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Abstract
When an infectious disease spreads, how to quickly vaccinate with a limited budget 
per time step to reduce the impact of the virus is very important. Specifically, vac‑
cination will be carried out in every time step, and vaccinated nodes will no longer 
be infected. Meanwhile, the protection from vaccination can spread to the neigh‑
bors of a vaccinated node. Our goal is to efficiently find optimal and approximation 
solutions to our problem with various algorithms. In this paper, we first design an 
integer linear program to solve this problem. We then propose approximation algo‑
rithms of (1) Linear programming (LP) deterministic threshold rounding, (2) LP 
dependent randomized rounding, and (3) LP independent randomized rounding. We 
prove that the LP independent randomized rounding algorithm has a high probabil‑
ity of finding a feasible solution that gives an approximation ratio of (1 − �) , where 
a small constant � between 0 and 1 reduces the lower bound on the feasibility prob-
ability. We also provide experimental results for three different rounding algorithms 
to show that they perform numerically well in terms of approximation ratios. These 
analytical and numerical studies allow each individual to adopt the most appropri‑
ate approximation algorithm to efficiently resolve the vaccination problem when her 
reliance on commercial optimization solvers is costly.
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1 Introduction

Humans have been battling infectious diseases, such as SARS, COVID‑19, etc. 
There will be serious consequences if we cannot efficiently prevent the spread of 
viruses. Thus, when an epidemic outbreak occurs, it is important to find ways to 
save more people with limited budgets or resources in the form of vaccination. 
Similarly, when there is an outbreak of a computer virus or fire, the key question 
is to efficiently find the best strategy for vaccinating the people or controlling the 
fire so that the spread can be contained. Note that the classic firefighter problem 
is when a set of fire nodes breaks out at time 0, and the fire will spread to its 
neighbor nodes if the nodes are not saved by the firefighter, how can we send a 
limited number of firefighters to stop the fire at each time step? If there are no 
more nodes to spread to, the process will terminate.

A vaccination problem, an extension of the classic firefighter problem, was 
proposed in [2]. In this problem, all the nodes in graph G = (V ,E) are in one of 
the three different states: “infected”, “stateless” and “vaccinated”. Moreover, no 
two or more states at one node exist at the same time, and the nodes might change 
their state at each time step. In the beginning, all the nodes are labeled “state‑
less”, and then there is a given node or set of nodes infected at time 0 in G, i.e., 
the outbreak. We are allowed to vaccinate B nodes if time t > 0 , but we can vac‑
cinate only the “stateless” nodes. After the vaccination, the “infected” nodes will 
still infect all the “stateless” nodes adjacent to the “infected” nodes; if there are 
“vaccinated” nodes, the nodes will not be infected in the infecting process. When 
there are no more “stateless” nodes to be infected, the process will stop. Note that 
thus far the vaccination problem is similar to the classic firefighter problem. Here, 
the neighbors of a node are nodes that are connected to it and reachable via one 
single edge.

Furthermore, Anshelevic et  al. [2] considered two models. The first is the 
“non‑spreading vaccination model” where vaccinated nodes cannot spread vac‑
cination to their neighbors, and is similar to the classic firefighter problem. The 
second is the “spreading vaccination model”, where vaccinated nodes can also 
vaccinate their neighbors in the next time step. In this paper, we focus on the 
spreading vaccination model. Note that if stateless nodes are going to be infected 
and vaccinated at the same time, they will be vaccinated. Our goal is to create a 
vaccination strategy with the budget constraint in each time step, i.e., what sub‑
set of nodes to be vaccinated in each time step, that can maximize the number of 
uninfected nodes after the process ends. This problem is known as the firefighter 
problem with the “MaxSave” objective. (More details about the MaxSave objec‑
tive are given in Sect. 2.)

An example of the vaccination strategy in the spreading vaccination model is 
given in Fig. 1. We set the initial infection s at node 0, and the budget for each 
time step is 1. At time 0, node 0 is infected. At time 1, we vaccinate node 2, and 
because in this time step none of the nodes were vaccinated at time 0, there are 
no vaccinated nodes that can start to spread vaccination at time 1. Meanwhile, the 
infected node infects nodes 4, 5, and 6. At time 2, we vaccinate node 3, and node 
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1 will also be vaccinated by node 2 because of the spreading vaccination. When 
there are no nodes that can be infected, the process stops. Our vaccination strat‑
egy is to vaccinate node 2 at time 1 and vaccinate node 3 at time 2. We will save a 
total of four nodes (nodes 1, 2, 3, and 7) with this vaccination strategy.

1.1  Previous works

There are several different kinds of firefighter problems whose algorithms and com‑
plexity results are examined by [9], with several different objectives, such as maxi‑
mizing the number of saved nodes and minimizing the number of vaccinated nodes 
for saving a certain subset of targeted nodes. There are also related works on a vac‑
cination problem with a completely different nature and an outbreak detection prob‑
lem. More realistically, there are models of disease infection spreading processes 
with consideration of vaccination.

– Greedy algorithms for submodular set functions with partition matroids Our 
firefighter problem is a special case of the problem of maximizing a monotone 
submodular set function over a partition matroid constraint [2]. In particular, 
our problem uses time steps to partition the ground set, and the constraint in our 
problem is the budget for the number of nodes that can be vaccinated per time 
step. See [2] for more details. By maximizing a monotone submodular set func‑
tion over a partition matroid constraint, there is a simple greedy algorithm that 
gives a 1/2 approximation [18] and a more sophisticated greedy algorithm that 
gives a (1 − 1∕e) approximation [5] for the firefighter problem with the spreading 
vaccination model.

– Firefighter problem on trees L. Cai et  al. [4] obtained a (1 − 1∕e)‑approxima‑
tion for the firefighter problem on trees by the LP relaxation and randomized 
rounding algorithm. Hartke [10] used a relaxation of the integer program of the 
firefighter problem proposed by [15]. For all nodes in the graph, they found the 

Fig. 1  An example of the process
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strategy set that can maximize the defended nodes under two set of constraints 
that need to be satisfied. In the original integer program, the first set of constraint 
is that at each time step, at most one node can be defended, and the second set 
of constraints is that at most one ancestor of each node is defended (including 
itself). Under LP relaxation, the first set of constraints means that the sum of 
fractional solutions at each time step is at most 1, and the second set of con‑
straints means that the sum of fractional solutions assigned to the ancestors of 
each node is at most 1. Because of the difficulty of solving the problem while 
adding the nonlinear constraint, the authors used another method to narrow the 
integrality gap.

– Vaccination problem and outbreak detection In addition to the firefighter prob‑
lem, there are some researches about vaccination strategies. In [3], the authors 
considered which nodes should be vaccinated before a virus starts to spread from 
a random node. When a node is vaccinated, it will not be infected when the virus 
spreads. In addition, there are two different types of costs for a node: the vac‑
cination cost and the infected cost. This problem was shown to be reduced to 
the “sum‑of‑squares partition” problem, and the approximation guarantee proved 
to be O(log1.5 n) . In [6], the authors showed that using the technique of region‑
growing rounding a natural linear program can improve the approximation ratio 
from O(log1.5 n) to O(log z) , where z is the support size of the outbreak distribu‑
tion.

  In [13], they showed that instead of saving the maximum number of nodes in 
the given graph during the disease outbreak, they considered detecting an out‑
break earlier in a network by selecting a small set of people to be sensors, which 
will alert when they detect the virus. The goal of this problem is to minimize the 
infection while the outbreak is detected by the sensors so that people can take 
appropriate measures faster and save more lives. In addition because of the sub‑
modularity of this problem, the authors found an efficient algorithm (cost‑effec‑
tive lazy forward selections). There are also many similar problems that can be 
solved by this framework, such as detecting contaminants in the water distribu‑
tion network and selecting specific blogs to read so that we do not miss important 
information.

– Disease infection spreading processes with consideration of vaccination There 
is a paper on epidemiological modeling (the so‑called “compartmental” mod‑
els, including the susceptible–infectious–recovered (SIR) model) and obtained 
results for epidemiological thresholds [12]. That is, the density of susceptible 
people must exceed a critical value for an epidemic outbreak to occur. In [8], the 
authors compared population‑based prediction models (the compartmental mod‑
els) and spatially explicit individual‑based prediction models for animal disease 
transmission and found that spatial individual‑based models typically eradicate 
disease with approximately 10 times lower immunization coverage than popula‑
tion prediction models.

  More recently, there is a special report about the COVID‑19 [1], and the 
authors pointed out that the models will involve more variables as researchers 
discover more about the virus. Many studies about infectious disease consid‑
ers the compartmental models. (For a survey, see [11].) However, these models 
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do not explicitly consider the role of social network structure on disease trans‑
mission. For this issue, in [7] the authors considered the targeted immunization 
problem in the epidemic outbreaks and solved this by the influence maximiza‑
tion problem. Their results suggested that identifying optimal immunization 
populations is particularly important for containing infectious disease outbreaks 
in small networks. Also in [20], the authors studied the transmission process of 
infectious diseases through the influence maximization problem to investigate 
the discrete transmission properties and modeled behavioral changes associated 
with preventive measures, e.g., wearing or not wearing masks, during epidemic 
transmission through the network.

1.2  Our results

According to [2], the firefighter problem with the MaxSave objective in the spread‑
ing vaccination model can be formulated as maximizing a submodular set function 
with matroid constraints, and because of the submodularity property, the approxima‑
tion ratio of this problem is 1/2 with a deterministic greedy algorithm [18] and is 
(1 − 1∕e) as a result of the work [5], where e is the Euler’s number.

Inspired by the linear programming (LP) rounding approach (for example, see 
[17]), we construct an integer linear programming (IP) formulation for this vacci‑
nation‑spreading firefighter problem with the MaxSave objective, which can be 
solved by a generic IP solver. Then, because our problem is NP‑complete [2], we 
propose three approximation algorithms of LP rounding. Note that we focus on the 
vaccination strategies and simply adopt a deterministic infection spreading model,1 
instead of explicitly modeling the disease infection spreading process like in several 
forementioned previous works, for simplicity of integer programming and thereby 
enabling approximability via LP relaxation. Specifically, we give one determinis‑
tic threshold rounding algorithm and two randomized rounding algorithms, one of 
which is analyzed for obtaining a feasible solution that guarantees an approximation 
ratio with a high probability. We evaluate all of them numerically with experiments 
as well.

1.3  Organization of this paper

We formally introduce the problem in Sect. 2 and propose the IP model and the LP 
rounding algorithms with some analyses for the approximation ratios in Sect. 3. We 
give the simulations and numerical results in Sect. 4 and conclude with future work 
in Sect. 5.

1 Nonetheless, we can extend the model to consider a stochastic infection spreading process via stochas‑
tic (integer) programming like in [19] for influence maximization (in expectation).
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2  Preliminaries: vaccination‑spreading firefighter problem 
with the MaxSave objective

According to [2], given that a definition of the vaccination strategy is X ⊆ V × D , 
(where V is the set of the vertices in graph G, D = {1, 2,… , T} , T is the longest 
path of the shortest paths from the original infected nodes in graph G,) node u is 
vaccinated at time t ∈ D with the vaccination strategy X if (u, t) ∈ X . If the nodes 
are vaccinated, they will not become infected or stateless, the vaccinated nodes 
will always be vaccinated. The vaccination budget constraint states that at each 
time step, there are at most B nodes vaccinated.

As we stated in the Introduction, we adapt the spreading vaccination model; 
that is, when node u is vaccinated at time t ≥ 1 , stateless nodes v which are adja‑
cent to u such that (u, v) ∈ E , will also be vaccinated at time t + 1 . If there is a 
situation in which the nodes are going to be infected and vaccinated at the same 
time t, the nodes will be vaccinated instead of being infected. The process stops 
when the infection cannot spread further; that is, there are no stateless nodes adja‑
cent to an infected node. In below we formalize the vaccination strategy problem, 
which is named also as the “firefighter” problem with spreading vaccination [2].
FIREFIGHTER PROBLEM WITH SPREADING VACCINATION

INSTANCE : A rooted graph (G(V, E), s), and an integer B ≥ 1

OBJECTIVE : There is an initial node s that has been infected at time 0. We aim to 
find the vaccination strategy X with the budget constraint in each time step. When 
the process is stopped, the number of nodes that are not infected is maximized.

A set S(v) ⊆ V × D for every node v ∈ V  is defined to characterize whether 
node v ∈ V  is saved by the vaccination strategy X or not, which is

The tuple (u,  t) is vaccinated node u at time t, where d(u,  v) is the length of the 
shortest path from node u to node v in graph G. It means the node v will be saved if 
our vaccination strategy satisfies the condition t ≤ d(s, v) − d(u, v) . We can also use 
this condition to check all the nodes in G and find out how many nodes were saved 
by the vaccination strategy X, that is, X ∩ S(v) ≠ �.

Anshelevic et al. [2] showed that the firefighter problem in the spreading vac‑
cination model is a problem of maximizing a monotone submodular set function 
over a partition matroid constraint. Using this property, they conducted some 
analysis for their greedy algorithms. They did not employ any IP/LP for their 
problem, which is, on the contrary, the approach that we take to design LP round‑
ing algorithms in this paper.

(1)S(v) ∶= {(u, t)|u ∈ V and 0 < t ≤ d(s, v) − d(u, v)}.
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3  IP model and LP rounding algorithms

In this section, we first design an integer linear program to solve the firefighter 
problem with spreading vaccination in Sect. 3.1. In Sect. 3.2, we further propose 
approximation algorithms of (1) LP deterministic threshold rounding, (2) LP 
dependent randomized rounding, and (3) LP independent randomized rounding. 
The major result presented is twofold. First, we showed that Algorithm  1 is an 
approximation algorithm; that is, there exists a valid bound on the objective val‑
ues obtained (Theorem 1, Theorem 2). Second, we prove that Algorithm 3 has a 
high probability of finding a feasible solution that gives an approximation ratio of 
(1 − �) , where a small constant � between 0 and 1 reduces the lower bound on the 
feasibility probability (Theorem 3).

3.1  Integer linear program

We aim to maximize the number of saved nodes within the limited time steps T. 
Recall that s is the initial infected nodes, and B is the budget per time step. Let u 
denote the node we want to vaccinate and v denote the node we want to save. For 
each v ∈ V , u ∈ V  and 1 ≤ t ≤ T  , the variables yv and xu,t are defined as follows:

The 0‑1 integer linear program of the vaccination‑spreading firefighter problem for 
maximizing the saved nodes is as follows:

For a vaccination strategy, our objective is to maximize the number of saved nodes. 
The first set of constraints means that it can only vaccinate at most B nodes in each 

yv =

{
1 if v is saved by the vaccination strategy;

0 otherwise.

xu,t =

{
1 if node u is vaccinated at time t;

0 otherwise.

(2)max
∑

v∈V

yv

(3)s.t.
∑

u∈V

xu,t ≤ B ∀t ∈ D,

(4)yv ≤
∑

u∈V

d(s,v)−d(u,v)∑

t=1

xu,t ∀v ∈ V ,

(5)xu,t ∈ {0, 1} ∀u ∈ V , t ∈ D,

(6)yv ∈ {0, 1} ∀v ∈ V .
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time step. The second set of constraints means that whether node v can be saved 
or not is determined by whether node u can be vaccinated before infected node s 
spreads to node v. That is, if node u has been vaccinated at any time from t = 1 to 
d(s, v) − d(u, v) , then node v could be saved because d(s, v) > d(u, v) . Thus, node v 
will not be saved if none of node u are vaccinated before infected node s spreads to 
node v: that is, 

∑
u

∑d(s,v)−d(u,v)

t=1
xu,t = 0 , and yv = 0 . Otherwise, the node v will be 

saved if any one of node u is vaccinated before infected node s spreads to node v: 
that is, 

∑
u

∑d(s,v)−d(u,v)

t=1
xu,t ≥ 1 and yv = 1 . For convenience, let the objective value 

of the optimal (integral) solution be OPT.

3.2  LP rounding as approximation algorithms

As the decision variables xu,t and yv are binary variables, the problem is difficult to 
solve. Thus, we transform the original integer linear program into a linear program, 
which is

Let the objective value of the optimal fractional solution {x̄u,t}u,t and {ȳv}v be OPTf  , 
and OPTf  must be greater than or equal to OPT.

3.2.1  LP deterministic threshold rounding

Because any optimal fraction solution {x̄u,t}u,t may not be an integer value, we need 
to transform {x̄u,t}u,t into integers. In this subsection, we simply introduce a thresh‑
old ts to determine whether a node should be vaccinated or not. It follows that

Obviously, a higher threshold TS makes a higher x̄u,t rounded to 1. The update mech‑
anism of the threshold is that if the budget constraints are violated for any one time 
step, then we set the threshold higher to let fewer nodes be vaccinated; once the 
budget constraints are not violated for each time step, we immediately stop updating 

(7)max
∑

v∈V

yv

(8)s.t.
∑

uinV

xu,t ≤ B ∀t

(9)yv ≤
∑

u∈V

d(s,v)−d(u,v)∑

t=1

xu,t ∀v

(10)xu,t ∈ [0, 1] ∀u ∈ V , t ∈ D,

(11)yv ∈ [0, 1] ∀v ∈ V

xu,t =

{
1 if x̄u,t ≥ ts;

0 otherwise .
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the threshold. As the threshold value TS gradually increases from the initial value, 
the number of nodes that will be vaccinated gradually decreases. If we still update 
the threshold, the consequent results cannot output better results. Let D̃ denote the 
total number of threshold values, the details are presented below.

Remark 1 A version with a dynamic binary search for a threshold  TS, such that 
|TS − T∗| ≤ 1∕D̃ (instead of the current version with a linear search for such TS), 
would shorten the running time logarithmically.

Let x(TS) be the number of vaccinated nodes with threshold TS subject to using 
only a single threshold. Because the MaxSave objective is submodular in the set 
of vaccinated nodes, it is concave in the number of vaccinated nodes. If the Max‑
Save function (of the number of vaccinated nodes) is L‑Lipschitz for a constant L, 
and the number of vaccinated nodes is a �‑Lipschitz function of a threshold value 
for another constant � , we can have an additive approximation as follows, which 
is proved in Appendix A.

Theorem 1 Suppose that threshold T∗ between 0 and 1 induces a number of vacci-
nated nodes feasibly over time that maximize the objective function f, which is L‑Lip-
schitz in the number of vaccinated nodes x for a constant L, and x is a �‑Lipschitz 
function of a threshold value for another constant � . The output feasible solution of 
Algorithm 1 is a D̃∕(L ⋅ 𝓁)‑additive approximation to f (x(T∗)) for a constant D̃.

Furthermore, if the MaxSave function is assumed to be concave in the thresh-
old value, we can have an even better approximation ratio as follows, which is 
proved in Appendix B.

Theorem 2 Suppose that threshold T∗ between 0 and 1 induces a number of vac-
cinated nodes feasibly over time that maximize the objective function f, which is 
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concave in the threshold value. The output feasible solution of Algorithm  1 is a 
(1 − 1∕e)‑multiplicative approximation to f (x(T∗)).

3.2.2  LP randomized rounding algorithm 1 (repetition without substitution)

Now, we introduce one of the randomized rounding algorithms: the randomized 
rounding algorithm using repetition without substitution. The optimal fractional 
solution {x̄u,t}u,t cannot determine whether node u is vaccinated or not. Thus, we 
need to transform the optimal fractional solution {x̄u,t}u,t into 0 or 1 to form a vacci‑
nation strategy. In a randomized rounding algorithm, the fractional solution {x̄u,t}u,t 
will round to 0 or 1, and this gives the objective values whose optimal one is denoted 
as OPTr , less than or equal to OPTf  . The following algorithm gives the details.

Given the fractional optimal solution {x̄u,t}u,t and {ȳv}v , at each time step t, we 
first collect all the nodes that are not infected or vaccinated and their corresponding 
fractional solution x̄u,t . Then we select one node u to vaccinate from a distribution. 
Finally we remove this node u because its state has been determined. In each time 
step, we select nodes B times to ensure that the budget is spent. Although we do not 
provide an approximation analysis for this intuitive method,2 we present the numeri‑
cal experiments in Sect. 4 to show its performance in terms of approximation ratios.

3.2.3  LP randomized rounding algorithm 2 (independence)

In the two previous proposed algorithms, if node u is chosen to be vaccinated, 
it will be removed from the candidate node set. However, in this algorithm, the 
nodes that have been vaccinated or infected will not be removed. We only deter‑
mine whether node u needs to be vaccinated at time t based on its corresponding 
fractional solution. This ensures that the probability of each xu,t rounding to 1 
is independent. After T time steps, the randomized rounding process produces 
a vaccination strategy. We evaluate whether this strategy satisfies Inequality  (8) 
and Inequality (9). By repeating the process for c log nT  rounds, we can select a 

2 It is still possible to conduct a careful analysis in a similar way to the approximation ratio analysis for 
the next algorithm, using conditional probabilities due to the dependency of variable rounding in this 
algorithm.
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vaccination strategy that maximizes the number of saved nodes. The next theo‑
rem tells us that the LP randomized rounding algorithm  2 (Algorithm  3) could 
have a feasible solution that approximates the objective within a ratio (1 − �) with 
a high probability that decreases with �.

Theorem 3 With high probability, we can find a feasible solution such that the num-
ber of nodes saved by Algorithm  3 is at least (1 − �) times the optimal (integral) 
solution for some constant 0 < 𝛿 ≤ 1.

Proof We would like that (i) 
∑

u xu,t ≤ B for all t, and (ii) 1 ≤
∑

u

∑d(s,v)−d(u,v)

t=1
xu,t for 

all v.
For each t, in one of the c ⋅ log nT  rounds by Markov’s inequality

For the c ⋅ log nT  times of the process, the probability that 
∑

u xu,t ≥ B + 1 every 
round is at most for some proper constant c′ > 0

By the union bound, we obtain the probability that event 
∑

u xu,t ≥ B + 1 happens for 
at least one time step among the total T time steps is at most 1

c′n
.

Let Dv =
∑

u∈V max{d(s, v) − d(u, v), 0} for all v. If Dv = 0 , it means that the 
node v has been infected (since the summation of the right‑hand side of (ii) above 
is 0). For node v, in one of the c ⋅ log nT  stages, the probability that node v will be 
saved is

(12)

Pr

�
�

u∈V

xu,t ≥ B + 1

�

≤
E
�∑

u∈V xu,t
�

B + 1
=

∑
u∈V E[xu,t]

B + 1
=

∑
u∈V x̄u,t

B + 1

≤
1

1 + 1∕B
.

(13)
(

1

1 + 1∕B

)c⋅log nT

≤
1

c�nT
.
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where the first inequality comes from the fact that the right side is the minimum of 
the left side. The probability that node v will be saved is equal to the probability that 
at least one node u will be vaccinated before s spread to v. The complement is that 
none of these nodes u would be vaccinated. Recall that x̄u,t means the probability 
that node u will be vaccinated at t, and 1 − x̄u,t means the probability that node u will 
not be vaccinated at t. Therefore, we obtain the first inequality. The maximum prob‑
ability of the complement is when the probability is equal to (1 − 1

Dv

)Dv ; thus we 

obtain the second inequality. The last inequality is because 
(
1 −

1

Dv

)Dv

≤
1

e
.

For the c ⋅ log nT  times of the process, the probability that 1 >
∑

u

∑d(s,v)−d(u,v)

t=1
xu,t 

every time is at most for some proper constant  c′′ > 0

By the union bound, we obtain that the probability that at least one node will not be 
saved among the total n nodes is at most 1

c′′T
.

Analysis of approximation ratio. For one pair of randomized rounding solu‑
tions that satisfies Inequality  (8) and Inequality  (9), we obtain the objective value 
APPROX, and it is easy to obtain � such that APPROX = (1 − �)OPTf  . However, 
each pair of randomized rounding solutions that satisfies Inequality (8) and Inequal‑
ity (9) has a different value of � . Recall that we have OPTf ≥ OPT ≥ APPROX ≥ 1 , 
where OPTf = E[

∑
vinV yv] =

∑
vinV ȳv. For a given constant 0 < 𝛿 ≤ 1 , we obtain the 

following inequality by the Chernoff bound

The inequality above implies that the probability that a vaccination strategy gener‑
ated by a feasible randomized rounding solution can save fewer than (1 − �)OPTf  
nodes is at most 1

e�
2∕2

 . Because of OPTf ≥ OPT  , we obtain the following two 
inequalities

and

(14)

Pr

[
1 ≤

∑

u∈V

d(s,v)−d(u,v)∑

t=1

xu,t

]

≥ 1 − Πu∈V ,t∶d(s,v)−d(u,v)>0(1 − x̄u,t) ≥ 1 −

(
1 −

1

Dv

)Dv

≥ 1 −
1

e
,

(15)
(
1

e

)c⋅log nT

= (e− log nT )c =

(
1

nT

)c

≤
1

c��nT
.

(16)Pr[APPROX ≤ (1 − �)OPTf ] ≤ e
−

OPTf �
2

2 ≤
1

e�
2∕2

.

Pr[APPROX ≤ (1 − �)OPT] ≤ Pr[APPROX ≤ (1 − �)OPTf ] ≤
1

e�
2∕2

,

Pr[APPROX ≥ (1 − �)OPT] ≥ Pr[APPROX ≥ (1 − �)OPTf ] ≥ 1 −
1

e�
2∕2

.
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These two inequalities show the probability that each vaccination strategy generated 
by a feasible randomized rounding solution satisfies the approximation ratio 1 − �.

The probability that none of the vaccination strategies generated by a feasible 
randomized rounding solution can achieve a (1 − �) approximation ratio is, at most, 
for some proper constant c′′′ that depends on the choice of �,

Therefore, the probability that at least one feasible strategy can achieve a (1 − �) 
approximation ratio is at least

After these bad events, we have that the number of nodes saved by the algorithm’s 
feasible solution is at least (1 − �)OPT  with probability of at least

which can be lower bounded by

using the union bound because the probability bound of the all‑considered bad event 
takes the union of each, which can be upper bounded by the sum of them.   ◻

4  Simulations and numerical results

In this section, we test the performance of the three proposed algorithms. The tested 
graph G = (V ,E) is created by the Stanford Network Analysis Project (SNAP) [14].3 
First, we use the mathematical programming solver Gurobi 9.5 to solve our origi‑
nal integer programming model and the corresponding relaxed linear programming 
model. Then we obtain the integer solution and the fractional solution with respect 
to the integer programming model and the linear programming model. Using the 
fractional solution, we test Algorithm 1, Algorithm 2, and Algorithm 3. All algo‑
rithms were implemented in Python 3.7.6, and the experiments were executed on a 
laptop with an Intel Core i5‑8265U CPU1.60GHz 1.80 GHz and an x64 processor.

Note that there are some default mechanisms in Gurobi that will speed up the 
solving process of the IP solver, but we want to use only the branch‑and‑bound strat‑
egy to solve the IP in order to compare it with our rounding algorithms more fairly. 

(
1

e�
2∕2

)c⋅log nT

≤
1

c���nT
.

1 −
1

c���nT
.

(
1 −

1

c���nT

)(
1 −

1

c��T

)(
1 −

1

c�n

)
,

1 −
1

c���nT
−

1

c��T
−

1

c�n

3 The random graphs are generated by the random graph generator API provided by SNAP. They are 
GNP random graphs (Erdös‑Renyi graphs).
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The Gurobi IP solver “presolve” the problem before solving the original problem, 
and the presolve mechanism will remove some constraints and variable bounds. 
Heuristic algorithms provided by Gurobi affect the results, too. Moreover, the 
Gurobi MIP solver runs in parallel with multiple threads and the “planes‑cutting” 
strategy affect the result of MIP solver, too. Thus, we modify some parameters and 
make sure that we can solve the problem with 1 thread with no presolve and without 
any heuristics and planes‑cutting strategy.

4.1  Random graphs

When we set the vaccination budget B = 2 at each time step, Table 1 presents the 
results of the original integer program, Algorithm 1, Algorithm 2, and Algorithm 3 
for different graph scales. An observation is that, although these three algorithms 
cannot produce a strategy that is very similar to the vaccination strategy of IP, they 
can also perform well. Algorithm 2 performs relatively well, and its number of saved 
nodes is quite close to that of IP, and the running time may be also faster than that of 
IP. Algorithm 1 has a relatively poor performance likely because the threshold has 
not been set well enough to approximate the optimal one. Finding an approximately 
optimal threshold requires considerable effort, but the closer an updated threshold is 
to the optimal one, the better the performance of the algorithm is. That is, the larger 
value of D̃ is (for instance, D̃ = 0.01 in the simulations), the smaller the approxima‑
tion error to the (single) optimal threshold value is so there is a tradeoff between the 
performance in terms of approximation and the running time linearly or logarithmi‑
cally depending on D̃.

We also supplement the results with some simulations that only allow the usage 
of limited memory in Gurobi’s computation (parameterized by its memory limit). 

Table 1  The performance comparison for different algorithm ( B = 2)

Problem Algorithm Number of saved nodes Running time (sec)

(|V|, |E|) = (1000, 4500) IP 581 5.83
Algorithm 1
Threshold = 0.4 436 17.69
Algorithm 2 Avg = 540.8, max = 574 4.17
Algorithm 3 565 10.29

(|V|, |E|) = (1250, 4650) IP 899 44.39
Algorithm 1
Threshold = 0.34 640 42.51
Algorithm 2 Avg = 813, max = 864 7.25
Algorithm 3 846 14.33

(|V|, |E|) = (2200, 6000) IP 1571 142.56
Algorithm 1
Threshold = 0.37 1317 219.55
Algorithm 2 Avg = 1451.1, max = 1537 31.60
Algorithm 3 1454 84
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For a graph (|V|, |E|) = (2200, 6000) with B = 3 , when the usage of limited memory 
is 0.3, the IP solver cannot obtain the solution due to being out of memory while the 
running time of our LP rounding algorithm is 38.29 sec; when the usage of limited 
memory is 0.5, the running time of the IP solver and the LP rounding algorithm are 
52.69 and 36.92 sec, respectively. For a larger graph (|V|, |E|) = (3250, 8000) with 
B = 3 , with the memory limit of 0.7, the running time of our LP rounding algorithm 
is 28.15 sec, but the IP solve cannot obtain the solution due to being out of mem‑
ory. In summary, the advantage of our LP rounding algorithm compared with the IP 
solver is more obvious when the problem size is larger, but even when the problem 
size is relatively smaller, the computation of the IP solver can run out of memory 
with stricter memory limitation.

In addition, more results for random graphs with larger budgets, i.e., B = 3, 4 , are 
provided in Tables 2 and 3 for completeness before presenting the results for empiri‑
cal networks. The tables of results for B = 2, 3, 4 , each with 3 graphs in different 
scales, along with the results with memory limit control altogether show competi‑
tiveness of our rounding algorithms in terms of guaranteeing decent approximation 
ratios and computational time compared with the so‑called “vanilla” IP solver. We 
observe that Algorithm 1 can still have a decent performance for some graph scales 
so we can say that a suitable threshold can improve the performance of Algorithm 1 
significantly. The running time Algorithm 1 shows that it is not as efficient as the 
other two algorithms. The performance of Algorithm  3 becomes better when the 
size and budget of the graph become larger because the probability of a node being 
repeatedly vaccinated becomes smaller, making the probability of a node being vac‑
cinated change only slightly compared to the optimal fractional solution. Although 

Table 2  The performance comparison for different algorithm ( B = 3)

Problem Algorithm Number of saved nodes Running 
time 
(sec)

(|V|, |E|) = (1000, 4500) IP 682 3.14
Algorithm 1
Threshold = 0.34 675 42
Algorithm 2 Avg = 642.9, max = 669 7.85
Algorithm 3 646 19

(|V|, |E|) = (1250, 4650) IP 1033 55.4
Algorithm 1
Threshold = 0.36 673 40.64
Algorithm 2 Avg = 940.4, max = 983 13.63
Algorithm 3 977 19.73

(|V|, |E|) = (2200, 6000) IP 1878 19.72
Algorithm 1
Threshold = 0.43 1855 98.63
Algorithm 2 Avg = 1751.8, max = 1843 23.79
Algorithm 3 1782 29
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Algorithm  2 has relatively short running time among these three approximation 
algorithms, it does not performs well enough when the size and budget of the graph 
become large due to the fact that after each time step, it removes the selected nodes 
from the candidate set and recalculates the weight of each node in the candidate set. 
It uses this weight as the probability of vaccination and thus makes the probability 
of a node being vaccinated change a lot compared to the optimal fractional solution.

4.2  Empirical networks

We provide three experiments with the real networks retrieved from [16]. The first is 
the social network extracted from Facebook: the nodes are the people, and the edges 
are the connections with people. The second is the router network: the nodes are the 
routers, and the edges are the connection with routers. The third is Facebook pages 
with a blue verified network: the nodes are the pages, and the edges are the connec‑
tions about how they like each other.

About the first LP Randomized Rounding Algorithm. We test the performance 
of Algorithm 2 with these three real networks when the vaccination budget is 1 and 
2. The comparison of the saved nodes between IP and Algorithm 2 according to the 

Table 3  The performance comparison for different algorithm ( B = 4)

Problem Algorithm Number of saved nodes Running time (sec)

(|V|, |E|) = (1000, 4500) IP 764 4.47
Algorithm 1
Threshold = 0.5 344 16
Algorithm 2 Avg = 690.5, max = 694 5.4
Algorithm 3 701 10.54

(|V|, |E|) = (1250, 4650) IP 1141 6.42
Algorithm 1
Threshold = 0.41 1118 43.15
Algorithm 2 avg = 1051.3, max = 1112 12
Algorithm 3 1115 21.45

(|V|, |E|) = (2200, 6000) IP 2098 5.74
Algorithm 1
Threshold = 0.01 2098 291.56
Algorithm 2 Avg = 1426.6, max = 1470 24.57
Algorithm 3 2098 295.54

Table 4  Comparison of the 
number of saved nodes with IP 
and Algorithm 2 (B = 1)

IP Algorithm 2 Ratio

Facebook social network 973 973 1
Router network 1957 1957 1
Blue verified network 3885 3885 1
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experiment is given in Tables 4 and 5. The number of saved nodes solved by Algo‑
rithm 2 is the average of ten rounding cycles. The ratio is the similarity between the 
number of saved nodes solved by IP and Algorithm 2.

5  Conclusions and future work

In this work, we used the exact algorithm and approximation algorithm to solve the 
problem proposed by [2]. We proposed a linear integer program to obtain the optimal 
solution. In addition, because of computing efficiency, we proposed one deterministic 
threshold rounding algorithm and two different LP randomized rounding algorithms. In 
terms of the objective value, our algorithms are approximations with polynomial run‑
ning time while the optimal exact solution by the IP demands much longer running 
time when the problem size is larger due to the inscability nature of solving IPs. The 
analytical and numerical studies allow each individual to adopt the most appropriate 
approximation algorithm to efficiently resolve the vaccination problem when her reli‑
ance on commercial optimization solvers is costly.

For the first LP randomized rounding algorithm, the experimental results are given. 
For the deterministic threshold rounding algorithm, we gave a simple analysis. For the 
second LP randomized rounding algorithm, we gave an analysis that the algorithm will 
with a high probability find a feasible solution, and the number of nodes saved by it is 
at least (1 − �) times the optimal objective value with some constant 0 < 𝛿 ≤ 1.

Although we simply focus on the vaccination strategies for a deterministic infection 
spreading model, we can nonetheless extend the model to consider a stochastic infec‑
tion spreading process via stochastic (integer) programming like in [19] for influence 
maximization (in expectation). We may design better (randomized) rounding or other 
LP relaxation‑based algorithms. We stated that our problem [2] has a submodularity 
property and can be solved by maximizing a monotone submodular function over a 
partition matroid constraint. In [19], the authors proposed a two‑stage stochastic IP 
model, using the submodularity of the objective for the influence maximization prob‑
lem and delayed constraint generation, to obtain the optimal solution faster. This frame‑
work may be used to tackle our problem as well.

Table 5  Comparison of the 
number of saved nodes with IP 
and Algorithm 2 (B = 2)

IP Algorithm 2 Ratio

Facebook social network 1142 1107.4 0.97
Router network 2112 2112 1
Blue verified network 3889 3436.9 0.88
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A proof of theorem 1

From the definition of L‑Lipschitzness, f (x(T∗)) − f (x(T∗ + 1∕D̃)) ≤ L ⋅ |x(T∗)

−x(T∗ + 1∕D̃)| . We know that for |x(T∗) − x(T∗ + 1∕D̃)| > 0

From the definition of �‑Lipschitzness, x(T∗) − x(T∗ + 1∕D̃) ≤ 𝓁 ⋅ |T∗ − (T∗ + 1∕D̃)| . 
We have that x(T∗) − x(T∗ + 1∕D̃) ≤ 𝓁 ⋅ (1∕D̃) . Thus,

B proof of theorem 2

Let TSd be the threshold value at iteration d. Since TSd+1 − TSd = TSd − TSd−1 = 1∕D̃ 
by the concavity of the MaxSave function f, we have that

Let n = T∗D̃ be the largest number of iterations executed before exiting the while 
loop. Then,

Replacing the constants 1, 2, 3,⋯ , n − 1 in these inequalities with n, we can see that

It can be derived that

It follows that

f (x(T∗ + 1∕D̃)) ≥ f (x(T∗)) − L ⋅ |x(T∗) − x(T∗ + 1∕D̃)|.

f (x(T∗ + 1∕D̃)) ≥ f (x(T∗)) − L ⋅ 𝓁 ⋅ (1∕D̃).

f (x(TSd)) − f (x(TSd−1)) ≥ f (x(TSd+1)) − f (x(TSd)) ≥ 0.

f (T∗) = f (TSn) = f (TSn−1) + f (TSn) − f (TSn−1)

≤ f (TSn−1) + f (TSn−1) − f (TSn−2)

= f (TSn−2) + 2
[
f (TSn−1) − f (TSn−2)

]

≤ f (TSn−3) + 3
[
f (TSn−2) − f (TSn−3)

]

≤ ⋯

≤ f (TS1) + (n − 1)
[
f (TS2) − f (TS1)

]
.

f (TSn) ≤ f (TSn−d) + n
[
f (TSd+1) − f (TSd)

]
.

f (TSd+1) ≥
1

n
f (TSn) +

(
1 −

1

n

)
f (TSd).
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Note that f (TS1) ≥ 0 and d ≤ n , and using 1 − x ≤ e−x for any x ∈ ℝ , we obtain the 
above inequality.
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