋆
�

−
�
1 − b1

��
−

1

2𝜇p

���g
2���

2

+ f 2 − f⋆
�
− b1

�
1

2(L − 𝜇)

�‖g2‖2

+(1 + 𝜇Lt2
1
− 2𝜇t1)‖g1‖2 + 2(𝜇t1 − 1)⟨g1, g2⟩� − f 1 + f 2 +

�
g2, t1g

1
��

= −
1 − Lt1

2𝛼

����
𝛼b1

L − 𝜇
g1 − g2

����
2

≤ 0.

f (x2) − f⋆

f (x1) − f⋆

≤
⎛
⎜⎜⎜⎝

𝜇p

�
1 − Lt1

�
+

�
(L − 𝜇)

�
𝜇 − 𝜇p

��
2 − Lt1

�
𝜇pt1 + (L − 𝜇)

2

L − 𝜇 + 𝜇p

⎞
⎟⎟⎟⎠

2

,

a1 =
�t1 − 1(

L + � − �p

)
t1 − 2

, a2 =
1 − Lt1(

L + � − �p

)
t1 − 2

,

a3 = −

(
(Lt1 − 2)(�t1 − 2) − 1

)
�pt1(

L + � − �p

)
t1 − 2

, a4 = −
�pt1(

L + � − �p

)
t1 − 2

.
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Therefore, for any feasible solution of problem (11), we have

Now, we prove the last part. Assume that t1 ∈
�

3

�+L+
√
�2−L�+L2

,
2

L

�
 . With some alge-

bra, one can show

where,

The rest of the proof is similar to that of the former cases. 	�  ◻

One may wonder how we obtain Lagrange multipliers (dual variables) in The-
orem  3. The multipliers are computed by solving the dual of problem (12) by 
hand. Furthermore, Theorem 3 provides a tighter bound in comparison with the 
convergence rate given in Theorem 1 for L-smooth functions with t1 ∈ (0,

2

L
) . To 

show this, we need investigate three subintervals: 

i)	 Suppose that t1 ∈
(
0,

1

L

)
 . As 1 − Lt1 ≤ 0 , 

f 2 − f⋆ −
�
1 − a3 − a4

��
f 1 − f⋆

�
− a3

�
−

1

2𝜇p

���g
1���

2

+ f 1 − f⋆
�

− a4

�
−

1

2𝜇p

���g
2���

2

+ f 2 − f⋆
�
− a1

�
1

2(L − 𝜇)

�‖g2‖2 + (1 + 𝜇Lt2
1
− 2𝜇t1)‖g1‖2

+2(𝜇t1 − 1)⟨g1, g2⟩� − f 1 + f 2 +
�
g2, t1g

1
��

− a2

�
1

2(L − 𝜇)

�‖g2‖2

+(1 + 𝜇Lt2
1
− 2𝜇t1)‖g1‖2 + 2(𝜇t1 − 1)⟨g1, g2⟩� − f 2 + f 1 −

�
g1, t1g

1
��

= 0.

f (x2) − f⋆ −

(
L𝜇p𝜇t

3
1
− 2𝜇p(L + 𝜇)t2

1
+ 4𝜇pt1(

L + 𝜇 − 𝜇p

)
t1 − 2

+ 1

)(
f (x1) − f⋆

) ≤ 0.

f 2 − f⋆ −

�
(Lt1 − 1)2

𝛽

��
f 1 − f⋆

�
−

�
𝜇pt1(2 − Lt1)

𝛽

��
−

1

2𝜇p

���g
2���

2

+ f 2 − f⋆
�

−

�
(Lt1 − 1)(2 − Lt1)

𝛽

�

�
1

2(L − 𝜇)

�‖g2‖2 + (1 + 𝜇Lt2
1
− 2𝜇t1)‖g1‖2 + 2(𝜇t1 − 1)⟨g1, g2⟩�

−f 2 + f 1 −
�
g1, t1g

1
��

−

�
Lt1 − 1

𝛽

��
1

2(L − 𝜇)

�‖g2‖2 + (1 + 𝜇Lt2
1
− 2𝜇t1)‖g1‖2

+2(𝜇t1 − 1)⟨g1, g2⟩� − f 1 + f 2 +
�
g2, t1g

1
��

= −
(1 − Lt1)

�
L𝜇t2 − 2(𝜇 + L)t + 3

�
2𝛽(L − 𝜇)

����
√
Lt1 − 1g1 +

1√
Lt1−1

g2
����
2 ≤ 0,

� = (Lt1 − 1)2 + �pt1(2 − Lt1).
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 where the last inequality follows from non-positivity of the quadratic function 

T1(t1) = −Lt2
1

(
2L2 + L�p + �2

p

)
+ 2t1

(
2L2 + L�p + �2

p

)
− 4L on the given interval.

ii)	 Let t1 ∈
�
1

L
,

√
3

L

�
 . Since �p ≤ L and (2 − Lt1) > 0 , we have 

iii)	 Assume that t1 ∈ (

√
3

L
,
2

L
) . It is readily verified that the quadratic function 

T2(t1) = (Lt1 − 1)2 + �pt1(2 − Lt1) − 1 is non-positive on the given interval. 
Hence, 

Therefore, for t1 ∈
(
0,

2

L

)
 the bound provided by Theorem 3 is tighter than that 

given by Theorem 2.
In most problems, the smoothness constant, L, is unknown. By using (2), any 

estimation of the smoothness constant L, say L̃ , should satisfy the following 
inequality,

Thus one may try to obtain a suitable estimate by searching for a sufficiently large 
value of L̃ that satisfies this inequality. This technique is due to Nesterov; see [18, 
Section 3] for details.

The next proposition gives the optimal step length with respect to the worst-case 
convergence rate.

Proposition 1  Let f ∈ F�,L(ℝ
n) with L ∈ (0,∞),� ∈ (−∞, 0] and let f satisfy the PŁ 

inequality on X = {x ∶ f (x) ≤ f (x1)} . Suppose that 
r(t) = L�(L + � − �p)t

3 −
(
L2 − �p(L + �) + 5L� + �2

)
t2 + 4(L + �)t − 4 and t̄ is 

the unique root of r in 
�
1

L
,

3

�+L+
√
�2−L�+L2

�
 if it exists. Then t⋆ given by

is the optimal step length for Algorithm 1 with respect to the worst-case convergence 
rate.

�
�p(1−Lt1)+

√
2L(−L−�p)(2−Lt1)�pt1+4L

2

2L+�p

�2

≤ 4L2+2L�pt1(L+�p)(Lt1−2)+(�p−L�pt1)
2

(2L+�p)
2

≤ 1 − t1�p(2 − t1L),

1 ≤ Lt1+2

�pt1+2
⇒ 1 −

(2−Lt1)(Lt1+2)�pt1

�pt1+2
≤ 1 − t1�p(2 − Lt1).

(Lt1−1)
2

(Lt1−1)
2+�pt1(2−Lt1)

= 1 −
�pt1(2−Lt1)

(Lt1−1)
2+�pt1(2−Lt1)

≤ 1 − t1�p(2 − Lt1).

f
�
x −

1

L̃
∇f (x)

� ≤ f (x) −
1

2L̃
‖∇f (x)‖2.

t⋆ =

�
t̄ if t̄ exists

3

𝜇+L+
√
𝜇2−L𝜇+L2

otherwise,
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Proof  To obtain an optimal step length, we need to solve the optimization problem

 where h is given by

It is easily seen that h is decreasing on 
(
0,

1

L

)
 and is increasing on 

�
3

�+L+
√
�2−L�+L2

,
2

L

�
 . 

Hence, we need investigate the closed interval 
�
1

L
,

3

�+L+
√
�2−L�+L2

�
 . We will show that 

h is convex on the interval in question. First, we consider the case L + � − �p ≤ 0 . 
Let p(t) = �t−2

(L+�−�p)t−2
 and q(t) = (Lt − 2)�pt . By some algebra, one can show the fol-

lowing inequalities for t ∈
�
1

L
,

3

�+L+
√
�2−L�+L2

�
:

Hence, the convexity of h follows from h�� = p��q + 2p�q� + pq�� . Now, we investi-
gate the case that L + 𝜇 − 𝜇p > 0 . Suppose that p(t) =

�pt

(L+�−�p)t−2
 and 

q(t) = (Lt − 2)(�t − 2) . For these functions, we have the following inequalities

which analogous to the former case one can infer the convexity of h on the given 
interval. Hence, if h has a root in 

�
1

L
,

3

�+L+
√
�2−L�+L2

�
 , it will be the minimum. Other-

wise, the point t⋆ =
3

𝜇+L+
√
𝜇2−L𝜇+L2

 will be the minimum. This follows from the 

point that h�( 1
L
) =

2L�p(�p−L)

(L+�p−�)
2
≤ 0 and the convexity of h on the interval in question. 	

� ◻

min

t∈

(
0,
2

L

) h(t),

h(t) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�
�p(1−Lt)+

√
(L−�)(�−�p)(2−Lt)�pt+(L−�)

2

L−�+�p

�2

t ∈
�
0,

1

L

�

(Lt−2)(�t−2)�pt

(L+�−�p)t−2
+ 1 t ∈

�
1

L
,

3

�+L+
√
�2−L�+L2

�

(Lt−1)2

(Lt−1)2+(2−Lt)�pt
t ∈

�
3

�+L+
√
�2−L�+L2

,
2

L

�
.

p(t) ≥ 0 q(t) ≤ 0

p�(t) ≥ 0 q�(t) ≥ 0

p��(t) ≤ 0 q��(t) ≥ 0.

p(t) ≤ 0 q(t) ≥ 0

p�(t) ≤ 0 q�(t) ≤ 0

p��(t) ≥ 0 q��(t) ≤ 0,
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Thanks to Proposition 1, the following corollary gives the optimal step length 
for L-smooth convex functions satisfying the PŁ inequality.

Corollary 1  If f is an L-smooth convex function satisfying the PŁ inequality, then the 
optimal step length with respect to the worst-case convergence rate is 
min

�
2

L+
√
L�p

,
3

2L

�
.

The constant 2

L+
√
L�p

 also appears in the the fast gradient algorithm introduced in 
[17] for L-smooth convex functions which are (1,�s)-quasar-convex, see Definition 4. 
By Theorem 9, (1,�s)-quasar-convexity implies the PŁ inequality with the same con-
stant. Algorithm 2 describes the method in question.

One can verify that Algorithm  2, at the first iteration, generates 
x2 = x1 −

2

L+
√
L�p

∇f (x1).
A more general form of the PŁ inequality, called the Łojasiewicz inequality, may be 

written as

where � ∈ (0, 1) . It is known that when � ∈ (0,
1

2
] some algorithms, including Algo-

rithm  1, is linearly convergent; see [3, 4]. In the next theorem, we show that for 
functions with finite maximum and minimum curvature the Łojasiewicz inequality 
cannot hold for � ∈ (0,

1

2
).

Theorem 4  Let f ∈ F�,L(ℝ
n) be a non-constant function. If f satisfies the Łojasiewicz 

inequality on X = {x ∶ f (x) ≤ f (x1)} , then � ≥ 1

2
.

Proof  To the contrary, assume that � ∈ (0,
1

2
) . Without loss of generality, we may 

assume that � = −L . It is known that Algorithm 1 generates a decreasing sequence 
{f (xk)} and it is convergent, that is ‖∇f (xk)‖ → 0 ; see [19, page 28]. Furthermore, 
(14) implies that f (xk) → f⋆ . Without loss of generality, we may assume that 
f⋆ = 0 . First, we investigate the case that f (x1) = 1 . The semi-definite programming 
problem corresponding to performance estimation in this case may be formulated as 
follows,

(14)
�
f (x) − f⋆

�2𝜃 ≤ 1

2𝜇p

‖∇f (x)‖2, ∀x ∈ X,
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Since Algorithm 1 is a monotone method, f 2 can take value in [0, 1]. In addition, we 
have f 2 ≤ (f 2)2� on this interval. Hence, by using Theorem 3, we get the following 
bound,

Now, suppose that f (x1) = f 1 > 0 . Consider the function h ∶ ℝ
n
→ ℝ given by 

h(x) =
f (x)

f 1
 . It is seen that h is L

f 1
-smooth and

As Algorithm 1 generates the same x2 for both functions, by using the first part, we 
obtain

For f 1 sufficiently small, we have 2L−2𝜇p(f
1)2𝜃−1

2L+𝜇p(f
1)2𝜃−1

< 0 , which contradicts f⋆ ≥ 0 and the 
proof is complete. 	�  ◻

Necoara et al. gave necessary and sufficient conditions for linear convergence of 
the gradient method with constant step lengths when f is a smooth convex func-
tion; see [17, Theorem 13]. Indeed, the theorem says that Algorithm 1 is linearly 
convergent if and only if f has a quadratic functional growth on {x ∶ f (x) ≤ f (x1)} ; 
see Definition 3. However, this theorem does not hold necessarily for non-convex 
functions. The next theorem provides necessary and sufficient conditions for linear 
convergence of Algorithm 1.

Theorem  5  Let f ∈ F�,L(ℝ
n) . Algorithm  1 is linearly convergent to the optimal 

value if and only if f satisfies PŁ inequality on {x ∶ f (x) ≤ f (x1)}.

Proof  Let x̄ ∈ {x ∶ f (x) ≤ f (x1)} . Linear convergence implies the existence of 
� ∈ [0, 1) with

where x̂ = x̄ −
1

L
∇f (x̄) . By (3), we have f (x̄) − f (x̂) ≤ 2L−𝜇

2L2
‖∇f (x̄)‖2 . By using this 

inequality with (16), we get

(15)

max f 2

s.t. tr(A1X) − f 2 + 1 ≤ 0

tr(A2X) − 1 + f 2 ≤ 0

1 + tr(A3X) ≤ 0

(f 2)2� + tr(A4X) ≤ 0

f 2 ≥ 0,X ⪰ 0.

f 2 ≤ 2L − 2�p

2L + �p

.

h(x)2� ≤ 1

2�p(f
1)2�−2

‖∇h(x)‖2, ∀x ∈ X.

f (x2)

f (x1)
≤ 2L(f 1)−1 − 2�p(f

1)2�−2

2L(f 1)−1 + �p(f
1)2�−2

=
2L − 2�p(f

1)2�−1

2L + �p(f
1)2�−1

.

(16)f (x̂) − f⋆ ≤ 𝛾
(
f (x̄) − f⋆

)
,
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which shows that f satisfies PŁ inequality on {x ∶ f (x) ≤ f (x1)} . The other implica-
tion follows from Theorem 3. 	�  ◻

3 � The PŁ inequality: relation to some classes of functions

In this section, we study some classes of functions for which Algorithm  1 may 
be linearly convergent. We establish that these classes of functions satisfy the PŁ 
inequality under mild assumptions, and we infer the linear convergence by using 
Theorem  3. Moreover, one can get convergence rates by applying performance 
estimation.

Throughout the section, we denote the optimal solution set of problem (1) by 
X⋆ and we assume that X⋆ is non-empty. We denote the distance function to X⋆ by 
dX⋆(x) ∶= infy∈X⋆ ‖y − x‖ . The set-valued mapping ΠX⋆(x) stands for the projection 
of x on X⋆ , that is, ΠX⋆(x) = {y ∶ ‖y − x‖ = dX⋆(x)} . Note that, as X⋆ is non-empty 
closed set, ΠX∗ (x) exists and is well-defined.

Definition 2  Let 𝜇g > 0 . A function f has a quadratic gradient growth on X ⊆ ℝ
n if

for some x⋆ ∈ ΠX⋆ (x).

Note that inequality (2) implies that �g ≤ L . Hu et al. [15] investigated the con-
vergence rate {xk} when f satisfies (17) and X⋆ is singleton. To the best knowledge 
of the authors, there is no convergence rate result in terms of {f (xk)} for functions 
with a quadratic gradient growth. The next proposition states that quadratic gradient 
growth property implies the PŁ inequality.

Proposition 2  Let f ∈ F�,L(ℝ
n) . If f has a quadratic gradient growth on X ⊆ ℝ

n 

with 𝜇g > 0 , then f satisfies the PŁ inequality with �p =
�2
g

L
.

Proof  Suppose that x⋆ ∈ ΠX⋆ (x) satisfies (17). By the Cauchy-Schwarz inequality, 
we have

On the other hand, (2) implies that

f (x̄) − f⋆ ≤ 1

1−𝛾
(f (x̄) − f (x̂)) ≤ 2L−𝜇

2L2(1−𝛾)
‖∇f (x̄)‖2,

(17)⟨∇f (x), x − x⋆⟩ ≥ 𝜇gd
2
X⋆(x), ∀x ∈ X,

(18)𝜇g‖x − x⋆‖ ≤ ‖∇f (x)‖.
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The PŁ inequality follows from (18) and (19). 	�  ◻

By Proposition 2 and Theorem 3, one can infer the linear convergence of Algo-
rithm 1 when f has a quadratic gradient growth on X = {x ∶ f (x) ≤ f (x1)} . Indeed, 
one can derive the following bound if t1 =

1

L
 and � = −L,

Nevertheless, by using the performance estimation method, one can derive a better 
bound than the bound given by (20). The performance estimation problem for t1 =

1

L
 

in this case may be formulated as

(19)f (x) ≤ f (x⋆) +
L

2
‖x − x⋆‖2.

(20)f (x2) − f⋆ ≤
(
2L2 − 2𝜇2

g

2L2 + 𝜇2
g

)(
f (x1) − f⋆

)
.

(21)

max
f 2−f⋆

f 1−f⋆

s.t. {xk, gk, f k} ∪ {yk, 0, f⋆} satisfy interpolation constraints (9) for k ∈ {1, 2}

x2 = x1 −
1

L
g1

f k ≥ f⋆ k ∈ {1, 2}

⟨gk, xk − yk⟩ ≥ 𝜇g‖yk − xk‖2, k ∈ {1, 2}

‖x1 − y1‖2 ≤ ‖x1 − y2‖2
‖x2 − y2‖2 ≤ ‖x2 − y1‖2.

0 0.5 1
0

0.5

1

µg

L

U
pp

er
b
ou

nd
on

fu
nc

ti
on

va
lu
e

Bound (20)
PEP bound (21)

Fig. 1   Convergence rate computed by performance estimation (red line) and the bound given by (20) 
(blue line) for �g

L
∈ (0, 1) . (color figure online)
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Analogous to Sect. 2, one can obtain an upper bound for problem (21) by solving a 
semidefinite program. Our numerical results show that the bounds generated by per-
formance estimation is tighter than bound (20); see Fig. 1. We do not have a closed-
form bound on the optimal value of (21), though.

Definition 3  [17, Definition 4], [19, Definition 4.1.2] Let 𝜇q > 0 . A function f has a 
quadratic functional growth on X ⊆ ℝ

n if

It is readily seen that, contrary to the previous situations, the quadratic func-
tional growth property does not necessarily imply that each stationary point is a 
global optimal solution. The next theorem investigates the relationship between 
quadratic functional growth property and other notions.

Theorem 6  Let f ∈ F�,L(ℝ
n) and let X = {x ∶ f (x) ≤ f (x1)} . We have the following 

implications: 

i)	 (4) ⇒ (22) with �q = �p.
ii)	 If 𝜇q >

−𝜇L

L−𝜇
 , then (22) ⇒ (17) with �g =

�q

2
(1 −

�

L
) +

�

2
.

iii)	 If 

 for some x⋆ ∈ ΠX⋆ (x) then (22) ⇒ (17) with �g =
�q

2
.

Proof  One can establish i) similarly to the proof of [16, Theorem 2]. Consider part 
ii). Let x ∈ X and x⋆ ∈ ΠX⋆ (x) with dX⋆(x) = ‖x − x⋆‖ . By (9), we have

As 𝜇q

2
‖x − x⋆‖2 ≤ f (x) − f (x⋆) , we get

which establishes the desired inequality. Part iii) is proved similarly to the former 
case. 	�  ◻

By Theorem  3, it is clear that Algorithm  1 enjoys linear convergence rate if 
f has a quadratic gradient growth on X = {x ∶ f (x) ≤ f (x1)} and if f satisfies 
assumptions ii) or iii) in Theorem 6. For instance, if � = −L and �q ∈ (

L

2
, L) , one 

can derive the following convergence rate for Algorithm 1 for fixed step length 
tk =

1

L
 , k ∈ {1, ...,N},

(22)
𝜇q

2
d2
X⋆(x) ≤ f (x) − f⋆, ∀x ∈ X.

f (x) − f (x⋆) ≤ ⟨∇f (x), x − x⋆⟩, ∀x ∈ X,

f (x) − f (x⋆) ≤ −1

2(L−𝜇)
‖∇f (x)‖2 − 𝜇L

2(L−𝜇)
‖x − x⋆‖2 + L

L−𝜇
⟨∇f (x), x − x⋆⟩.

�
𝜇q

2

�
1 −

𝜇

L

�
+

𝜇

2

���x − x⋆��2 ≤ ⟨∇f (x), x − x⋆⟩,
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It is interesting to compare the convergence rate (23) to the convergence rate 
obtained by using the performance estimation framework. In this case, the perfor-
mance estimation problem may be cast as follows,

Since xk+1 = xk −
1

L
gk , we get xk+1 = x1 −

1

L

∑k

l=1
gl . Hence, problem (24) may be 

reformulated as follows,

The next theorem provides an upper bound for problem (25) by using weak duality.

Theorem  7  Let f ∈ F−L,L(ℝ
n) and let f have a quadratic functional growth on 

X = {x ∶ f (x) ≤ f (x1)} with �q ∈ (
L

2
, L) . If tk =

1

L
 , k ∈ {1, ...,N} , then we have the 

following convergence rate for Algorithm 1,

Proof  The proof is analogous to that of Theorem 3. Without loss of generality, we 
may assume that f⋆ = 0 . By some algebra, one can show that

(23)f (xN+1) − f (x1) ≤
(
2L2 − 2(𝜇q −

L

2
)2

2L2 + (𝜇q −
L

2
)2

)N(
f (x1) − f⋆

)
.

(24)

max
f N+1−f⋆

f 1−f⋆

s.t. {xk, gk, f k} ∪ {yk, 0, f⋆} satisfy inequality (9) for k ∈ {1, ...,N + 1}

xk+1 = xk −
1

L
gk, k ∈ {1, ...,N}

f k ≥ f⋆ k ∈ {1, ...,N}

f k − f⋆ ≥ 𝜇q

2
‖xk − yk‖2, k ∈ {1, ...,N + 1}

‖xk − yk‖2 ≤ ‖xk − yk
�‖2, k ∈ {1, ...,N + 1}, k� ∈ {1, ...,N + 1}.

(25)

max
f N+1−f⋆

f 1−f⋆

s.t.

{
x1 −

1

L

k−1∑
l=1

gl, gk, f k

}
∪ {yk, 0, f⋆} satisfy interpolation constraints (9)

f k ≥ f⋆ k ∈ {1, ...,N}

f k − f⋆ ≥ 𝜇q

2

‖‖‖‖‖‖
x1 −

1

L

k−1∑
l=1

gl − yk
‖‖‖‖‖‖

2

, k ∈ {1, ...,N + 1}

‖‖‖‖‖‖
x1 −

1

L

k−1∑
l=1

gl − yk
‖‖‖‖‖‖

2

≤
‖‖‖‖‖‖
x1 −

1

L

k−1∑
l=1

gl − yk
�

‖‖‖‖‖‖

2

, k, k� ∈ {1, ...,N + 1}.

(26)f (xN+1) − f (x1) ≤ L

𝜇q

(
2 −

2𝜇q

L

)N(
f (x1) − f⋆

)
.
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By using the above inequality, we get

for any feasible point of (25), and the proof is complete. 	�  ◻

By doing some calculus, one can verify the following inequality

Hence, Theorem 7 provides a tighter bound than (23).

Definition 4  [14, Definition 1] Let � ∈ (0, 1] and �s ≥ 0 . A function f is called (� ,�s)

-quasar-convex on X ⊆ ℝ
n with respect to x⋆ ∈ argminx∈ℝn f (x) if

The class of quasar-convex functions is large. For instance, non-negative homoge-
neous functions are (1, 0)-quasar-convex on ℝn . (Recall that a function f ∶ ℝ

n
→ ℝ 

is called homogeneous of degree k if f (�x) = �kf (x) for all x ∈ ℝ
n, � ∈ ℝ . ) Indeed, 

if f is non-negative homogeneous of degree k ≥ 1 , by the Euler identity, we have

f N+1 − f⋆ −
L

𝜇q

�
2 −

2𝜇q

L

�N�
f 1 − f⋆

�
+

N+1�
j=1

�
2N+1−j

�
1 −

𝜇q

L

�N−1
�

×

⎛⎜⎜⎝
f⋆ − f j −

�
gj, y1 − x1 +

1

L

j−1�
l=1

gl

�
−

1

2L
‖gj‖2 + L

4

������
y1 − x1 +

1

L

j−1�
l=1

gl +
1

L
gj
������

2⎞⎟⎟⎠

+

N�
i=2

N+1�
j=i

�
2N+1−j

�
𝜇q

L

��
1 −

𝜇q

L

�N−i
��

f⋆ − f j − ⟨gj, yi − x1 +
1

L

j−1�
l=1

gl⟩

−
1

2L
‖gj‖2 + L

4

������
yi − x1 +

1

L

j−1�
l=1

gl +
1

L
gj
������

2⎞
⎟⎟⎠
+

N�
j=2

�
2N+1−j(1 −

𝜇q

L
)N−j

�

×

⎛⎜⎜⎝
f j − f⋆ −

𝜇q

2

������
yj − x1 +

1

L

j−1�
l=1

gl
������

2⎞⎟⎟⎠
+

�
2N

�
1 −

𝜇q

L

�N−1

+
L

𝜇q

�
2 −

2𝜇q

L

�N
�

×

�
f 1 − f⋆ −

𝜇q

2
‖y1 − x1‖2

�
= −

�
L

4

�
1 −

𝜇q

L

�N−1‖y1 − x1 +
1

L

N+1�
l=1

gl‖2
�

−

N�
i=2

⎛⎜⎜⎝
𝜇q

4

�
1 −

𝜇q

L

�N−i
������
yi − x1 +

1

L

N+1�
l=1

gl
������

2⎞⎟⎟⎠
≤ 0.

f N+1 − f⋆ ≤ L

𝜇q

(
2 −

2𝜇q

L

)N(
f 1 − f⋆

)
,

2L2 − 2
(
�q −

L

2

)2

2L2 +
(
�q −

L

2

)2
≥ (

2 −
2�q

L

)
, �q ∈

(
L

2
, L
)
.

(27)f (x) +
1

𝛾
⟨∇f (x), x⋆ − x⟩ + 𝜇s

2
‖x⋆ − x‖2 ≤ f⋆, ∀x ∈ X.
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where x⋆ = 0 . In what follows, we list some convergence results concerning quasar-
convex functions for Algorithm 1.

Theorem 8  [5, Remark 4.3] Let f be L-smooth and let f be (� ,�s)-quasar-convex on 
X = {x ∶ f (x) ≤ f (x1)} . If t1 =

1

L
 and if x2 is from Algorithm 1, then

In the following theorem, we state the relationship between quasar-convexity and 
other concepts. Before we get to the theorem, we recall star convexity. A set X is 
called star convex at x⋆ if

Theorem  9  Let x⋆ be the unique solution of problem (1) and let 
X = {x ∶ f (x) ≤ f (x1)} . If X is star convex at x⋆ , then we have the following 
implications: 

i)	 (27) ⇒ (17) with �g =
�s�

2
+

�s�
2

4
.

ii)	 (17) ⇒ (27) with �s = � −
L

2
 and � =

�g

�
 for each � ∈ (max(

L

2
,�g),∞).

iii)	 (27) ⇒ (4) with �p = �s�
2.

Proof  The proof of i) is similar in spirit to the proof of Theorem  1 in [17]. Let 
x ∈ X . By the fundamental theorem of calculus and (27),we have

where the last inequality follows from the global optimality of x⋆ . By summing 
f (x) − f (x⋆) ≥ 𝛾𝜇s

4
‖x − x⋆‖2 and (27), we get the desired inequality. Now, we prove 

part ii). Let x ∈ ℝ
n and � ∈ (max(

L

2
,�g),∞) . By (2), we have

By using (29) and (17), we get

f (x) + ⟨∇f (x), x⋆ − x⟩ = (1 − k)f (x) ≤ 0, ∀x ∈ ℝ
n,

(28)f (x2) − f⋆ ≤ (
1 −

𝛾2𝜇s

L

)(
f (x1) − f⋆

)
.

𝜆x + (1 − 𝜆)x⋆ ∈ X, ∀x ∈ X,∀𝜆 ∈ [0, 1].

f (x) − f (x⋆) = �
1

0

1

𝜆
⟨∇f (𝜆x + (1 − 𝜆)x⋆), 𝜆x + (1 − 𝜆)x⋆ − x⋆⟩d𝜆

≥ �
1

0

𝛾

𝜆

�
f (𝜆x + (1 − 𝜆)x⋆) − f (x⋆) +

𝜇s𝜆
2

2
‖x − x⋆‖2

�
d𝜆

≥ 𝛾𝜇s

4
‖x − x⋆‖2,

(29)f (x) ≤ f (x⋆) +
L

2
‖x − x⋆‖2.
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For the proof of iii), we refer the reader to [5, Lemma 3.2]. 	�  ◻

By combining Theorem 3 and Theorem 9, under the assumptions of Theorem 8, 
one can get the following convergence rate for Algorithm 1 with t1 =

1

L
,

which is tighter the bound given in Theorem 8.

4 � Concluding remarks

In this paper we studied the convergence rate of the gradient method with fixed step 
lengths for smooth functions satisfying the PŁ inequality. We gave a new conver-
gence rate, which is sharper than known bounds in the literature. One important 
question which remains to be addressed is the computation of the tightest bound 
for Algorithm 1. Moreover, the performance analysis of fast gradient methods, like 
Algorithm 2, for these classes of functions may also be of interest.

We only studied the linear convergence in terms of the convergence of objective 
values. However, one can also infer the linear convergence in terms of distance to 
the solution set or the norm of the gradient by using our results. For instance, under 
the assumption of Theorem 3, we have

where the first inequality follows from Theorem 6, � is the linear convergence rate 
given in Theorem 3, and the last inequality resulted from (2). Hence,

Moreover, the quadratic gradient growth is a necessary and sufficient conditions for 
the linear convergence in terms of distance to the solution set; see [24, Theorem 3.4]. 
Note that the PŁ inequality and the quadratic gradient growth are equivalent.
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f (x) +
�

�

𝜇g

�
⟨∇f (x), x⋆ − x⟩ +

�
� −

L

2

�
‖x − x⋆‖2 ≤ f (x⋆).

f (x2) − f⋆ ≤
(
2L − 2𝜇s𝛾

2

2L + 𝜇s𝛾
2

)(
f (x1) − f⋆

)
,

𝜇p

2
d2
X⋆(x

k+1) ≤ f (xk+1) − f⋆ ≤ 𝛾k
(
f (x1) − f⋆

) ≤ L𝛾k

2
d2
X⋆(x

1),

d2
X⋆(x

k+1) ≤ L𝛾k

𝜇p

d2
X⋆(x

1).
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