
Vol.:(0123456789)

Optimization Letters (2023) 17:437–451
https://doi.org/10.1007/s11590-022-01945-y

1 3

ORIGINAL PAPER

Efficient compact linear programs for network revenue
management

Simon Laumer1

Received: 17 June 2022 / Accepted: 7 October 2022 / Published online: 22 October 2022
© The Author(s) 2022

Abstract
We are concerned with computing bid prices in network revenue management using
approximate linear programming. It is well-known that affine value function approx-
imations yield bid prices which are not sensitive to remaining capacity. The analytic
reduction to compact linear programs allows the efficient computation of such bid
prices. On the other hand, capacity-dependent bid prices can be obtained using sepa-
rable piecewise linear value function approximations. Even though compact linear
programs have been derived for this case also, they are still computationally much
more expensive compared to using affine functions. We propose compact linear pro-
grams requiring substantially smaller computing times while, simultaneously, sig-
nificantly improving the performance of capacity-independent bid prices. This sim-
plification is achieved by taking into account remaining capacity only if it becomes
scarce. Although our proposed linear programs are relaxations of the unreduced
approximate linear programs, we conjecture equivalence and provide according
numerical support. We measure the quality of an approximation by the difference
between the expected performance of an induced policy and the corresponding theo-
retical upper bound. Using this paradigm in numerical experiments, we demonstrate
the competitiveness of our proposed linear programs.

Keywords Network revenue management · Approximate dynamic programming ·
Approximate linear programming · Reductions

1 Introduction and literature review

Network revenue management is concerned with the sale of multiple products
using multiple perishable resources of finite capacity over a discrete time hori-
zon. The standard reference for network revenue management is Talluri and van

 * Simon Laumer
 simon.laumer@business.uzh.ch

1 Department of Business Administration, University of Zurich, Plattenstrasse 14, 8032 Zürich,
Switzerland

http://orcid.org/0000-0002-8859-459X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-022-01945-y&domain=pdf

438 S. Laumer

1 3

Ryzin [11]. Traditional models assume that for each product, demand does not
depend on the availability of other products [1]. This restrictive assumption has
been relaxed by introducing customer choice models [10]. One special case of a
customer choice model is discrete pricing [3, 4]. Since discrete pricing problems
can be reformulated as independent demand problems [16], assuming independ-
ent demand is not as restrictive as previously thought.

Determining an optimal control policy in network revenue management
requires computing the value function using dynamic programming. Since capac-
ity control involves multiple resources, the curse of dimensionality prohibits the
exact computation of the value function. One stream of literature utilizes approxi-
mate linear programming to find approximate solutions. The dynamic program-
ming recursion is reformulated as an exponentially large linear program. Then,
a value function approximation based on a small number of basis functions is
inserted into the linear program [9]. This way, the number of variables is reduced.
However, this procedure does not decrease the number of constraints. To over-
come this problem, algorithmic techniques such as column generation, constraint
sampling, and constraint-violation learning are typically applied [1, 2, 7]. These
approaches do not solve the linear program exactly but provide an approxima-
tion. It is thus preferable to find reformulations that can be solved directly using a
commercial solver. This motivates the derivation of compact linear programs [12,
14]. In this paper, we call a linear program compact if the number of variables
and constraints is polynomial in the number of resources, products, time steps
and units of initial capacity, which means it is computationally tractable.

An important aspect of approximate linear programming is the choice of basis
functions. Choosing basis functions which are separable across resources is
appealing, and thus affine and separable piecewise linear functional approxima-
tions have received much attention in the literature [1, 4–6]. We refer to these
two approximation types as AF and SPL, respectively. Compact reformulations
have been derived for both types [12, 14]. While SPL bid prices depend on
remaining capacity, the opposite is true for AF bid prices. The components of the
SPL approximation are piecewise linear on equidistant grids where the distance
between nodes is exactly 1. Consequently, the number of nodes equals the initial
capacity size. In contrast, Meissner and Strauss [8] use piecewise linear value
function approximations where the number and position of nodes may be cho-
sen arbitrarily. We call this approximation type separable “genuinely” piecewise
linear (SGPL) in order to distinguish it from SPL. To the best of our knowledge,
there is no study comparing the computational efficiency of AF and SPL with
SGPL using compact linear programs. In particular, Meissner and Strauss [8]
apply column generation and do not provide compact linear programs.

We make the following contributions:

1. For the independent demand model for network revenue management, we heu-
ristically propose novel compact linear programs which are smaller than the SPL
reduction yet improve the quality of AF bid prices by taking into account remain-
ing capacity whenever it becomes scarce.

439

1 3

Efficient compact linear programs for network revenue…

2. We benchmark our proposed compact linear programs against the reductions for
AF and SPL using network instances from the literature [13, 14]. We find that
for many instances, AF’s optimality gap can be divided in half using significantly
less than half of SPL’s computing time.

Outline In Sect. 2, we describe the underlying network revenue management model
and recapitulate the compact linear programs for AF and SPL. We then propose com-
pact linear programs associated with SGPL basis functions in Sect. 3. Although we do
not prove equivalence of our proposed linear programs with their unreduced counter-
parts, we provide numerical support for a corresponding conjecture in Appendix A.
In Sect. 4, we investigate the computational efficiency of SGPL by benchmarking it
against AF and SPL.

2 Approximate linear programming in network revenue
management

Model description Our model follows Adelman [1]. During a selling horizon of finitely
many time steps t ∈ {1,… , T} , a company sells multiple products j ∈ {1,… , J}
with fares fj . We assume that at most one customer arrives per time step t. The prob-
ability that at time t product j is requested is denoted pt,j . We assume product j = 1 to
be a dummy product representing the event that no customer arrives, which implies ∑

j pt,j = 1,∀t . At the beginning of each time step t, the company must decide which
requests will be accepted and which will be rejected. This decision is represented by the
decision vector (uj) = � ∈ {0, 1}J.

There are multiple resources i ∈ {1,… , I} each of which may be used by several
products. The consumption matrix � = (aij) ∈ {0, 1}I×J has corresponding entries:
aij = 1 if product j uses one unit of resource i, and aij = 0 otherwise. A column �j thus
corresponds to the set of resources used by product j. The vector � = (c1,… , cI)

T ∈ ℕ
I

denotes the initial capacity at the beginning of the selling horizon. During the selling
process, the remaining capacity is denoted by � = (r1,… , rI)

T . At time T + 1 , all of the
remaining capacity becomes worthless.

Let U
�
= {� ∈ {0, 1}J ∣ ∀i, j ∶ ujaij ≤ ri} be the set of feasible decision vectors

given the remaining capacity � . Furthermore, let

denote the state space at time t. The expected future revenue from time t on, given
remaining capacity � and using an optimal policy, is denoted by the (so-called) value
function vt(�) . This function is recursively defined by the Bellman equation

R
t
=

⎧
⎪⎨⎪⎩

∏
i
{c

i
}, t = 1

∏
i
{0,… , c

i
}, t ≥ 2

440 S. Laumer

1 3

The key element in this dynamic program is the term fj − [vt+1(�) − vt+1(� − �j)] ,
i.e., the difference between the revenue fj resulting from the potential sale of product
j at time t, and the marginal value vt+1(�) − vt+1(� − �j) of product j at time t + 1 .
An optimal policy accepts a request for product j if and only if its marginal value
does not exceed the fare fj.

The recursion (1) suffers from the curse of dimensionality. In particular, there are
exponentially many values vt(�) that have to be computed. We therefore turn to the con-
struction of approximate solutions.

Approximate linear programming It is well-known that v1(�) defined by the Bellman
equation (1) is the optimal value of the following linear program:

The size of (D) is growing exponentially in the number of both resources and prod-
ucts. We choose a small number of basis functions �b(�), b ∈ B , and insert the value
function approximation vt(�) ≈

∑
b∈B Vt,b�b(�) into (D) to obtain the approximate

linear program (D�) . This reduces the number of variables to (T + 1)|B| . The cor-
responding dual is given by:

The optimal value of (P�) is an upper bound on v1(�) . If the set of basis functions
includes a constant function �b(⋅) ≡ 1 , we can show by induction that the property ∑

�,� Xt,�,� = 1,∀t , holds for any feasible solution to (P�) . This observation allows us
to interpret each value Xt,�,� as the probability that at time t, the remaining capacity
is � and the decision is �.

(1)

vt(�) = max
�∈U�

∑
j

ujpt,j
[
fj −

[
vt+1(�) − vt+1(� − �

j)
]]

+ vt+1(�), ∀t, � ∈ Rt

vT+1(�) = 0, ∀� ∈ RT+1.

(D) min
v

v1(�)

s.t. vt(�) ≥
∑
j

ujpt,j
[
fj −

[
vt+1(�) − vt+1(� − �

j)
]]

+ vt+1(�), ∀t, � ∈ Rt, � ∈ U
�

vT+1(�) = 0, ∀� ∈ RT+1.

(2)

(P�) max
X≥0

�
t,�∈Rt ,�∈U�

�
j

Xt,�,�ujpt,jfj

s.t.
�

�∈Rt ,�∈U�

Xt,�,��b(�)

=

⎧⎪⎪⎨⎪⎪⎩

�b(�), t = 1�
�∈Rt−1,�∈U�

Xt−1,�,��b(�)

−
�

�∈Rt−1,�∈U�

Xt−1,�,�

�
j

ujpt−1,j
�
�b(�) − �b(� − �

j)
�
, t ≥ 2

∀t, b ∈ B.

441

1 3

Efficient compact linear programs for network revenue…

Compact linear programs from the literature For the AF approximation
vt(�) ≈ �t +

∑
i Vt,iri , Tong and Topaloglu [12] as well as Vossen and Zhang [14]

show equivalence between (P�) and the compact linear program

Similar to the interpretation of Xt,�,� as state-action probabilities, �t,j represents the
probability of decision uj = 1 in time step t. The variable �t,i is an approximation of
the expected value of ri at time t.

For the SPL approximation vt(�) ≈ �t +
∑

i

∑ci
k=1

Vt,i,k1{ri≥k} , where 1{ri≥k}
denotes the indicator function, Vossen and Zhang [14] show weak equivalence
between (P�) and the compact linear program

The interpretation of �t,j is the same as above. The variable �t,i,k represents the prob-
ability that at time t, resource i has at least k units left. �t,i,j,k represents the joint
probability that at time t, resource i has at least k units left and the decision uj = 1 is
made. To enforce the probabilistic interpretation of � , one would expect that (P̂SPL)
includes the constriants �t,i,1 ≤ 1,∀t, i and �t,i,k+1 ≤ �t,i,k,∀t, i, k . However, these con-
straints are redundant [14].

(�PAF) max
𝜌,𝜇≥0

�
t,j

pt,j fj𝜇t,j

s.t. 𝜌t,i =

⎧
⎪⎪⎨⎪⎪⎩

ci, if t = 1

𝜌t−1,i −
�
j

s.t. aij = 1

pt−1,j𝜇t,j, if t > 1,
∀t, i

𝜇t,j ≤ 𝜌t,i, ∀t, i, j ∶ aij = 1

𝜇t,j ≤ 1, ∀t, j.

(3)

(P̂SPL) max
� ,�,�≥0

�
t,j

pt,jfj�t,j

s.t. �t,i,k =

⎧⎪⎪⎨⎪⎪⎩

1, t = 1

�t−1,i,k −
�
j

s.t. aij = 1

pt−1,j(�t−1,i,j,k − �t−1,i,j,k+1) t ≥ 2
∀t, i, k

(4)�t,j = �t,i,j,1, ∀t, i, j ∶ aij = 1

(5)�t,i,j,k+1 ≤ �t,i,j,k, ∀t, i, j, k ∶ aij = 1

(6)�t,i,j,k ≤ �t,i,k, ∀t, i, j, k ∶ aij = 1.

442 S. Laumer

1 3

3 Genuinely piecewise linear approximation

We intend to decrease the size of (P̂SPL) by considering genuinely piecewise lin-
ear functions where the number of nodes can be chosen arbitrarily. Concerning
the position of the nodes, we remember that revenue management is most cru-
cial whenever remaining capacity becomes scarce. Separately for each resource,
our proposed value function approximation is thus piecewise linear with nodes
0, 1, 2,… , Li − 1, ci , where Li ∈ ℕ satisfies 1 ≤ Li ≤ ci . Piecewise linear functions
on this grid are spanned by the basis functions 1{ri≥k}, k = 1,… , Li − 1 , together
with the additional basis function max{0, ri − Li + 1} . Therefore, our proposed
value function approximation has the following form:

We now develop a compact linear program denoted (PG) associated with the value
function approximation (7). This is done heuristically by modifying (P̂SPL).

For a fixed time t, each constraint in (3) corresponds to a basis function 1{ri≥k} .
Since the value function approximation (7) includes the basis functions 1{ri≥k} for
k ≤ Li − 1 , (PG) inherits the constraints (3) for k ≤ Li − 1 . Our main task is to con-
struct analogue constraints for the basis functions max{0, ri − Li + 1}, i = 1,… , I .
We first observe that the left hand side of (3), �t,i,k , corresponds to the unreduced
term

∑
�∈Rt ,�∈U�

Xt,�,�1{ri≥k} on the left hand side of (2). This term is the expected
value of 1{ri≥k} given the probability distribution Xt . Adapting this probabilistic
view for the basis function max{0, ri − Li + 1} , we look for the expected value of
max{0, ri − Li + 1} given the probability distribution Xt . In terms of the probabili-
ties �t,i,k , this translates to

∑ci
k=Li

(�t,i,k − �t,i,k+1)(k − Li + 1) =
∑ci

k=Li
�t,i,k . The fact

that we end up with the sum of �t,i,k over k = Li,… , ci suggests that the constraints
we intend to construct result from summing (3) over k = Li,… , ci:

Here, �t−1,i,j,Li on the right hand side is the result of a telescoping sum and the fact
that �t,i,j,ci+1 = 0 . Summarized, we obtain (PG) as a relaxation of (P̂SPL) by replacing
the constraints (3) for k = Li,… , ci with their sum. This constraint aggregation
decreases the number of constraints and is thus a simplification of (P̂SPL) . To
decrease the number of variables, we use the probabilistic interpretation of � to
argue as follows: For a given number �t,i,Li , the term

∑ci
k=Li

�t,i,k can take any value
between �t,i,Li and �t,i,Li (ci − Li + 1) . The same is true for the term
�t,i,Li + �t,i,ci (ci − Li) . The variables �t,i,Li+1,… , �t,i,ci−1 are thus superfluous, and the
above constraints (8) become

(7)vt(�) ≈ �t +
∑
i

(
Li−1∑
k=1

Vt,i,k1{ri≥k} + Vt,i,Li
max{0, ri − Li + 1}

)
.

(8)

ci∑
k=Li

�t,i,k =

ci∑
k=Li

�t−1,i,k −
∑
j

s.t. aij = 1

pt−1,j�t−1,i,j,Li , ∀t, i.

443

1 3

Efficient compact linear programs for network revenue…

Finally, we add the constraints �t,i,k ≤ 1 and �t,i,k+1 ≤ �t,i,k which were redundant for
(P̂SPL) , and propose the following compact linear program:

Let (PG) denote the linear program (P�) using the SGPL approximation (7), and let
ZG and ZG be the optimal values of (PG) and (PG) . It follows from the above discus-
sion that ZG decreases as the number of nodes, Li , increases. Furthermore, stand-
ard arguments from variable aggregation show that the inequality ZG ≥ ZG holds.
We conjecture that (PG) is indeed a reduction of (PG) meaning that ZG = ZG . In any
case, ZG provides an upper bound on the optimal expected revenue, i.e., ZG ≥ v1(�).

�t,i,Li + �t,i,ci (ci − Li) = �t−1,i,Li + �t−1,i,ci (ci − Li)

−
∑
j

s.t. aij = 1

pt−1,j�t−1,i,j,Li , ∀t, i.

(PG) max
� ,�,�≥0

�
t,j

pt,jfj�t,j

s.t. �t,i,k =

⎧
⎪⎪⎨⎪⎪⎩

1, t = 1

�t−1,i,k −
�
j

s.t. aij = 1

pt−1,j(�t−1,i,j,k − �t−1,i,j,k+1), t ≥ 2

∀t, i, k ≤ Li − 1

�t,i,Li + �t,i,ci (ci − Li) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ci − Li + 1, t = 1

�t−1,i,Li + �t−1,i,ci (ci − Li)

−
�
j

s.t. aij = 1

pt−1,j�t−1,i,j,Li , t ≥ 2 ∀t, i

�t,i,1 ≤ 1, ∀t, i

�t,j = �t,i,j,1, ∀t, i, j ∶ aij = 1

�t,i,j,k+1 ≤ �t,i,j,k, ∀t, i, j, k ≤ Li − 1 ∶ aij = 1

�t,i,j,k ≤ �t,i,k, ∀t, i, j, k ∈ {1,… , Li, ci} ∶ aij = 1

�t,i,k+1 ≤ �t,i,k, ∀t, i, k ≤ Li − 1

�t,i,ci ≤ �t,i,Li , ∀t, i.

444 S. Laumer

1 3

To support our conjecture ZG = ZG , we compare these two values on small ran-
dom network instances, see Appendix A for details. The corresponding AMPL code
is available on GitHub so that our results can be reproduced.1

4 Numerical experiments

We experimentally benchmark SGPL against AF and SPL. We expect that SGPL
outperforms AF and needs less computing time than SPL. It is not clear, however,
how fast the quality improves as the number of nodes, Li , increases. We provide
some guidance on how to choose the number of nodes, Li , during deployment where
solving SPL is computationally too expensive.

All numerical experiments were carried out on a virtual machine with 256 GB
RAM and 32 cores of 2.59 GHz processors. The linear programs are solved with
CPLEX 20.1.0.0, using the interior-point solver “barrier” with standard tolerance
10−8.

We use data files2 from the literature containing 48 network instances [13, 14].
The setup is a hub-and-spoke airline network with one single hub and N non-hub
locations. Each non-hub location is connected with the hub via two legs, one for
each direction. There are N(N + 1) itineraries corresponding to all origin–destina-
tion pairs. For each itinerary, there are two fare classes, where the high fare is �
times higher than the low fare. Therefore, including the dummy product, there is a
total of 2N(N + 1) + 1 products. Finally, � ∶=

∑
t,i,j aijpt,j∑

i ci
 denotes the total load. Each

network instance is identified with the tupel (T ,N, �, �).

0.2 0.4 0.6 0.8 1.0
fraction q

18500

19000

19500

20000

20500

21000

21500

upper bound revenue

10 20 30 40 50 60 70
time s

18500

19000

19500

20000

20500

21000

21500

upper bound revenue

Fig. 1 Upper bounds and average revenues for the network instance (T ,N, �, �) = (200, 4, 1.0, 4)

2 https:// people. orie. corne ll. edu/ husey in/ resea rch/ rm_ datas ets/ rm_ datas ets. html.

1 https:// github. com/ slaume/ SGPL- Suppo rt- Equiv alence- Conje cture.

https://people.orie.cornell.edu/huseyin/research/rm_datasets/rm_datasets.html
https://github.com/slaume/SGPL-Support-Equivalence-Conjecture

445

1 3

Efficient compact linear programs for network revenue…

Table 1 Dividing in half AF’s optimality gap: Upper bounds (UB) and average revenues for AF, SGPL
and SPL

Network AF SGPL SPL Max.

Instance UB Revenue UB Revenue UB Revenue Std. err.

(200, 4, 1.0, 4) 21,348 18,451 20,720 19,607 20,411 20,052 58
(200, 4, 1.0, 8) 34,384 28,480 33,572 31,412 33,229 32,715 124
(200, 4, 1.2, 4) 19,663 14,069 19,080 16,805 18,856 18,426 48
(200, 4, 1.2, 8) 32,696 20,215 31,935 26,781 31,614 31,099 103
(200, 4, 1.6, 4) 17,303 11,006 16,809 13,860 16,507 16,123 43
(200, 4, 1.6, 8) 30,335 15,884 29,691 23,547 29,208 28,713 92
(200, 5, 1.0, 4) 22,016 18,419 21,567 20,310 21,257 21,045 58
(200, 5, 1.0, 8) 35,258 28,045 34,718 32,389 34,323 34,131 118
(200, 5, 1.2, 4) 21,108 16,339 20,510 18,845 20,089 19,739 59
(200, 5, 1.2, 8) 34,329 28,587 33,513 30,820 33,027 32,740 121
(200, 5, 1.6, 4) 18,565 14,245 17,750 16,828 17,625 17,183 50
(200, 5, 1.6, 8) 31,758 25,600 30,689 28,503 30,457 29,938 117
(200, 6, 1.0, 4) 22,116 18,374 21,475 20,028 21,075 20,688 57
(200, 6, 1.0, 8) 35,353 27,674 34,534 32,282 34,058 33,626 118
(200, 6, 1.2, 4) 20,649 16,845 19,971 18,409 19,601 19,140 58
(200, 6, 1.2, 8) 33,869 26,713 32,705 31,323 32,474 32,044 125
(200, 6, 1.6, 4) 18,230 13,525 17,599 15,316 17,227 16,766 51
(200, 6, 1.6, 8) 31,436 19,757 30,626 25,122 30,024 29,525 102
(200, 8, 1.0, 4) 19,870 15,779 19,256 17,538 18,712 18,127 53
(200, 8, 1.0, 8) 31,641 23,449 30,850 27,944 30,198 29,476 110
(200, 8, 1.2, 4) 18,598 13,604 17,925 16,117 17,426 16,827 47
(200, 8, 1.2, 8) 30,353 23,068 29,501 25,869 28,813 28,133 113
(200, 8, 1.6, 4) 16,378 12,691 15,519 14,201 15,241 14,720 48
(200, 8, 1.6, 8) 28,118 19,711 27,306 23,309 26,489 25,828 104
(600, 4, 1.0, 4) 32,213 28,293 31,347 29,988 30,969 30,670 75
(600, 4, 1.0, 8) 51,876 44,010 50,765 48,391 50,371 50,116 165
(600, 4, 1.2, 4) 29,618 21,462 28,804 25,846 28,580 28,224 69
(600, 4, 1.2, 8) 49,279 31,056 48,221 41,521 47,897 47,607 156
(600, 4, 1.6, 4) 26,082 16,502 25,374 20,871 25,050 24,721 63
(600, 4, 1.6, 8) 45,742 23,769 44,825 37,697 44,310 44,011 146
(600, 5, 1.0, 4) 33,153 28,662 32,538 30,864 32,203 32,031 89
(600, 5, 1.0, 8) 53,134 44,111 52,669 48,446 51,983 51,702 190
(600, 5, 1.2, 4) 31,773 24,135 31,343 28,220 30,522 29,986 83
(600, 5, 1.2, 8) 51,717 35,576 51,137 46,958 50,129 49,625 179
(600, 5, 1.6, 4) 28,022 21,702 26,952 24,792 26,816 26,337 74
(600, 5, 1.6, 8) 47,939 35,324 46,813 40,834 46,292 45,915 172
(600, 6, 1.0, 4) 26,722 22,707 25,946 24,494 25,497 25,174 72
(600, 6, 1.0, 8) 42,703 34,739 41,714 39,300 41,199 40,879 154
(600, 6, 1.2, 4) 24,878 19,087 24,036 21,971 23,649 23,216 68
(600, 6, 1.2, 8) 40,834 31,505 39,721 35,753 39,209 38,774 151

446 S. Laumer

1 3

It turns out that solving the dual linear programs is computationally more effi-
cient. This observation might be explained by the fact that “barrier” utilizes the
matrix product of the constraint matrix and its transpose in each iteration. Since (PG)
has approximately twice as many constraints as it has variables, this matrix product
is smaller for the dual linear program.

Also, adding the concavity property Vt,i,k+1 ≤ Vt,i,k,∀t, i, k , to the constraints
of the dual of (P̂SPL) speeds up its computing time. Similar results concerning the
increase of efficiency by enforcing concavity of bid prices with respect to time for an
affine value function approximation is discussed in [15].

For a fixed network instance (T ,N, �, �) , let Z
�

G
 denote the optimal value of (PG)

given � = (L1,… , LI) . We also call this value the upper bound. Using the value
function approximation (7) to compute approximate marginal values, we simulate
the corresponding policy 500 times. Let R�

G
 denote the resulting average revenue.

We measure the quality of an SGPL approximation by the difference Z
�

G
− R�

G
 which

we call optimality gap. For a given number q ∈ (0, 1) , we define Lq
i
∶= ⌈qci⌉,∀i . Let

t
q
comp be the computing time for solving the dual of (PG) . Since we always associate
q = 0 and q = 1 with AF and SPL, we report the computing times for solving the
dual of (P̂AF) or (P̂SPL) in these cases. We compute Z

�q

G
 and R�q

G
 for q = 0,

1

8
,… ,

7

8
, 1 .

Figure 1 shows the results for the network instance (T ,N, �, �) = (200, 4, 1.0, 4) . On
the left hand side, the results are plotted against the fraction q, and on the right hand
side, they are plotted against the computing time tqcomp in seconds. We observe large

improvements for both the upper bound Z
�

G
 and the average revenue R�

G
 even for

small fractions q and for computing times which are significantly smaller compared
to SPL.

Fixing the value q =
1

4
 , SGPL’s optimality gap is less than half of AF’s optimality

gap in 41 out of all 48 network instances. In general, let qhalf be the smallest
q ∈ {

1

8
,… ,

7

8
, 1} for which the optimality gap is less than half of AF’s optimality

gap. During deployment, we suggest to either 1) successively solve SGPL for
q = 0,

1

8
,… , qhalf , or 2) use the fixed value q =

1

4
 . In Tables 1 and 2, we report

Table 1 (continued)

Network AF SGPL SPL Max.

Instance UB Revenue UB Revenue UB Revenue Std. err.

(600, 6, 1.6, 4) 21,893 15,728 21,143 18,369 20,731 20,286 61
(600, 6, 1.6, 8) 37,842 28,139 36,584 32,906 36,211 35,706 146
(600, 8, 1.0, 4) 23,998 19,777 23,306 21,534 22,704 22,110 67
(600, 8, 1.0, 8) 38,217 30,005 37,326 34,229 36,612 35,918 142
(600, 8, 1.2, 4) 22,382 17,732 21,584 19,482 21,042 20,395 63
(600, 8, 1.2, 8) 36,580 28,095 35,565 31,812 34,820 34,060 139
(600, 8, 1.6, 4) 19,761 14,900 19,021 16,704 18,452 17,814 60
(600, 8, 1.6, 8) 33,942 25,365 32,592 29,305 32,078 31,574 127

447

1 3

Efficient compact linear programs for network revenue…

Table 2 Dividing in half AF’s
optimality gap: Computing time
in seconds for AF, SGPL and
SPL

Network AF SGPL SPL

Instance qhalf t0
comp

t
qhalf
comp t0

comp
+⋯ + t

qhalf
comp t1

comp

(200, 4, 1.0, 4) 0.25 0.56 11.1 17.7 52.0
(200, 4, 1.0, 8) 0.25 0.50 10.3 15.4 57.7
(200, 4, 1.2, 4) 0.25 0.50 7.6 12.0 36.0
(200, 4, 1.2, 8) 0.25 0.42 7.7 12.1 35.1
(200, 4, 1.6, 4) 0.25 0.45 4.8 7.6 28.8
(200, 4, 1.6, 8) 0.25 0.38 4.9 8.1 28.1
(200, 5, 1.0, 4) 0.25 0.62 19.1 27.8 82.8
(200, 5, 1.0, 8) 0.25 0.52 23.0 30.6 81.6
(200, 5, 1.2, 4) 0.25 0.59 16.6 24.8 55.5
(200, 5, 1.2, 8) 0.25 0.50 14.4 24.1 62.0
(200, 5, 1.6, 4) 0.375 0.64 17.6 30.3 48.3
(200, 5, 1.6, 8) 0.375 0.67 17.5 31.8 52.8
(200, 6, 1.0, 4) 0.25 1.00 21.2 36.8 94.8
(200, 6, 1.0, 8) 0.25 1.20 27.6 43.5 91.5
(200, 6, 1.2, 4) 0.25 1.05 21.3 30.3 86.5
(200, 6, 1.2, 8) 0.375 0.86 40.3 72.8 86.5
(200, 6, 1.6, 4) 0.25 0.97 9.7 15.4 58.7
(200, 6, 1.6, 8) 0.25 0.97 14.6 21.1 64.1
(200, 8, 1.0, 4) 0.25 6.23 33.3 49.3 213.9
(200, 8, 1.0, 8) 0.25 6.84 35.1 54.8 251.3
(200, 8, 1.2, 4) 0.25 7.61 28.8 44.1 350.6
(200, 8, 1.2, 8) 0.25 6.00 29.4 44.1 389.8
(200, 8, 1.6, 4) 0.375 4.30 26.5 50.5 99.5
(200, 8, 1.6, 8) 0.25 4.34 12.7 22.4 108.7
(600, 4, 1.0, 4) 0.25 1.53 97.4 156.2 255.7
(600, 4, 1.0, 8) 0.25 1.16 97.4 157.0 329.3
(600, 4, 1.2, 4) 0.25 1.17 61.0 101.0 239.4
(600, 4, 1.2, 8) 0.25 1.12 56.8 107.3 249.4
(600, 4, 1.6, 4) 0.25 1.11 36.8 56.0 237.3
(600, 4, 1.6, 8) 0.25 1.02 47.0 64.9 252.0
(600, 5, 1.0, 4) 0.25 5.00 128.5 200.0 602.3
(600, 5, 1.0, 8) 0.125 3.31 67.4 70.7 744.1
(600, 5, 1.2, 4) 0.125 2.59 64.0 66.6 383.2
(600, 5, 1.2, 8) 0.125 2.69 59.3 62.0 382.4
(600, 5, 1.6, 4) 0.375 3.09 148.3 260.8 316.1
(600, 5, 1.6, 8) 0.25 4.83 84.9 125.8 365.4
(600, 6, 1.0, 4) 0.25 17.75 138.3 610.0 566.5
(600, 6, 1.0, 8) 0.25 11.84 140.8 483.5 485.4
(600, 6, 1.2, 4) 0.25 9.70 338.0 532.8 343.4
(600, 6, 1.2, 8) 0.25 9.72 184.2 291.0 373.0
(600, 6, 1.6, 4) 0.25 7.20 166.9 221.6 234.3
(600, 6, 1.6, 8) 0.375 6.78 103.4 333.4 207.3

448 S. Laumer

1 3

results for strategy 1). Table 1 contains upper bounds and average revenues for AF,
SPL and SGPL using qhalf . Table 2 contains the computing times for AF and SPL,
i.e., t0

comp
 and t1

comp
 , as well as relevant computing times concerning SGPL: We report

both the computing time t
qhalf
comp as well as the cumulated computing time

t0
comp

+⋯ + t
qhalf
comp . To obtain an impression of the qualitative risk associated with

strategy 2), Table 3 reports optimality gaps and computing times for AF, SPL and
SGPL using the fixed value q =

1

4
 for those instances where qhalf >

1

4
.

SGPL’s computing time using qhalf is less than half of SPL’s computing time in
46 cases, less than a third in 39 cases, less than a fifth in 17 cases and less than a
tenth in 3 cases. The cumulated computing time t0

comp
+⋯ + t

qhalf
comp is less than half of

SPL’s computing time in 34 cases, less than a third in 20 cases and less than a fifth
in 5 cases. For those cases where qhalf >

1

4
 , using q =

1

4
 also substantially reduces

AF’s optimality gap requiring computing times that are significantly smaller than
half of SPL’s computing time in all but one instance.

Table 2 (continued) Network AF SGPL SPL

Instance qhalf t0
comp

t
qhalf
comp t0

comp
+⋯ + t

qhalf
comp t1

comp

(600, 8, 1.0, 4) 0.25 43.14 219.8 345.6 1059.4
(600, 8, 1.0, 8) 0.25 42.72 207.5 332.2 1062.5
(600, 8, 1.2, 4) 0.25 69.62 143.3 274.3 675.9
(600, 8, 1.2, 8) 0.25 38.92 146.8 247.8 799.5
(600, 8, 1.6, 4) 0.25 56.84 79.8 223.5 399.0
(600, 8, 1.6, 8) 0.375 92.78 153.2 414.4 456.8

Table 3 Optimality gap and
computing times for AF, SPL
and SGPL using the fixed
value q =

1

4
 for those network

instances where qhalf >
1

4

Network AF SGPL SPL max.

Instance Gap t0
comp

Gap
t
1

4

comp

Gap t1
comp

Std. err.

(200, 5, 1.6, 4) 4320 0.64 2919 8.0 442 48.3 50
(200, 5, 1.6, 8) 6158 0.67 5157 10.0 519 52.8 117
(200, 6, 1.2, 8) 7156 0.86 4154 16.3 430 86.5 125
(200, 8, 1.6, 4) 3687 4.30 2036 13.7 521 99.5 48
(600, 5, 1.6, 4) 6320 3.09 3917 67.2 479 316.1 74
(600, 6, 1.6, 8) 9703 6.78 6944 199.2 505 207.3 146
(600, 8, 1.6, 8) 8577 92.78 4474 89.5 504 456.8 127

449

1 3

Efficient compact linear programs for network revenue…

5 Conclusion

We add to the literature concerning compact approximate linear programs in net-
work revenue management by filling the gap between the AF and SPL value func-
tion approximation. The drawback of AF compared to SPL is mitigated by allowing
bid prices to depend on remaining capacity whenever this quantity becomes scarce.
At the same time, the computational complexity of SPL is decreased significantly.
Our numerical experiments demonstrate that for many instances, AF’s optimality
gap can be divided in half using only a small fraction of the computing time required
to solve SPL.

Further research may be done to extend our work to more general customer
choice models. Even though our results can be applied for discrete pricing problems,
fields like the retail industry require more sophisticated choice models.

A Numerical support for conjectured equivalence

We provide numerical support for the conjecture ZG = ZG using small random net-
work instances. The computation of ZG is made possible by a partial reduction of
(PG) , see Appendix B for details.

The network has five nodes, A, B, C, D, E, and four legs, AC, BC, CD, CE. We
set ci = 7,∀i , and T = 30 . There are eight possible origin–destination pairs, AC, BC,
CD, CE, AD, AE, BD, BE, out of which we randomly choose five. For each chosen
origin–destination pair, there are two fares which are determined using a uniform
distribution over {10,… , 30} and {40,… , 120} , respectively. Demand is stationary
and chosen randomly such that

∑
t,j pt,j = T . The number of nodes Li ∈ {1,… , ci}

is also chosen randomly for each resource i. We generate twenty such random
instances and always observe ZG = ZG.

B Partial reduction

In Appendix A, we have to compute the optimal value of the unreduced linear
program (PG) . (PG) suffers from the curse of dimensionality concerning both the
states � and decisions � . We partially reduce (DG) , the dual of (PG) , concerning the
states � . For the sake of simplicity, we abbreviate the SGPL approximation (7) as
�t +

∑
i v

G
t,i
(ri) where

Then, the dual of (P�) , which results from inserting (7) into (D), is equal to

vG
t,i
(ri) ∶=

Li−1∑
k=1

Vt,i,k1{ri≥k} + Vt,i,Li
max{0, ri − Li + 1}.

450 S. Laumer

1 3

with boundary conditions �T+1 = VT+1,i,k = 0,∀i, k . The unreduced linear program
(DG) is equivalent to the partially reduced linear program

where Ri,� ∶= {r ∈ {0,… , ci} ∣ ujaij ≤ r,∀j} . Moreover, since vG
t,i
(r) is lin-

ear for Li − 1 ≤ r ≤ ci , the constraints (11) only have to be enforced for
r ∈ {0, 1,… , Li, ci} ∩Ri,�.

Proof Let �,V be a feasible solution to (DG) . We obtain a feasible solution �,V , � to
(D̃G) with equal optimal value by defining

Vice versa, given a feasible solution �,V , � to (D̃G) , �,V is automatically a feasible
solution to (DG) with equal optimal value, which follows from inserting (11) into
(10).

Funding Open access funding provided by University of Zurich.

Data availability All datasets analyzed in Sect. 4 are taken from the literature [13] and are available
online here: https:// people. orie. corne ll. edu/ husey in/ resea rch/ rm_ datas ets/ rm_ datas ets. html. The AMPL
code used in Appendix A is available online on GitHub: https:// github. com/ slaume/ SGPL- Suppo rt- Equiv
alence- Conje cture.

Declarations

Conflict of interest The author declares that he has no conflict of interest.

(DG) min
�,V

�1 +
∑
i

vG
1,i
(ci)

s.t.
∑
i

(
vG
t,i
(ri) − vG

t+1,i
(ri) +

∑
j

ujpt,j

(
vG
t+1,i

(ri) − vG
t+1,i

(ri − aij)
))

≥ �t+1 − �t +
∑
j

ujpt,jfj, ∀t, � ∈ Rt, � ∈ U
�

(10)

(D̃G) min
�,V ,�

�1 +
∑
i

vG
1,i
(ci)

s.t.
∑
i

�t,i,� ≥ �t+1 − �t +
∑
j

ujpt,jfj, ∀t, � ∈ {0, 1}J

(11)
vG
t,i
(r) − vG

t+1,i
(r) +

∑
j

ujpt,j

(
vG
t+1,i

(r) − vG
t+1,i

(r − aij)
)
≥ �t,i,�,

∀t, i, � ∈ {0, 1}J , r ∈ Ri,�

�t,i,� ∶= min
r∈Ri,�

(
vG
t,i
(r) − vG

t+1,i
(r) +

∑
j

ujpt,j

(
vG
t+1,i

(r) − vG
t+1,i

(r − aij)
))

.

https://people.orie.cornell.edu/huseyin/research/rm_datasets/rm_datasets.html
https://github.com/slaume/SGPL-Support-Equivalence-Conjecture
https://github.com/slaume/SGPL-Support-Equivalence-Conjecture

451

1 3

Efficient compact linear programs for network revenue…

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Adelman, D.: Dynamic bid prices in revenue management. Oper. Res. 55(4), 647–661 (2007)
 2. de Farias, D.P., Van Roy, B.: On constraint sampling in the linear programming approach to approx-

imate dynamic programming. Math. Oper. Res. 29(3), 462–478 (2004)
 3. Erdelyi, A., Topaloglu, H.: Using decomposition methods to solve pricing problems in network rev-

enue management. J. Revenue Pricing Manag. 10(4), 325–343 (2011)
 4. Ke, J., Zhang, D., Zheng, H.: An approximate dynamic programming approach to dynamic pricing

for network revenue management. Prod. Oper. Manag. 28(11), 2719–2737 (2019)
 5. Kunnumkal, S., Talluri, K.: A note on relaxations of choice network revenue management dynamic

program. Oper. Res. 64(1), 158–166 (2016)
 6. Kunnumkal, S., Talluri, K.: On a piecewise-linear approximation for network revenue management.

Math. Oper. Res. 41(1), 72–91 (2016)
 7. Lin, Q., Nadarajah, S., Soheili, N.: Revisiting approximate linear programming: Constraint-violation

learning with applicatins to inventory control and energy storage. Manag. Sci. 66(4), 1544–1562
(2019)

 8. Meissner, J., Strauss, A.K.: Network revenue management with inventory-sensitive bid prices and
customer choice. Eur. J. Oper. Res. 216(2), 459–468 (2012)

 9. Schweitzer, P.J., Seidmann, A.: Generalized polynomial approximations in Markovian decision pro-
cesses. J. Math. Anal. Appl. 110(2), 568–582 (1985)

 10. Talluri, K., van Ryzin, G.J.: Revenue management under a general discrete choice model of con-
sumer behavior. Manag. Sci. 50(1), 15–33 (2004)

 11. Talluri, K., van Ryzin, G.J.: The Theory and Practice of Revenue Management. Kluwer Academic
Publishers, Norwell, MA (2004)

 12. Tong, C., Topaloglu, H.: On the approximate linear programming approach for network revenue
management problems. INFORMS J. Comput. 26(1), 121–134 (2014)

 13. Topaloglu, H.: Using Lagrangian relaxation to compute capacity-dependent bid prices in network
revenue management. Oper. Res. 57(3), 637–649 (2009)

 14. Vossen, T.W.M., Zhang, D.: Reductions of approximate linear programs for network revenue man-
agement. Oper. Res. 63(6), 1352–1371 (2015)

 15. Vossen, T.W.M., Zhang, D.: A dynamic disaggregation approach to approximate linear programs for
network revenue management. Prod. Oper. Manag. 24(3), 469–487 (2015)

 16. Walczak, D., Mardan, S., Kallesen, R.: Customer choice, fare adjustments and the marginal expected
revenue data transformation: A note on using old yield management techniques in the brave new
world of pricing. J. Revenue Pricing Manag. 9, 94–109 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Efficient compact linear programs for network revenue management
	Abstract
	1 Introduction and literature review
	2 Approximate linear programming in network revenue management
	3 Genuinely piecewise linear approximation
	4 Numerical experiments
	5 Conclusion
	References

