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Abstract
We consider a two-machine flow shop scheduling problem in which the process-
ing time of each operation is inversely proportional to the power of the amount of 
resources consumed by it. The objective is to minimize the sum of the makespan 
and the total resource consumption cost. We show that the problem is NP-hard, and 
its constrained version remains so. Then, we develop 1.25- and 2-approximation 
algorithms for the problem and its constrained version, respectively.

Keywords Scheduling · Convex resource consumption · Computational complexity · 
Approximation algorithms

1 Introduction

Scheduling problems with controllable processing times have been extensively 
studied since Vickson [13]. Refer to [6, 10] for the comprehensive surveys. In most 
scheduling problems with controllable processing times, it is assumed that the pro-
cessing time of job j is determined by a linear resource consumption function, which 
is described as

where ui,j is the resource consumption amount of job j on machine i, and p̄i,j and ūi,j 
are the initial processing time and upper bound on the resource consumption amount 

(1)pi,j(ui,j) = p̄i,j − ui,j, 0 ≤ ui,j ≤ ūi,j,
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of job j on machine i, respectively. However, linear resource consumption functions 
in (1) cannot reflect the law of diminishing marginal returns, which can be found 
in many resource allocation problems in physical or economic systems. The law 
means that productivity increases at a decreasing rate with the resource consumption 
amount. In this paper, to reflect this, assume that each job processing time decreases 
at an increasing rate with the amount of resource consumption, which is described 
as

where wi,j > 0 is the workload of operation Oi,j and k is a positive constant. Thus, we 
mainly focus on introducing the previous research with convex resource consump-
tion functions in (2). Table 1 shows a summary of complexity results for scheduling 
problems with convex resource consumption functions. Please refer to [10] for any 
missing definitions.

For a single-machine case, Kayan and Akturk [7] and Cheng and Janiak [2] intro-
duced the application of convex resource consumption functions. In a CNC machine 
scheduling problem [7], the job processing time is determined by a convex function in 
(2) of the feed rate and spindle speed used for each operation. In a steel mill industry 
[2], the time to preheat each batch of ingots in each soaking pit to a certain tempera-
ture is determined by a convex decreasing function of the gas flow intensity. Shabtay 
and Kaspi [8] considered 1�conv,∑j uj ≤ K�∑j vjCj , where vj is the weight of job j. 
Although the computational complexity remains open, they revealed a closed-form of 
the optimal resource allocation for a given job sequence, and presented polynomially 

(2)pi,j(ui,j) =

(
wi,j

ui,j

)k

,

Table 1  Complexity results for scheduling with convex resource consumption functions

Problem Complexity Ref.

1�conv�(∑j Cj,
∑

j uj) O(n log n) [8]
1�conv�(Cmax,

∑
j cjuj) O(n) [10]

1�conv, dj = d,
∑

j Tj ≤ T�∑j uj O(n2) [14]
1�conv, up,∑j cjuj ≤ K�Cmax NP-hard, 1.5-approx, 

FPTAS
[12]

1�conv, up�Cmax +
∑

j cjuj NP-hard, FPTAS [4]
Pm�conv, pmtn,∑j uj ≤ K�Cmax O(n2) [9]
Pm�conv,∑j uj ≤ K�Cmax NP-hard [9]
Pm�conv,∑j uj ≤ K�∑j Cj O(n log n) [9]
Fm�conv, prmu,∑i,j ui,j ≤ K, �i,j ≤ ui,j ≤ �i,j�Cmax NP-hard, m-approx 

(general convex)
[2]

F2�conv, nw,∑i,j ui,j ≤ K�Cmax Strongly NP-hard, 21∕k+1
-approx

[11]

F2�conv�Cmax +
∑

i,j ci,jui,j NP-hard, 1.25-approx Theorem 1 & Theorem 3
F2�conv,∑i,j ci,jui,j ≤ K�Cmax NP-hard, 2-approx Corollary 2 & Theorem 4
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solvable cases. Xu et al. [14] showed that 1�conv, dj = d,
∑

j Tj ≤ T�∑j uj is solvable 
in O(n2) . Recently, Shabtay and Zofi [12] considered 1�conv,∑j uj ≤ K�Cmax with 
one unavailability period, and showed that it is NP-hard and has a 1.5-approximation 
algorithm and an FPTAS. Choi and Park [4] extended the results into the case with 
multiple unavailability periods. For a parallel-machine case, Shabtay and Kaspi [9] 
showed that Pm�conv,∑j uj ≤ K�Cmax is NP-hard while its preemption vesion and 
Pm�conv,∑j uj ≤ K�∑j Cj are polynomially solvable.

For a flow shop case, Cheng and Janiak [2] considered Fm�conv,∑i,j ui,j ≤ K�Cmax 
such that permutation schedules are only considered and the bound constraint for 
each operation, that is, �i,j ≤ ui,j ≤ �i,j , exists. They proved the NP-hardness of the 
case with m = 2 , and developed a branch-and-bound algorithm and three m-approx-
imation algorithms whose performances were effective through numerical experi-
ments. Shabtay et al. [11] considered F2�conv,∑i,j ui,j ≤ K�Cmax such that no-wait 
constraints exist, that is, no idle time exists between the first and the second opera-
tions of each job. They proved its strong NP-hardness, developed a 21∕k+1-approxi-
mation algorithm, and introduced three polynomially solvable cases. Furthermore, 
they developed two heuristics whose performance were effective through numerical 
experiments.

To the best of our knowledge, there has been no study on the complexity of 
F2�conv,∑i,j ui,j ≤ K�Cmax without the bound and no-wait constraints. Note that 
the optimality property obtained from the bound constraints is to fully compress 
or not to compress each job under an optimal schedule, which had been used for 
the NP-hardness proof of [5]. Cheng and Janiak [2] also proved the NP-hardness 
of F2�conv,∑i,j ui,j ≤ K�Cmax with �i,j ≤ ui,j ≤ �i,j based on this optimality prop-
erty. Since the convex resource consumption functions in (2) are not locally 
bounded, however, this optimality property cannot be used for the NP-hardness of 
F2�conv,∑i,j ui,j ≤ K�Cmax . Furthermore, two cases with and without no-wait con-
straint are completely different problems. Thus, it is not straightforwardly that the 
NP-hardness result of [2, 5, 11] holds in F2�conv,∑i,j ci,jui,j ≤ K�Cmax.

The contributions of this paper are twofold. First, we prove the NP-hard-
ness of F2�conv�Cmax +

∑
i,j ci,jui,j and F2�conv,∑i,j ci,jui,j ≤ K�Cmax , which 

implies the NP-hardness of F2�conv�(Cmax,
∑

i,j ci,jui,j) whose complexity remains 
open in [10]. Second, we develop 1.25- and 2-approximation algorithms for 
F2�conv�Cmax +

∑
i,j ci,jui,j and F2�conv,∑i,j ci,jui,j ≤ K�Cmax , respectively. Since 

an optimal schedule exists among the set of the permutation schedules in the two-
machine flow shop scheduling problem with makespan criterion, an m-approxima-
tion algorithm of Cheng and Janiak [2] becomes a 2-approximation algorithm for 
F2�conv,∑i,j ci,jui,j ≤ K�Cmax . This fact is consistent with our 2-approximability 
result of F2�conv,∑i,j ci,jui,j ≤ K�Cmax.

The remainder of this paper is organized as follows: Sections 2 and 3 introduce 
the problem definition and some optimality properties, respectively. In Sects. 4 and 
5, we prove the NP-hardness and develop approximation algorithms, respectively.
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2  Problem definition

Our problem can be formally stated as follows. Let J = {1, 2, ..., n} and M = {1, 2} 
be the sets of jobs and machines, respectively. Let O = {Oi,j | i ∈ M and j ∈ J} be 
the set of operations, where Oi,j is the operation of job j on machine i. For Oi,j ∈ O , 
let wi,j be the workload of Oi,j . Let � =

(
�;u

)
 be a permutation schedule such that 

⋅  � =
(
�(1),�(2), ...,�(n)

)
 is the job sequence on both machines, where �(j) is the 

jth job to be processed on both machines in permutation �;

⋅  u = (ui,j)Oi,j∈O
 , where ui,j > 0 is the resource consumption amount of operation 

Oi,j ∈ O.

 Note that 

⋅  It is known from [1] that it suffices to consider only the permutation schedule 
with respect to any regular performance measures (e.g., makespan) in the two-
machine flow shop model;

⋅  For Oi,j ∈ O , the resource consumption cost and the processing time of Oi,j are 
calculated as ci,jui,j and pi,j(ui,j) =

(
wi,j∕ui,j

)k , respectively, where ci,j > 0 is the 
unit consumption cost.

 For simplicity, we will use pi,j instead of pi,j(ui,j) for Oi,j ∈ O when no confusion 
exists. For Oi,j ∈ O , let Ci,j(�) and Si,j(�) be the completion and start times of Oi,j in 
� , and Cmax(�) = C2,�(n)(�) be referred to as the makespan. The objective is to find a 
schedule � with the minimum sum of the makespan and the total resource consump-
tion cost, that is,

Let the problem above be referred to as Problem P. Furthermore, let the constrained 
version of Problem P be stated as follows:

where K is a given threshold.

min z(�) = Cmax(�) +
∑

Oi,j∈O

ci,jui,j.

minCmax(�)

s.t.
∑

Oi,j∈O

ci,jui,j ≤ K,
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3  Optimal properties of an optimal schedule

In this section, we introduce some optimality properties of Problem P. First, we intro-
duce a new terminology. Let a job j be referred to as a pivot in � , if C1,j(�) = S2,j(�) . 
Then, we have the following optimality properties.

Proposition 1 The first and last jobs are pivots in any optimal schedule.

Proof Let f and l be the first and last jobs in the optimal schedule, respectively. With-
out increasing the makespan, we can decrease u2,f  and u1,l until jobs f and l become 
pivots. Thus, Proposition 1 holds.

Proposition 2 No idle time exists between consecutive jobs in any optimal schedule.

By Propositions 1 and 2, henceforth, we consider only a schedule � with

which implies that

Let �∗ =
(
�∗;u∗

)
 be an optimal schedule, and p∗

i,j
= pi,j(u

∗
i,j
) for Oi,j ∈ O . For sim-

plicity, let

Since

we have

By Eq. (4) and the strict convexity of ti,j(ui,j) , ti,j(ui,j) is minimized at ui,j = �i,j and

and, furthermore, we have

n∑
j=2

p1,�(j) =

n−1∑
j=1

p2,�(j),

(3)Cmax(�) =

n∑
j=1

p1,�(j) + p2,�(n) = p1,�(1) +

n∑
j=1

p2,�(j).

ti,j(ui,j) = pi,j(ui,j) + ci,jui,j and �i,j =

(
kwk

i,j

ci,j

) 1

k+1

for Oi,j ∈ O.

t�
i,j
(ui,j) = p�

i,j
(ui,j) + ci,j = −k

wk
i,j

uk+1
i,j

+ ci,j,

(4)t�
i,j
(�i,j) = p�

i,j
(�i,j) + ci,j = 0.

(5)ti,j(ui,j) > ti,j(𝜏i,j) for ui,j ≠ 𝜏i,j,
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Lemma 1 In �∗,

Proof Suppose that u∗
a,b

> 𝜏a,b for some Oa,b ∈ O . Then, we can construct a schedule 
�̄� by letting ūa,b = 𝜏a,b and ūi,j = u∗

i,j
 for Oi,j ∈ O ⧵ {Oa,b} . Note that by u∗

a,b
> 𝜏a,b , we 

have pa,b(u∗a,b) < pa,b(𝜏a,b) and

Then, by inequalities (5) and (7),

This is a contradiction.

Lemma 2 In �∗,

Proof It is observed from Eq. (3) that two terms in

are independent of ui,j for Oi,j ∈ O ⧵ P∗ . Thus, Lemma 2 holds from Eq. (5).

For simplicity, we introduce the following notations: When jobs �(h) and �(m) 
are the consecutive pivots in � , let 

⋅  for 1 ≤ h < m ≤ n , 

⋅  zh,m(�) be the objective value with respect to the operations in 

 Then,

(6)ci,j�i,j = ci,j

(
kwk

i,j

ci,j

) 1

k+1

= k

(
ci,jwi,j

k

) k

k+1

= kpi,j(�i,j).

u∗
i,j
≤ �i,j for Oi,j ∈ O.

(7)Cmax(�̄�) − Cmax(𝜎
∗) ≤ pa,b(𝜏a,b) − pa,b(u

∗
a,b
).

z(�̄�) − z(𝜎∗) ≤ pa,b(𝜏a,b) − pa,b(u
∗
a,b
) + ca,b

(
𝜏a,b − u∗

a,b

)
= ta,b(𝜏a,b) − ta,b(u

∗
a,b
) < 0.

u∗
i,j
= �i,j for Oi,j ∈ P∗ ∶= {O1,�∗(1),O2,�∗(n)}.

{
ti,j(ui,j) ∣ Oi,j ∈ P∗

}

Ah,m = {�(h + 1), ...,�(m)} and Bh,m = {�(h), ..., �(m − 1)};

{
O1,j | j ∈ Ah,m

}
∪
{
O2,j | j ∈ Bh,m

}
.

(8)zh,m(�) =
∑

j∈Ah,m

p1,j(u1,j) +
∑

j∈Ah,m

c1,ju1,j +
∑
j∈Bh,m

c2,ju2,j,
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where the first term is the total processing times on machines 1 and the second and 
third terms are the total resource consumption costs of these operations, respec-
tively, and the following equation holds:

Lemma 3 zh,m(�) is minimized when two constants �̂� and �̃� exist such that

Proof Suppose that 
∑

j∈Ah,m
p1,j(u1,j) = � , where 𝛿 > 0 is some value. Then, zh,m(�) is 

minimized when � is optimal for the following problem:

Since Lagrangian L(u;�) for the above problem is expressed as follows:

By Karush-Kuhn-Tucker (KKT) necessary and sufficient conditions, there exists a 
constant � such that

Note that by Eq. (4), c1,j = −p�
1,j
(�1,j) . Then, since p�

1,j
(u1,j) ≠ 0 , Eq. (10) can be 

rewritten as follows:

which implies that for j ∈ Ah,m,

By Eq. (11) and setting �̂� = 𝜆
1

k+1,

By Eqs. (8) and (9), zh,m(�) is also minimized when � is optimal for the following 
problem:

(9)
∑

j∈Ah,m

p1,j(u1,j) =
∑
j∈Bh,m

p2,j(u2,j).

u1,j = �̂�𝜏1,j for j ∈ Ah,m and u2,j = �̃�𝜏2,j for j ∈ Bh,m.

min
∑

j∈Ah,m

c1,ju1,j

s.t.
∑

j∈Ah,m

p1,j(u1,j) ≤ �.

L(u;�) =
∑

j∈Ah,m

c1,ju1,j + �

( ∑
j∈Ah,m

p1,j(u1,j) − �

)
,

(10)
�

�u1,j
L(u;�) ∶= c1,j + �p�

1,j
(u1,j) = 0 for j ∈ Ah,m.

� = −
c1,j

p�
1,j
(u1,j)

=
p�
1,j
(�1,j)

p�
1,j
(u1,j)

=

(
u1,j

�1,j

)k+1

,

(11)u1,j = �
1

k+1 �1,j.

u1,j = �̂�𝜏1,j for j ∈ Ah,m.
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 By a similar argument,

  ◻

For 1 ≤ h < m ≤ n , let Ah,m and Bh,m be the total processing time of operations in 
Ah,m and Bh,m when ui,j = �i,j , respectively, which are calculated as follows:

and

Lemma 4 
where the equality holds at

Proof By Lemma 3, set

Then, Eqs. (6), (8) and (9) can be modified as follows.

and

min
∑
j∈Bh,m

c2,ju2,j

s.t.
∑
j∈Bh,m

p2,j(u2,j) ≤ �.

u2,j = �̃�𝜏2,j for j ∈ Bh,m.

(12)Ah,m =
∑

j∈Ah,m

p1,j(�1,j) =
∑

j∈Ah,m

(
c1,jw1,j

k

) k

k+1

(13)Bh,m =
∑
j∈Bh,m

p2,j(�2,j) =
∑
j∈Bh,m

(
c2,jw2,j

k

) k

k+1

.

zh,m(�) ≥ (k + 1)

(
A

k+1

k

h,m
+ B

k+1

k

h,m

) k

k+1

,

(14)�̂� =

⎛
⎜⎜⎜⎝

A
k+1

k

h,m

A
k+1

k

h,m
+ B

k+1

k

h,m

⎞
⎟⎟⎟⎠

1

k+1

and �̃� =

⎛
⎜⎜⎜⎝

B
k+1

k

h,m

A
k+1

k

h,m
+ B

k+1

k

h,m

⎞
⎟⎟⎟⎠

1

k+1

.

u1,j = �̂�𝜏1,j for j ∈ Ah,m and u2,j = �̃�𝜏2,j for j ∈ Bh,m.

(15)zh,m(𝜎) =
Ah,m

�̂�k
+ kAh,m�̂� + kBh,m�̃�
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By setting �̃� = (Bh,m∕Ah,m)
1

k �̂� from (16) and substituting it into (15),

Note that zh,m(�) is minimized when

that is, when two equalities in (14) hold. By substituting �̂� and �̃� of (14) into (15), 

zh,m(�) has the minimum of (k + 1)

(
A

k+1

k

h,m
+ B

k+1

k

h,m

) k

k+1

 .   ◻

It is observed from Lemma 4 that if jobs �(h) and �(m) are the consecutive pivots 
in � and two equalities in (14) hold, then

where Ph,m(�) is the total processing time of operations in Ah,m.

Corollary 1 In �∗,

Proof Let Q∗ be the set of the pairs of the consecutive pivots in �∗ . Then, by Lemma 
2 and relations (6) and (17), we have

  ◻

4  Computational complexity

In this section, we show that Problem P and its constrained version are NP-hard by 
using the optimality properties in Sect. 3.

Theorem 1 Problem P is NP-hard, even when k = 1 and w1,j = w2,j for j ∈ J .

(16)
1

�̂�k
Ah,m =

1

�̃�k
Bh,m.

zh,m(𝜎) =
Ah,m

�̂�k
+ kAh,m�̂� + kBh,m

(
Bh,m

Ah,m

) 1

k

�̂� .

d

d�̂�
zh,m(𝜎) = −k

Ah,m

�̂�k+1
+ kAh,m + kBh,m

(
Bh,m

Ah,m

) 1

k

= 0,

(17)Ph,m(𝜎) =
Ah,m

�̂�k
=
(
A

k+1

k

h,m
+ B

k+1

k

h,m

) k

k+1
=

1

k + 1
zh,m(𝜎).

z(�∗) = (k + 1)Cmax(�
∗).

z(�∗) =
∑

Oi,j∈P
∗ ti,j(�i,j) +

∑
(h,m)∈Q∗ zh,m(�

∗)

= (k + 1)
�∑

Oi,j∈P
∗ pi,j(�i,j) +

∑
(h,m)∈Q∗ Ph,m(�

∗)
�

= (k + 1)Cmax(�
∗).
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Proof We prove it by reduction from the partition problem, which is known to be 
NP-complete: Given g integers in {a1, a2, ..., ag} with 

∑g

j=1
aj = 2A , is there a subset 

A ⊂ {1, 2, ..., g} such that

Given an instance of the partition problem, we can construct an instance of Problem 
P as follows: Let J = {1, 2, ..., g + 3} and O =

{
Oi,j | i = 1, 2, j ∈ J

}
 such that

where

P =
{
O1,g+2,O2,g+3

}
 , M = 8

√
A∕� , � = min{1, f (1) − f (0)} , and

By definition, we have

Henceforth, we show that there exists a solution A to the partition problem if and 
only if the reduced instance of Problem P has a schedule � with z(�) ≤ Z , where 
Z = 4

√
13A + �∕2.

(⇒ ) Suppose that there exists a solution Ā to the partition problem. Let 
L̄ be the set of jobs in {1, 2, ..., g} corresponding to the integers in Ā , and 
R̄ = {1, 2, ..., g} ⧵ L̄ . Then, we can construct a schedule �̄� =

(
�̄�;ū

)
 such that 

⋅  ̄𝜋 = (g + 2, �̄�L̄, g + 1, �̄�R̄, g + 3) , where �̄�L̄ and �̄�R̄ are the sequences constructed 
by arbitrarily ordering the jobs in L̄ and R̄ , respectively;

⋅  ̄u = (ūi,j)Oi,j∈O
 , where 

∑
j∈A

aj = A?

wi,j = bj for Oi,j ∈ O and ci,j =

{
bj for Oi,j ∈ O ⧵ P

1∕M2 forOi,j ∈ P,

bj =

⎧
⎪⎨⎪⎩

aj for j = 1, 2, ..., g

2A for j = g + 1

A for j=g+2,g+3,

f (x) = 2
√
13A2 − 10Ax + 2x2 + 2

√
13A2 + 10Ax + 2x2.

(18)�i,j = 1 for Oi,j ∈ O ⧵ P and �i,j =
√
AM for Oi,j ∈ P.
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 Let p̄i,j = wi,j∕ūi,j for Oi,j ∈ O . Then,

It is observed that no idle time exists between the consecutive jobs in �̄� on both 
machines. Thus, since

and

we have

(⇐ ) Suppose that there exists an optimal schedule �∗ with z(�∗) ≤ Z . Then, we can 
obtain �̃� =

(
𝜋∗;û

)
 by setting û = (ûi,j)Oi,j∈O

 with

Since ûi,j ≥ u∗
i,j

 for each Oi,j ∈ O by Lemma 1, Cmax(�̃�) ≤ Cmax(𝜎
∗) . Let �̂� =

(
�̂�;û

)
 , 

where �̂� is a sequence by Johnson’s rule. Note that Cmax(�̂�) ≤ Cmax(�̃�) . Thus,

(ū1,j, ū2,j) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

(𝜏1,j, 2∕
√
13) for j = g + 2

(3∕
√
13, 2∕

√
13) for j ∈ L̄

(3∕
√
13, 3∕

√
13) for j = g + 1

(2∕
√
13, 3∕

√
13) for j ∈ R̄

(2∕
√
13, 𝜏2,j) for j = g + 3.

(p̄1,j, p̄2,j) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�
1

M

√
A,

1

2

√
13A

�
for j = g + 2�

1

3

√
13aj,

1

2

√
13aj

�
for j ∈ L̄�

2

3

√
13A,

2

3

√
13A

�
for j = g + 1�

1

2

√
13aj,

1

3

√
13aj

�
for j ∈ R̄�

1

2

√
13A,

1

M

√
A
�

for j=g+3.

Cmax(�̄�) = p̄1,�̄�(1) +

g+3�
j=1

p̄2,�̄�(j) = 2
√
13A +

2

M

√
A

�
Oi,j∈O

ci,jūi,j = 2
√
13A +

2

M

√
A,

z(�̄�) = 4
√
13A +

4

M

√
A = 4

√
13A +

𝛿

2
= Z.

ûi,j =

{
𝜏i,j for Oi,j ∈ P

u∗
i,j

for Oi,j ∈ O ⧵ P.
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Now, we will see the structure of �̂� in Claims 1 and 2.
Claim 1 Jobs (g + 2) and (g + 3) are the first and last jobs in �̂� , respectively.

Proof Let p̂i,j = wi,j∕ûi,j for Oi,j ∈ O . Then, by (18), we have

and, by Lemma 1 and (18),

Hence, by Johnson’s rule, jobs (g + 2) and (g + 3) are the first and last jobs in �̂� , 
respectively. ◻ Like (12) and (13), for 1 ≤ h < m ≤ g + 3 , let

where Âh,m = {�̂�(h + 1), ..., �̂�(m)} and B̂h,m = {�̂�(h), ..., �̂�(m − 1)}.

Claim 2 In �̂� , job (g + 1) is a pivot.

Proof Suppose that, in �̂� , job (g + 1) is not a pivot, it is the lth job, and it is 
sequenced between the consecutive pivots �̂�(h) and �̂�(m) , where h < l < m . By (18) 
and Lemma 3,

i) �̂� ≤ �̃� Since Âh,l − B̂h,l = w1,�̂�(l) − w2,�̂�(h) ≥ 2A − A > 0 , we have 

(19)

z(�̂�) =Cmax(�̂�) +
�

Oi,j∈O

ci,jûi,j

≤Cmax(�̃�) +
�

Oi,j∈O⧵P

ci,jûi,j +
�
Oi,j∈P

ci,jûi,j

≤Cmax(𝜎
∗) +

�
Oi,j∈O⧵P

ci,ju
∗
i,j
+

�
Oi,j∈P

ci,j(u
∗
i,j
+ 𝜏i,j)

=Cmax(𝜎
∗) +

�
Oi,j∈O

ci,ju
∗
i,j
+
�
j∈P

ci,j𝜏i,j

≤Z + 2
√
A∕M = 4

√
13A +

3

4
𝛿.

p̂i,j =
wi,j

𝜏i,j
=

A√
AM

=
𝛿

8
< 1 for Oi,j ∈ P

p̂i,j =
wi,j

u∗
i,j

≥
wi,j

𝜏i,j
= wi,j ≥ 1 for Oi,j ∈ O ⧵ P.

Âh,m =
∑

j∈Âh,m

w1,j and B̂h,m =
∑
j∈B̂h,m

w2,j,

û1,j = �̂� for j ∈ Âh,m and û2,j = �̃� for j ∈ B̂h,m.

1

�̂�
Âh,l >

1

�̃�
B̂h,l.



1253

1 3

Two‑machine flow shop scheduling with convex resource…

 This implies that job �̂�(l) becomes a pivot, which is a contradiction.
ii) �̂� > �̃� Since B̂l,m − Âl,m = w2,�̂�(l) − w1,�̂�(m) ≥ 2A − A > 0 , we have 

 This implies that jobs �̂�(m) is not a pivot, which is a contradiction.
By cases i) and ii), Claim 2 holds.   ◻

Now, we will derive a lower bound of z(�̂�) . Let L̂ and R̂ be the sets of jobs in 
{1, 2, ..., g} before and after job (g + 1) in �̂� , respectively.

Claim 3 f(x) is a lower bound of z(�̂�) , where x = A −
∑
j∈L̂

aj.

Proof Let 
{
�̂�(𝛼i) | i = 1, ..., v

}
 be the set of pivots in �̂� . Note that by Proposition 1 

and Claim 2, we may assume that �̂�(𝛼1) = g + 2 , �̂�(𝛼u) = g + 1 , and �̂�(𝛼v) = g + 3 , 
where 1 < u < v . For simplicity, for i ∈ {2, 3, ..., v} , let Âi = Â𝛼i−1,𝛼i

 , B̂i = B̂𝛼i−1,𝛼i
 , and 

zi(�̂�) = z𝛼i−1,𝛼i(�̂�) . Since �̂�(𝛼i−1) and �̂�(𝛼i) are consecutive pivots and by Lemma 4 for 
k = 1 , we have

Note that by the Cauchy-Schwarz inequality, we have, for i ∈ {2, 3, ..., v − 1},

Since 
u∑
i=2

Âi = Â𝛼1,𝛼u
 and 

u∑
i=2

B̂i = B̂𝛼1,𝛼u
 , we have

Similarly, since 
v∑

i=u+1

Âi = Â𝛼u,𝛼v
 and 

v∑
i=u+1

B̂i = B̂𝛼u,𝛼v
 , we have

Then, by inequalities (20) and (21), we have

 Since 
∑
j∈R̂

aj = 2A −
∑
j∈L̂

aj = A + x , we obtain

1

�̂�
Âl,m <

1

�̃�
B̂l,m.

zi(�̂�) ≥ 2

√
Â2
i
+ B̂2

i
for i ∈ {2, 3, ..., v}.

√
Â2
i
+ B̂2

i
+

√
Â2
i+1

+ B̂2
i+1

≥

√
(Âi + Âi+1)

2 + (B̂i + B̂i+1)
2.

(20)
u∑
i=2

zi(�̂�) ≥ 2

u∑
i=2

√
Â2
i
+ B̂2

i
≥ 2

√
Â2
𝛼1,𝛼u

+ B̂2
𝛼1,𝛼u

.

(21)
v∑

i=u+1

zi(�̂�) ≥ 2

v∑
i=u+1

√
Â2
i
+ B̂2

i
≥ 2

√
Â2
𝛼u,𝛼v

+ B̂2
𝛼u,𝛼v

.

(22)
z(�̂�) ≥p1,�̂�(1) +

v∑
i=2

zi(�̂�) + p2,�̂�(g+3)

>2

√
Â2
𝛼1,𝛼u

+ B̂2
𝛼1,𝛼u

+ 2

√
Â2
𝛼u,𝛼v

+ B̂2
𝛼u,𝛼v

.
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Then, the inequality (22) can be rewritten as follows:

  ◻

Now, we show that L̂ is a solution to the partition problem. By definition, |x| ≤ A . 
Suppose that 

∑
j∈L̂

aj ≠ A . Then, 1 ≤ |x| ≤ A holds by the integrality of aj for 

j ∈ {1, 2, ..., g} . Note that f(x) is an increasing function on 0 < x ≤ A since

By f (−x) = f (x) , we have f (x) ≥ f (1) on 1 ≤ |x| ≤ A . Then, by Claim 3 and 
f (0) = 4

√
13A,

This is a contradiction to the inequality (19). Thus, 
∑
j∈L̂

aj = A holds and L̂ is a solu-

tion to the partition problem.   ◻

Theorem 2 Problem P is NP-hard, even when k = 1 and c1,j = c2,j for j ∈ J .

Proof Given an instance of the partition problem, we can construct an instance of 
Problem P as follows: Let J = {1, 2, ..., g + 3} and O =

{
Oi,j | i = 1, 2, j ∈ J

}
 such 

that

where bj and M are the values defined in the proof of Theorem 1. By using the same 
argument in the proof of Theorem 1, we can show that there exists a solution A to 
the partition problem if and only if the reduced instance of Problem P has a schedule 
� with z(�) ≤ Z . We omit the details.   ◻

Â𝛼1,𝛼u
=
∑
j∈L̂

w1,j + w1,g+1 =
∑
j∈L̂

aj + 2A = 3A − x,

B̂𝛼1,𝛼u
=w2,g+2 +

∑
j∈L̂

w2,j = A +
∑
j∈L̂

aj = 2A − x,

Â𝛼u,𝛼v
=
∑
j∈R̂

w1,j + w1,g+3 =
∑
j∈R̂

aj + A = 2A + x, and

B̂𝛼u,𝛼v
=w2,g+1 +

∑
j∈R̂

w2,j = 2A +
∑
j∈R̂

aj = 3A + x.

z(�̂�) >2
√
(3A − x)2 + (2A − x)2 + 2

√
(3A + x)2 + (2A + x)2

=2
√
13A2 − 10Ax + 2x2 + 2

√
13A2 + 10Ax + 2x2 = f (x).

f �(x) =
10A + 4x√

13A2 + 10Ax + 2x2
−

10A − 4x√
13A2 − 10Ax + 2x2

> 0.

z(�̂�) > f (x) ≥ f (1) = 4
√
13A + f (1) − f (0) ≥ 4

√
13A + 𝛿.

wi,j =

{
bj for Oi,j ∈ O ⧵ P

1∕M2 for Oi,j ∈ P
and ci,j = bj for Oi,j ∈ O,
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Corollary 2 The constrained version of Problem P is NP-hard, even when k = 1 and, 
for j ∈ J  , w1,j = w2,j or c1,j = c2,j.

Proof We can prove it by using the instances in the proofs of Theorems 1 and 2. We 
will show that there exists a solution A to the partition problem if and only if there 
exists a schedule � with Cmax(�) ≤ Z∕2 and 

∑
Oi,j∈O

ci,jui,j ≤ Z∕2 . It is observed from 

the proofs of Theorems 1 and 2 that 

⋅  If the partition problem has a solution, then �̄� in the ( ⇒ ) part satisfies 

⋅  If there exists a schedule �̂� with Cmax(�̂�) ≤ Z∕2 and 
∑

Oi,j∈O

ci,jûi,j ≤ Z∕2 , then 

z(�̂�) ≤ Z and the partition problem has a solution by the ( ⇐ ) part.

 By the observations above, Corollary 2 holds.   ◻

5  Approximability

Since Problem P and its constrained version are proven to be NP-hard, it is reason-
able to develop approximation algorithms instead of developing the exact algorithm. 
In this section, we develop approximation algorithms for Problem P and its con-
strained version by using the optimality properties in Sect. 3.

Let �̄� =
(
𝜋H;𝜏

)
 be a schedule, where � = (�i,j)Oi,j∈O

 and �H is a job sequence 
according to Johnson’s rule. Note that �̄� can be obtained in O(n log n) time. For sim-
plicity, let p̄i,j be the processing time of Oi,j when ui,j = �i,j , that is,

Theorem 3 Problem P has 
(
1 +

k

(k+1)2

)
-approximability.

Proof First, we obtain the bound for Cmax(�̄�) . For an arbitrary schedule � =
(
�;u

)
,

Cmax(�̄�) ≤
Z

2
and

∑
Oi,j∈O

ci,jūi,j ≤
Z

2
;

p̄i,j = pi,j(𝜏i,j) =

(
wi,j

𝜏i,j

)k

for Oi,j ∈ O.
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where the second inequality and the second equality hold from Eqs. (5) and (6), 
respectively. Second, we obtain the bound for the total resource consumption cost of 
�̄� . By Eqs. (5) and (6), furthermore, it is observed that

where the the last equality holds from Corollary 1. By inequalities (23) and (24),

  ◻

Note that since

(23)

z(𝜎) = max
1≤h≤n

{
h∑
j=1

p1,𝜋(j) +

n∑
j=h

p2,𝜋(j)

}
+

∑
Oi,j∈O

ci,𝜋(j)ui,𝜋(j)

≥ max
1≤h≤n

{
h∑
j=1

(
p1,𝜋(j) + c1,𝜋(j)u1,𝜋(j)

)
+

n∑
j=h

(
p2,𝜋(j) + c2,𝜋(j)u2,𝜋(j)

)}

≥ max
1≤h≤n

{
h∑
j=1

(
p̄1,𝜋(j) + c1,𝜋(j)𝜏1,𝜋(j)

)
+

n∑
j=h

(
p̄2,𝜋(j) + c2,𝜋(j)𝜏2,𝜋(j)

)}

=(k + 1) max
1≤h≤n

{
h∑
j=1

p̄1,𝜋(j) +

n∑
j=h

p̄2,𝜋(j)

}

=(k + 1)Cmax(𝜋;𝜏)

≥(k + 1)Cmax(�̄�),

(24)

(
k + 1

k

) ∑
Oi,j∈O

ci,j𝜏i,j =
∑

Oi,j∈O

(
1

k
ci,j𝜏i,j + ci,j𝜏i,j

)

=
∑

Oi,j∈O

(
p̄i,j + ci,j𝜏i,j

)

≤
∑

Oi,j∈O

(
p∗
i,j
+ ci,ju

∗
i,j

)

≤2Cmax(𝜎
∗) +

∑
Oi,j∈O

ci,ju
∗
i,j

=z(𝜎∗) + Cmax(𝜎
∗)

=
(
1 +

1

k + 1

)
z(𝜎∗),

z(�̄�) = Cmax(�̄�) +
∑

Oi,j∈O

ci,j𝜏i,j ≤

(
1 +

k

(k + 1)2

)
z(𝜎∗).

d

dk

(
1 +

k

(k + 1)2

)
=

1 − k

(k + 1)3
,
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(
1 +

k

(k+1)2

)
 has the maximum of 1.25 at k = 1 , and it converges to 1 when k goes to 

0 or ∞ . Henceforth, we will prove a 2-approximablity for the constrained version. 
Let �̂� =

(
𝜋;𝛼𝜏

)
 be a schedule with an arbitrary sequence � , where

Note that �̂� can be obtained in O(n) time. For simplicity, let ûi,j = 𝛼𝜏i,j and 
p̂i,j = pi,j(ûi,j) for Oi,j ∈ O.

Theorem 4 The constrained version of Problem P has 2-approximability.

Proof Consider the following problem.

Lagrangian L(u;�) for problem (25) is described as

and KKT necessary and sufficient conditions are as follows:

and

Since � =
1

�k+1
 and ui,j = ûi,j for Oi,j ∈ O satisfy Eqs. (26) and (27), (ûi,j)Oi,j∈O

 
becomes an optimal solution to problem (25). Since (u∗

i,j
)Oi,j∈O

 is a feasible solution 
of problem (25), we have

  ◻

� =
K∑

Oi,j∈O
ci,j�i,j

.

(25)
min

∑
Oi,j∈O

(
wi,j

ui,j

)k

s.t.
∑

Oi,j∈O

ci,jui,j ≤ K.

L(u;�) =
∑

Oi,j∈O

(
wi,j

ui,j

)k

+ �(
∑

Oi,j∈O

ci,jui,j − K),

(26)
�

�ui,j
L(u;�) = −k

wk
i,j

uk+1
i,j

+ �ci,j = 0 for Oi,j ∈ O,

(27)�

⎛⎜⎜⎝
�

Oi,j∈O

ci,jui,j − K

⎞⎟⎟⎠
= 0.

Cmax(�̂�) ≤
∑

Oi,j∈O

p̂i,j ≤
∑

Oi,j∈O

p∗
i,j
≤ 2Cmax(𝜎

∗).
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Note that it is still open that the above approximation factors 
(
1 +

k

(k+1)2

)
 and 2 

are tight or not.
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