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Abstract
Black-box optimization (BBO) algorithms are widely employed by practitioners 
to address computationally expensive real-world problems such as automatic tun-
ing of machine learning models and evacuation route planning. The Nelder–Mead 
(NM) method is a well-known local search heuristic for BBO that has been applied 
to solve many real-world problems from way back because of its promising perfor-
mance. However, this method has a strong dependence on initialization due to its 
local search tendency. Nevertheless, a discussion on the proper initialization of the 
NM method is limited to the recent study by Wessing (Optim Lett 13(4):847–856, 
2019), which is solely based on an analysis using the simple sphere function. In this 
study, we take a further step to improve Wessing’s result by massively investigat-
ing how the initialization affects the search performance in views of the initial sim-
plex size and shape and a constraint handling method that is employed on 24 BBO 
benchmarking problems. Based on the numerical results, we present the empirical 
best practice for the initialization of the NM method for cases involving a limited 
evaluation budget.

Keywords  Nelder–Mead method · Initialization · Computationally expensive 
optimization · Black-box optimization

1  Introduction

Black-box optimization (BBO) is an approach for optimizing an objective func-
tion without any information regarding the analytic form and gradient of the objec-
tive. This approach has been applied to important real-world problems, including 
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automatic tuning of machine learning models [2, 18] and evacuation route planning 
[21]. In such real-world problems, it is generally important to obtain a promising 
solution with a limited evaluation budget because their objective functions usually 
involve computationally expensive operations, such as training of deep neural net-
works and crowd evacuation simulations.

The Nelder–Mead (NM) method [17] is a local search heuristic that uses a sim-
plex, and it has been used to solve BBO problems for more than half a century. This 
method converges quickly with a relatively small number of function evaluations; 
thus, it can achieve preferable results for computationally expensive problems, such 
as the automatic tuning of machine learning models [18]. However, it is empirically 
known that the search performance of the NM method strongly depends on initiali-
zation, which concerns the generation of the initial simplex. Therefore, to achieve 
good optimization results, it is crucial to provide proper initialization. However, 
there has been only a very limited discussion on the proper initialization of the NM 
method so far.

Recently, Wessing investigated how initialization affects the search performance 
of the NM method, using the Sphere function [26]. After arguing for the necessity 
of determining a proper initial simplex, Wessing proposed generating an initial sim-
plex that is as large as the normalized search space. However, it is currently unclear 
whether the obtained results can be generalized to a variety of computationally 
expensive problems because they are solely based on an analysis using the simple 
Sphere benchmark function in the large evaluation budget case. Therefore, further 
empirical assessments are required for practitioners to identify the best practice for 
the initialization of the NM method to solve computationally expensive problems.

Additionally, practitioners need to consider handling infeasible solutions to tackle 
constrained problems, even considering the simplest box-constrained case, because 
the NM method was originally designed for unconstrained optimization. The han-
dling methods used to address constraints significantly affect the search performance 
in BBO [25]. Therefore, the effects of these methods on the proper initialization of 
the NM method should be investigated.

Motivated by the above discussion, in this study, we massively investigate how 
initialization affects the NM method on a proven benchmark suite, namely BBO 
benchmarking (BBOB) [8]. The main contributions and important findings of this 
study are summarized as follows:

•	 We empirically find that the search performance of the NM method highly 
depends not only on the size of the initial simplex but also on its shape.

•	 We also present a practical initialization heuristic to maximize the performance 
of the NM method for the limited-evaluation-budget case based on the experi-
mental results. This involves normalizing the search space to unit hypercube and 
generating a regular-shaped simplex that is as large size as possible regardless of 
the constraint handling method that is employed.
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2 � Background

In this section, we describe the NM method, its initialization methods, and the meth-
ods for handling box constraints.

2.1 � Nelder–Mead method

The algorithm of the NM method for minimization is shown in Algorithm  1. To 
optimize an n-dimensional objective function, the NM method requires a simplex 
composed of affinely independent n + 1 vertices in an n-dimensional search space. 
For example, a two-dimensional simplex is a triangle, and a three-dimensional sim-
plex is a tetrahedron. The NM method iteratively performs the five major operations 
of transforming the simplex—Reflection, Expansion, Outside Contraction, Inside 
Contraction, and Shrinkage-based on the objective function values of the solutions 
corresponding to each vertex of the simplex. Figure 1 shows these five operations in 
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two-dimensional space. In this figure, y0 , y1 , and y2 are the vertices of the simplex 
before the operation such that f (y0) < f (y1) < f (y2) . For the coefficients of the NM 
method in Algorithm 1, we use the following standard settings [3]:

2.2 � Initialization methods for the Nelder–Mead method

A previous study [26] investigated the five initialization methods: Pfeffer [7], Nash 
[16], Han [9], Varadhan [22, 23], and Std basis [24]. Examples of the simplices gen-
erated using these methods are shown in Fig. 2. The shapes of the generated sim-
plices can be classified into two types, “regular” and “standard,” with a few excep-
tions. The former is a simplex that all of its side lengths are the same, and the latter 
is a simplex that its vertices correspond to the standard basis vectors. In Fig. 2, we 
observe that the Han and Varadhan methods generate regular simplices, whereas the 
Nash and Std basis methods generate standard simplices. For the Pfeffer method, the 
diagonally placed simplices are standard, but the remaining ones are sharper.

2.3 � Handling methods for box constraints

In BBO, one of the most frequently appearing constraints is the box constraint, 
wherein a variable has specific lower and upper bounds. Several methods are avail-
able to handle box constraints, including the Extreme Barrier [1], Projection [10, 
12–14], Reflection [25], and Wrapping [20] methods (see Fig.  3). All of these 
approaches transform constrained problems into unconstrained problems, to which 
the NM method can be applied.

(1)�r = 1, �e = 2, �oc =
1

2
, �ic = −

1

2
, � =

1

2
.

(a) (b)

Fig. 1   Simplex transformations by the NM method: Reflection ( yr ), Expansion ( ye ), Outside Contraction 
( yoc ), Inside Contraction ( yic ), and Shrinkage ( ys1 and ys2)
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Assume f ∶ ℝ
n
→ ℝ and D = [l0, u0] × [l1, u1] ×⋯ × [ln−1, un−1] ⊂ ℝ

n . We con-
sider the minimization problem miny∈ℝn f (y) subject to y ∈ D . The Extreme Barrier 
approach defines a penalty function fE ∶ ℝ

n
→ ℝ ∪ {+∞} that assigns +∞,1 which 

is the penalty value, to the objective function value corresponding to an infeasible 
solution as follows:

(a) (b) (c)

(d) (e)

Fig. 2   Examples of two-dimensional simplices generated by the Pfeffer, Nash, Han, Varadhan, and Std 
basis methods

(a) (b) (c) (d)

Fig. 3   Objective landscapes of the Attractive Sector function [8] ( D = [−5, 5]2 ) with each handling 
method. The gray area indicates +∞

1  In practice, a large constant is usually employed rather than +∞ in implementations.
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Subsequently, we minimize the penalty function fE instead of the original objec-
tive function f to solve the target problem. The Projection, Reflection, and Wrapping 
approaches define repair functions fP ∶ ℝ

n
→ ℝ , fR ∶ ℝ

n
→ ℝ , and fW ∶ ℝ

n
→ ℝ , 

respectively, which assign the objective function value corresponding to a specific 
feasible solution to that of an infeasible solution by applying a simple mapping rule:

(2)
(Extreme Barrier)

fE(y) =

{
f (y) y ∈ D

+∞ y ∉ D.

(3)
(Projection)

fP(y) = f ([TP0 (y0),… , TPn−1 (yn−1)]),

(4)TPi (y) =

⎧
⎪⎨⎪⎩

y li ≤ y ≤ ui
ui y > ui
li y < li.

(5)
(Reflection)

fR(y) = f ([TR0
(y0),… , TRn−1

(yn−1)]),

(6)TRi
(y) =

⎧

⎪

⎨

⎪

⎩

y li ≤ y ≤ ui
TRi

(ui + (ui − y)) y > ui
TRi

(li + (li − y)) y < li.

(7)
(Wrapping)

fW(y) = f ([TW0
(y0),… , TWn−1

(yn−1)]),

(8)TWi
(y) =

⎧
⎪⎨⎪⎩

y li ≤ y ≤ ui
TWi

(y − (ui − li)) y > ui
TWi

(y + (ui − li)) y < li.
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In these equations, TPi ∶ ℝ → [li, ui] , TRi
∶ ℝ → [li, ui] , and TWi

∶ ℝ → [li, ui] 
(i = 0,… , n − 1) are the auxiliary mapping functions. Similar to the Extreme Bar-
rier approach, we minimize fP , fR , and fW instead of f to solve the target problem 
using these approaches.

3 � Investigating the effect of initialization

In this section, we empirically investigate the effect of the initial simplex of the NM 
method using comprehensive experiments. We focus on the effects of the initial 
simplex size and shape and the method employed to handle box constraints on the 
search performance for the limited-evaluation-budget case. Our research questions 
are described as follows: 

Q.1	� Is it better to generate a larger initial simplex as Wessing [26] previously 
reported?

Q.2	� Which initial simplex shape is better, regular, or standard?

Q.3	� Is the proper initial simplex dependent on the constraint handling method that 
is employed?

 Regarding the effect of the simplex size, it can be quantitatively evaluated using the 
volume metric [1, 3]. Therefore, we evaluate initial simplices with different simplex 
volumes. The volume of the n-dimensional simplex Y = {y0, y1,… , yn} is defined 
as:

where L denotes a matrix such that:

Regarding the effect of the simplex shape, we evaluate regular and standard sim-
plices because these shapes are widely adopted by existing initialization methods 
(cf. Sect. 2.2). Finally, for the effect of the constraint handling methods, we eval-
uate the Extreme Barrier, Projection, Reflection, and Wrapping approaches (cf. 
Sect. 2.3).

(9)vol(Y) =
| det(L)|

n!

(10)L = [(y1 − y0), (y2 − y0),… , (yn − y0)].
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3.1 � Experimental setup

(a) (b) (c) (d)

Fig. 4   Examples of two-dimensional simplices. 0.2 and 0.45 indicate the input � values of the regular 
simplices. The red points indicate the centroids. The volume of (c) is the same as (a) and the volume of 
(d) is the same as (b) 
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In our experiments, the search space was always assumed to be normalized to the 
n-dimensional unit hypercube [0, 1]n in advance according to Wessing [26]. To gen-
erate regular and standard simplices, we prepared Algorithm 2 [19] and Algorithm 3, 
respectively. Algorithm 2 requires the dimension n, the L2 norm � to determine the 
generated simplex size, and the centroid p of the simplex as the input parameters. 
The larger the � , the larger the volume of the generated simplex. Conversely, Algo-
rithm 3 requires the dimension n, the criterion simplex volume v, which allows us to 
generate a standard simplex with the same volume as a regular simplex to compare, 
and the centroid p of the simplex as input parameters. Figure 4 shows examples of 
two-dimensional simplices, in which their centroids are 0.5.

We evaluated the search performance of the NM method initialized with a vari-
ety of simplices on 24 benchmark functions described in detail later by employing 
each of the four constraint handling methods introduced in Sect. 2.3. By using the 
simplex generation algorithms, we generated 200 types of initial simplices with cen-
troids randomly placed at [0.1, 0.9]n for each benchmark function instance. First, 100 
types of regular simplices were generated by using Algorithm 2 with the L2 norm 
� = 0.45 × 0.01, 0.45 × 0.02,… , 0.45 × 1.00 . The remaining 100 types of standard 
simplices were generated by using Algorithm 3 with the criterion volumes that are 
the same as the volumes of the 100 types of regular simplices.

As a benchmark suite, we employed BBOB [8], which is one of the most popu-
lar benchmarks for evaluating the performance of BBO algorithms. BBOB contains 
24 artificial functions with a box-constrained search space [−5, 5]n . These func-
tions are classified into five groups based on their landscape features: 1. separable 
(#1–5), 2. low or moderate-conditioning (#6–9), 3. high-conditioning and unimodal 
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(#10–14), 4.  multimodal with an adequate global structure (#15–19), and 5.  mul-
timodal with a weak global structure (#20–24), as shown in Table  1. All bench-
mark functions of BBOB are parameterized, that is, different instances of the same 
function are available (e.g., low/high-dimensional, translated, and shifted ver-
sions) [8]. We prepared the three kinds of dimensions for each benchmark function: 
n = 5, 10, 15 . The evaluation budget was set to 400 (including initialization) because, 
in this study, we assumed that the problems were computationally expensive. Note 
that, with the Extreme Barrier approach, evaluations of out-of-search-space solu-
tions were not counted because the corresponding actual objective function evalua-
tions were not needed (i.e., their computational costs were negligible) [4]. We evalu-
ated each setting on 100 translated-and-shifted versions of each benchmark function 

(a)

(b)

(c)

(d)

Fig. 5   Results: mean achieved objective value versus initial simplex volume for n = 15 . The shadings 
represent the 95%-confidence intervals computed by the bootstrapping [5] and bias-corrected and accel-
erated [6] methods
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(d)

(c)

(b)

(a)

Fig. 6   Results: regular shape vs. standard shape based on the Wilcoxon rank sum test ( � = 0.05 ) for 
n = 15 . The color of each square shows a statistically significantly better shape. Gray indicates that the 
performance difference is not statistically significant. The horizontal and vertical axes denote the volume 
of the initial simplex and BBOB function number, respectively
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to obtain the average performance of the setting and the corresponding 95%-con-
fidence interval. In summary, we collected 24 (benchmark functions) × 3 (dimen-
sions) × 100 (translated-and-shifted versions) × 200 (100 regular + 100 standard ini-
tial simplices) × 4 (constraint handling methods) = 5, 760, 000 optimization results.

3.2 � Results and discussion

First, we discuss the effects of the initial simplex volume. Figure 5 shows a subset 
of the experimental results ( n = 15 ) of the effect of the initial simplex volume. We 
focus on the results shown in Fig. 5 because the results for the remaining problems 
and dimensions share similar trends to them. All the experimental results are avail-
able in the Supplementary Material. Five problems (#1 Sphere, #6 Attractive Sec-
tor, #10 Ellipsoidal, #15 Rastrigin, and #20 Schwefel) are selected as representatives 
of each group. We nearly consistently confirm that a larger initial simplex volume 
results in a better search performance regardless of the benchmark function, shape 
of the initial simplex, and constraint handling method that was employed. Therefore, 
regarding our research question Q.1, we conclude that a larger initial simplex is pref-
erable, and the previous results obtained by Wessing [26] can be generalized to a 
wide range of problems for the limited-evaluation-budget case.

We next discuss the effects of the initial simplex shape. We performed the Wil-
coxon rank sum test [15] ( � = 0.05 ) to evaluate which shape, regular or standard, 
is more preferable. Figure 6 shows the results of the statistical tests for n = 15 . The 
results for n = 5 and 10 were similar to that for n = 15 and are available in the Sup-
plementary Material. We find that, in many cases, a regular shape is statistically sig-
nificantly better than a standard shape regardless of the benchmark function, the vol-
ume of the initial simplex, and the constraint handling method that was employed. 
In particular, this tendency becomes more apparent for unimodal functions and in 
higher dimensions. This result indicates that the performance of the NM method 
highly depends not only on the size of the initial simplex but also on its shape. In the 
end, regarding our research question Q.2, we conclude that a regular initial simplex 
is preferable for the NM method.

Finally, we discuss the effect of the constraint handling method. As we have 
observed in Figs. 5 and 6, the tendencies of the effects of the initial simplex volume 
and shape are nearly consistent, regardless of the constraint handling method that 
was employed. Therefore, regarding our research question Q.3, we conclude that the 
proper initial simplex for the NM method is not significantly dependent on the con-
straint handling method that is employed.

Based on the above discussion, we present a practical initialization heuristic for 
the NM method for a limited-evaluation-budget case. To maximize the search per-
formance of the NM method, we should employ the initial simplex satisfying the 
following conditions:

•	 The size of the initial simplex is as large as possible in the normalized search 
space.

•	 The shape of the initial simplex is regular.
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We consider this to be the current empirical best practice for practitioners.

4 � Conclusion

In this study, we have empirically investigated the effect of the initialization on the 
NM method for a limited-evaluation-budget case. Our experimental results demon-
strated that both the initial simplex size and shape significantly affect the perfor-
mance of the NM method. We also determined the best practice for the initialization 
based on the preferable conditions, which practice is not seriously dependent on the 
constraint handling methods, as indicated by the numerical results.

A possible future direction of this study is to find a practical initialization method 
for multi- and re-starting cases [11]. In these cases, it may be necessary to generate 
a variety of simplices rather than a set of regular-shaped large simplices in order to 
achieve a preferable performance.

We believe that our findings will help practitioners to address real-world prob-
lems more efficiently and effectively than previously possible.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s11590-​022-​01953-y.
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