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Abstract
Portfolio risk management has become more important since some unpredictable 
factors, such as the 2008 financial crisis and the recent COVID-19 crisis. Although 
the risk can be actively managed by risk diversification, the high transaction cost 
and managerial concerns ensue by over diversifying portfolio risk. In this paper, we 
jointly integrate risk diversification and sparse asset selection into mean-variance 
portfolio framework, and propose an optimal portfolio selection model labeled as 
JMV. The weighted piecewise quadratic approximation is considered as a penalty 
promoting sparsity for the asset selection. The variance associated with the marginal 
risk regard as another penalty term to diversify the risk. By exposing the feature 
of JMV, we prove that the KKT point of JMV is the local minimizer if the regu-
larization parameter satisfies a mild condition. To solve this model, we introduce the 
accelerated proximal gradient (APG) algorithm [Wen in SIAM J. Optim 27:124–
145, 2017], which is one of the most efficient first-order large-scale algorithm. 
Meanwhile, the APG algorithm is linearly convergent to a local minimizer of the 
JMV model. Furthermore, empirical analysis consistently demonstrate the theoreti-
cal results and the superiority of the JMV model.

Keywords Sparse portfolio selection · Non-convex regularization · Accelerated 
proximal algorithm · Linear convergence

 * Qian Li 
 liqian15123329166@163.com

 Wei Zhang 
 lindelfeel@gmail.com

1 School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, 
Shanghai 201620, China

2 School of Mathematics, South China University of Technology, Guangzhou 510640, China

http://orcid.org/0000-0003-0885-7693
http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-022-01914-5&domain=pdf


1182 Q. Li, W. Zhang 

1 3

1 Introduction

Whether the 2008 financial crisis or the recent COVID-19 crisis have a massive 
impact on companies and industries, making the dramatic fluctuation and reces-
sion of the market. In order to safeguard the portfolio and its value, the portfolio 
risk management becomes particularly important. The global minimum variance 
portfolio model (GMV) [14] is widely used in a volatile market, which belongs 
to the Markowitz mean-variance (MV) portfolio framework [21]. Although the 
GMV model has a good performance in the out-of-sample tests, it still suffers 
from estimation error of the covariance matrix [8, 10, 16] and tends to highly con-
centrated portfolios on a few assets [22]. Indeed, diversifying risk according to 
the risk contributors plays an crucial role in modern portfolio risk management.

The marginal risk was first introduced by CreditMetrics [23] to measure the 
risk contribution of a given asset, which is defined as the difference between the 
risk of the portfolio and the risk of the portfolio without the given asset. Spe-
cifically, Zhu et al. [35] defined the marginal risk by decomposing the covariance 
matrix of the asset return, and proposed a portfolio selection model with mar-
ginal risk control. It has been found by empirical study the model with marginal 
risk control is a suitable analytical tool for active portfolio risk management. 
Li et  al. [19] used a factor model to capture the systematic risk and proposed 
the concepts of marginal systematic risk and relative marginal systematic risk. 
Then these two concepts were integrated respectively into the (MV) formulation 
to construct portfolio optimization model for actively allocating the systematic 
risk. The above models were solved by the branch-and-bound method, which con-
verges slowly when solving the large scale problems [28]. To overcome the chal-
lenge of computational cost, an optimal trade-off model was proposed for portfo-
lio selection with the effect of systematic risk diversification, which can be solved 
by the efficient accelerated gradient algorithm [17]. Several other approaches on 
risk diversification are proposed in [20, 24–27].

Although integrating the marginal (systematic) risk into portfolio selection 
conducts risk diversification, there are still some drawbacks in practical appli-
cations. A important issues is the considerable transaction cost and managerial 
concerns by over diversifying portfolio risk. A directly approach is that intro-
ducing the cardinality constraint to limit the total number of positions. There 
are many efficient methods to solve the cardinality constraint portfolio selection 
problem such as branch-and-bound method [6] and nonmonotone projected gra-
dient (NPG) method [31]. Another natural approach is to augment the objec-
tive function with a penalty on the portfolio weight vector. The most famous 
convex penalty approach is adding an �1 norm penalty to the Markowitz frame-
work [1, 7], which encourages sparse and stable portfolios [1, 10]. While the 
�1 norm penalty is ineffective in inducing sparsity with the budget and no short 
selling constraints, an alternative is the use of weighted �1 norm penalty [11]. To 
promote sparsity and countervail the shortcomings of convex penalty related to 
large biased coefficient values [12], Fastrich et al. [11] apply non-convex penal-
ties, including �q-penalty [4, 5, 32], smoothly clipped absolute deviation [9], 
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log-sum penalty [3] and minimax concave penalty [33], to identify sparse and 
stable portfolios with desirable out-of-sample properties. Recently, Li et al. [18] 
introduced the weighted piecewise quadratic approximation (PQA) function as 
a new penalty in the MV portfolio framework. By utilizing PQA penalty, one 
can not only promotes sparsity and has a good out-of-sample performance, but 
also design a more efficient large-scale optimization algorithm to achieve a local 
minimizer.

Motivated by the challenges of portfolio risk management and realistic invest-
ment, Zhao et al. [34] developed a robust conditional value at risk optimal port-
folio rebalancing model with both embedded sparsity and diversification, and 
then proposed an effective ADMM algorithm to solve this model. In this paper, 
under the mean-variance framework, we jointly integrate asset selection, risk 
diversification and some other investment constrains into consideration. An 
efficient first-order large-scale algorithm based on the structure of optimization 
problem is presented. Empirical analysis is constructed on the historical market 
data. The main contributions of this paper are described as follows.

First, we propose an optimal portfolio selection model which jointly con-
sidering risk diversification and sparse asset selection, abbreviated as the JMV 
model. The weighted piecewise quadratic approximation is considered as a pen-
alty promoting sparsity for the asset selection. On the other hand, the risk diver-
sification is also formulated as a penalty based on the definitions of the marginal 
risk and variance. Besides, by exposing the special structure of the JMV model, 
we prove that the KKT point of JMV is the local minimizer if the regularization 
parameter satisfies a mild condition. The numerical tests demonstrate that this 
condition can be easily satisfied. Then, we introduce the accelerated proximal 
gradient (APG) algorithm [30] to solve the JMV model. Meanwhile, a algorithm 
depended on projection onto the probability simplex is presented to solve the 
subproblem in APG algorithm. Under some mild conditions, the APG algorithm 
is linearly convergent to a local minimizer of JMV model. Empirical analysis 
not only demonstrate the theoretical results, but also show that JMV model has 
a better out-of-sample performance and achieves a better balance among risk 
diversification, sparsity and some other practical investment factors when com-
pared with the existing models. Furthermore, the efficiency of APG algorithm 
on JMV model is illustrated in numerical experiments.

The reminder of the paper is organized in this way. In Sect.  2, we review 
the background of risk diversification and sparsity penalty, which serve as the 
preliminaries for our optimization model. In Sect. 3, we present an optimal port-
folio selection model which jointly considering risk diversification and sparse 
asset selection. Then, we prove that the KKT point of the JMV model is the 
local minimizer. In Sect. 4, we present an accelerated proximal gradient (APG) 
algorithm for solving the JMV model. The convergence property of APG algo-
rithm for the JMV model is derived. To assess the investment performance of 
the JMV model, some empirical analysis is carried out in Sect. 5. We also con-
duct some numerical experiments in Sect. 6 to show the efficiency of the algo-
rithm. Finally, a conclusion of this paper is in Sect. 7.
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2  Preliminaries

In this section, we first recall some relevant portfolio selection models and review 
the background of risk diversification and sparsity penalty, which serve as the pre-
liminaries for our optimization model.

Suppose there are n risky assets with the random returns r = (r1,… , rn)
⊤ in the 

financial market. The mean vector and the covariance matrix of r are denoted as � 
and Σ , respectively. The Markowitz mean-variance portfolio selection model [21] is 
formulated as follows:

where � ≥ 0 is the parameter to balance the risk and return of the portfolio and e is 
a vector in which all elements are ones. If � = 0 , MV model reduces to the global 
minimum variance portfolio model, which always has a better performance than MV 
model in the out-of-sample test. To diversify the risk, the marginal risk is proposed 
so that the risk contribution of a specific asset can be quantified.

Definition 1 [35] The marginal risk of asset i in a portfolio x = (x1, x2, ..., xn)
T , 

denoted by MRi(x) , is defined as:

where �ij = �ii∕(�ii + �jj) for i ≠ j , �ii = 1 and

Based on this definition, Σi is generally an indefinite matrix which have one posi-
tive and one negative eigenvalue since it can be decomposed as:

where 𝛼i > 0 and −𝛾i < 0 are the two non-zero eigenvalues, and ui and vi are the cor-
responding orthogonal unit eigenvectors. As we all know, there are various portfolio 
selection model with marginal risk control. We introduce

to measure the risk concentration, where � is a parameter to balance the average 
risk contributions of the selected assets. The smaller the quantity R(x) is, the more 

MV min x⊤Σx − 𝜏𝜇⊤x

s.t. e⊤x = 1, x ≥ 0.

(1)MRi(x) = xTΣix = �iix
2
i
+ 2

n∑
j≠i

�ijxixj�ij,

Σi =

⎛
⎜⎜⎜⎜⎝

0 ⋯ �i1�i1 ⋯ 0

⋮ ⋮ ⋮

�i1�i1 ⋯ �ii ⋯ �in�in
⋮ ⋮ ⋮

0 ⋯ �in�in ⋯ 0

⎞
⎟⎟⎟⎟⎠
.

Σi = 𝛼iuiu
⊤
i
− 𝛾iviv

⊤
i

R(x) =

n∑
i=1

(
MRi(x) − �

)2
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uniformly the risk is distributed among the selected assets. However, this portfolio 
type usually increases the number of nonzero weights, which implies high transac-
tion cost and managerial concerns.

To control the transaction and monitor cost, sparsity plays an important role in the 
formulation of investment portfolios. Naturally, the cardinality constraint ‖x‖0 ≤ K is 
introduced to limit the total number of positions, where 0 ≤ K ≤ n . The cardinality 
constraint is always approximated as convex or non-convex regularization. The piece-
wise quadratic approximation function is proposed as a non-convex regularization to 
encourage sparse solutions which theoretical and numerical superiority are demon-
strated in [18]. Based on the weighted �1 norm and the background of portfolio man-
agement, we introduce the non-convex weighted piecewise quadratic approximation 
function:

where V = diag(w1,⋯ ,wn) , wi > 0 is the individual regularization weight parameter 
of asset i. In practice, the investors can restrict the investment proportions of assets 
that are predicted to be more volatile or unfavorable. Fortunately, the weight param-
eter wi can be used to control the investment proportion of asset i.

For simplicity, the support of x ∈ ℝ
n is supp(x) ∶= {i ∣ xi ≠ 0, i = 1, 2,… , n} . 

∇f (x) is the gradient of f(x), ∇2f (x) is the Hessian matrix of f(x). For any matrix 
A,B ∈ ℝ

n×n , A ⪰ B if and only if A − B is a positive semidefinite matrix, A ≻ B if 
and only if A − B is a positive definite matrix. For any index set S ⊂ {1, 2,… , n} , we 
denote ASS as the sub-matrix of A with the rows and columns restricted to S. xS repre-
sents the sub-vector consisting of only the components xi, i ∈ S.

3  JMV model and theory

In this section, we present an optimal portfolio selection model which jointly consider-
ing risk diversification and sparse asset selection. And then we develop the theoretical 
results on local optimality of the proposed model.

In this paper, we propose the following portfolio selection model which jointly con-
sidering risk diversification and sparsity:

where �1, �2 ≥ 0 are the regularization parameters that control the degrees of risk 
diversification and sparsity, respectively.

If �2 = 0 , the JMV model is the risk diversification portfolio selection:

If �1 = 0 , the JMV model is the sparsity portfolio selection:

S(x) = −x⊤V⊤Vx + 2‖Vx‖1 = −x⊤Wx + 2‖Vx‖1,

JMV min x⊤Σx − 𝜏𝜇⊤x + 𝜆1R(x) + 𝜆2S(x)

s.t. e⊤x = 1, x ≥ 0.

RDMV min x⊤Σx − 𝜏𝜇⊤x + 𝜆1R(x)

s.t. e⊤x = 1, x ≥ 0.
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Denoting q = 2�2Ve − �� , the JMV model can be rewritten as follows:

Denote the objection function as F(x). The KKT conditions of this model are:

where � and � are Lagrange multipliers. Let x∗ be the stationary point of the JMV 
model, L = {i ∣ xi = 0,�i = 0, i = 1, 2,⋯ , n} , E is the complement of L, � denote 
the smallest eigenvalue of ΣEE , and � is the largest eigenvalue of WEE . In the follow-
ing, we will show that the stationary point x∗ is a local minimizer of JMV under a 
suitable regularization parameter.

Theorem 1 Let x∗ be the stationary point of the JMV model. If the regularization 
parameters satisfy 0 ≤ 4�1 ≤ 1∕� and 0 ≤ 2�2 ≤ �∕� , then x∗ is a local minimizer 
of the JMV model.

Proof of Theorem 1 By the second-order optimality condition, to justify the theorem, 
we only need to show that there is a feasible direction h where e⊤h = 0 , x∗ + h ≥ 0 , 
{hi = 0 ∣ i ∈ L} and ‖h‖ < 𝜀, 𝜀 > 0 , such that h⊤∇2F(x∗)h > 0 . For this purpose, 
we first get

By h is a feasible direction, we have

If 2�2 ≤ �∕� , then h⊤
(
2Σ − 2𝜆2W

)
h > 0.

On the other hand,

SMV min x⊤Σx − 𝜏𝜇⊤x + 𝜆2S(x)

s.t. e⊤x = 1, x ≥ 0.

min x⊤Σx + q⊤x + 𝜆1R(x) − 𝜆2x
⊤Wx

s.t. e⊤x = 1, x ≥ 0.

e⊤x = 1, x ≥ 0, 𝜙ixi = 0, 𝜙i ≥ 0, i = 1,⋯ , n,

2Σx + 4𝜆1

n∑
i=1

MRi(x)Σix − 4𝜆1𝜃Σx − 2𝜆2Wx + q − 𝜈e − 𝜙 = 0, 𝜈 ∈ ℝ,

∇2F(x∗) = 2Σ − 2𝜆2W + 4𝜆1

n∑
i=1

(
2Σix

∗x∗⊤Σi + x∗⊤Σix
∗Σi − 𝜃Σi

)

=
(
Σ − 2𝜆2W

)
+

(
8𝜆1

n∑
i=1

Σix
∗x∗⊤Σi + 4𝜆1

n∑
i=1

x∗⊤Σix
∗Σi + (1 − 4𝜆1𝜃)Σ

)

h⊤
(
Σ − 2𝜆2W

)
h = h⊤

E

(
ΣEE − 2𝜆2WEE

)
hE.
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If 0 ≤ 4�1 ≤ 1∕� and

then the above last inequality hold.
In conclusion, if 0 ≤ 4�1 ≤ 1∕� and 0 ≤ 2�2 ≤ �∕� , x∗ is a local minimizer of 

the JMV model.   ◻

In numerical experiments, we will illustrate that setting 0 ≤ 4�1 ≤ 1∕� and 
0 ≤ 2�2 ≤ �∕� are reasonable and enough to get the desired optimal portfolios.

4  Accelerated proximal gradient algorithm

In this section, we present an accelerated proximal gradient (APG) algorithm for solv-
ing the JMV model.

4.1  APG algorithm for JMV

Denote f (x) = x⊤Σx + 𝜆1R(x) − 𝜆2x
⊤Wx,

where X = {x ∈ ℝ
n ∣ e⊤x = 1, x ≥ 0} . Then, the JMV model can be expressed as 

following:

Actually, X is equivalent to the feasible set of the above optimization problem. We 
use X  to denote the set of stationary points of F(x). We choose a sufficiently large 
constant l such that

h⊤

�
8𝜆1

n�
i=1

Σix
∗x∗⊤Σi + 4𝜆1

n�
i=1

x∗⊤Σix
∗Σi + (1 − 4𝜆1𝜃)Σ

�
h

≥
8𝜆1
n

(x∗⊤Σh)2 + (1 − 4𝜆1𝜃)h
⊤Σh − 4𝜆1

n�
i=1

�
x∗⊤Σix

∗
�2 n�

i=1

�
h∗⊤Σih

∗
�2

≥
8𝜆1𝜎

n
‖x∗‖2‖h‖2 + (1 − 4𝜆1𝜃)𝜎‖h‖2 − 4𝜆1

n�
i=1

�
x∗⊤Σix

∗
�2 n�

i=1

𝛼2
i
‖h‖4

> 0

‖h‖2 < 1

4𝜆1
∑n

i=1

�
x∗⊤Σix

∗
�2 ∑n

i=1
𝛼2
i

�
8𝜆1𝜎

n
‖x∗‖2 + (1 − 4𝜆1𝜃)𝜎

�
,

g(x) =

{
q⊤x, x ∈ X,

+∞ , x ∉ X,

(2)min
x∈ℝn

F(x) = f (x) + g(x).

f1(x) = f (x) +
l

2
‖x‖2, f2(x) =

l

2
‖x‖2
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are continuously differentiable and convex. On the feasible set X, ∇f1 and ∇f2 are Lip-
schitz continuous with modulus L > 0 and l > 0 , respectively. Moreover, by taking a 
larger L if necessary, we assume throughout that L > l . Thus, f (x) = f1(x) − f2(x) has 
Lipschitz continuous gradient, the Lipschitz continuity constants of ∇f  is L.

The accelerated proximal algorithm for solving the JMV model is as 
following:

By the definition of the proximal operator, we note that the Eq. (3) is equiva-
lently given by

This subproblem is the key iteration of APG algorithm. Next, we first introduce how 
to solve the subproblem and then analysis the convergence of the APG algorithm for 
JMV model.

4.2  Solving the subproblem

The subproblem (3) can be expressed as the following optimization problem:

where

This is to compute the Euclidean projection of a point B(y) onto the probability sim-
plex. We adopt the algorithm in [29] to solve this problem.

(3)xk+1 = argmin
x∈ℝn

�
⟨∇f (yk), x⟩ + L

2
‖x − yk‖2 + g(x)

�
.

(4)
min

1

2
‖x − B(y)‖2

s.t. e⊤x = 1, x ≥ 0,.

B(y) = [I −
1

L
(2Σ + 4�1

n∑
i=1

MRi(y)Σi − 4�1�Σ − 2�2W)]y −
1

L
q.
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4.3  Convergence of APG algorithm

By the convergence properties of the APG algorithm in [30], we can get that any 
accumulation point of the sequence {xk} generated by APG algorithm is a station-
ary point of JMV model. Furthermore, under the following Assumption 1, the 
local linear convergence rate of the sequence {xk} and {F

(
xk
)
} are hold.

Assumption 1 [30]  

 (i) For any � ≥ infx∈ℝn F(x) , there exist 𝜖 > 0 and 𝜏 > 0 such that 

 whenever 
‖‖‖‖Prox 1

L
g

(
x −

1

L
∇f (x)

)
− x

‖‖‖‖ < 𝜖 and F(x) ≤ � , where 

dist (x,X) = infy∈X ‖x − y‖.
 (ii) There exists 𝛿 > 0 , such that ‖x − y‖ ≥ � whenever x, y ∈ X,F(x) ≠ F(y)

Next, we first justify the above assumption is satisfied in the JMV model.

Lemma 1 If the regularization parameters satisfy 0 ≤ 4�1 ≤ 1∕� and 
0 ≤ 2�2 ≤ �∕� , then the objective function F(x) of JMV model satisfies the Assump-
tion 1.

Proof of Theorem  1 i) First, we prove that if there exists 𝜖 > 0 such that, for any 
x ∈ X with 

‖‖‖‖Prox 1

L
g

(
x −

1

L
∇f (x)

)
− x

‖‖‖‖ < 𝜖 , then it has a x∗ ∈ X  such that 

supp(x) = supp(x∗) . By contraction, if the claim does not hold, there would exist an 
S ⊆ {1, 2,⋯ , n} and a sequence of vectors {x1, x2,⋯} satisfying supp(xr) = S for all 
r and xr − zr → 0 where zr = Prox 1

L
g

(
xr −

1

L
∇f (xr)

)
 , and yet there is no x∗ ∈ X  for 

supp(x∗) = S . By [29], the projection zr can be easily determined through B(xr) . 
Denote

where �1 ≥ �2 ≥ ⋯ �n is the sorted sequence of the elements of B(xr) . The elements 
of the projection can be written as

That is to say, only the dimensions corresponding to the largest � elements of B(xr) 
are nonzero. Since {(xr, zr)} are bounded, then every one of its cluster points (̂x, ẑ) 
satisfies

dist (x,X) ≤ �
‖‖‖‖Prox 1

L
g

(
x −

1

L
∇f (x)

)
− x

‖‖‖‖

� = max{1 ≤ i ≤ n ∶ �i +
1

i
(1 −

i∑
j=1

�j)},

zr
i
= max{B(xr)i + �, 0}, i = 1,… , n, where � =

1

�
(1 −

�∑
j=1

uj).
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As a result, the largest � elements of B(xr) will be in the same dimensions as in B(̂x) 
when r is large enough,

Moreover, x̂ is a stationary point of JMV model, i.e. x̂ ∈ X  , which contradicts our 
earlier hypothesis. Therefore, it has a x∗ ∈ X  such that supp(x) = supp(x∗).

Next, we prove that the Assumption 1 i) holds. When ‖z − x‖ < 𝜖 , 
z = Prox 1

L
g

(
x −

1

L
∇f (x)

)
 , there exists a x∗ ∈ X  such that supp(x) = supp(x∗) and 

dist(x,X) = ‖x − x∗‖ . Since

and

where � is between x and x∗ . By Theorem 1, we know that h⊤∇F(x∗)h > 0 , where 
supp(h) = S . So if � is small enough, we have

Thus

Combining (5) and (6), we obtain that there exists 𝜈 > 0 such that

This proves i).
ii) Based on ∇F(x∗) is positive definite, it is easy to get that ii) holds.   ◻

In what follows, we can get the linear convergence rate of the APG algorithm 
for JMV model.

Theorem  2 Let {xk} be the sequence generated by the APG algorithm, if 
0 ≤ 4�1 ≤ 1∕� and 0 ≤ 2�2 ≤ �∕� , then {xk} is linearly convergent to a local mini-
mizer of the JMV model.

ẑ = x̂ = Prox 1

L
g

(
x̂ −

1

L
∇f (̂x)

)
.

supp(xr) = supp(̂x) = S.

(5)‖x − x∗‖ ≤ ‖x − z‖ + ‖z − x∗‖

‖z − x∗‖ ≤

������

�
I −

1

L
(2Σ + 4𝜆1

n�
i=1

�
2Σi𝜉𝜉

⊤Σi

+𝜉⊤Σi𝜉Σi

�
− 4𝜆1𝜃Σ − 2𝜆2W)

�
(x − x∗)

���

0 ≺

(
2Σ + 4𝜆1

n∑
i=1

(
2Σi𝜉𝜉

⊤Σi + 𝜉⊤Σi𝜉Σi

))

SS

≺ LI.

(6)‖z − x∗‖ ≤ c‖x − x∗‖, 0 < c < 1.

‖x − x∗‖ ≤ �‖x − z‖ = �
����x − Prox 1

L
g

�
x −

1

L
∇f (x)

�����.
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5  Empirical analysis

In this section, some empirical analysis are conducted on the proposed JMV, not only 
to evaluate its out-of-sample performance by employing real market data, but also to 
demonstrate the validity of our theoretical analysis on JMV.

5.1  Data and models

In the following empirical analysis, we compare the portfolio performance of the pro-
posed JMV with these models:

• MV: The Markowitz minimum-variance portfolio model [21].
• EW: Equally-weighted risk contributions [20].
• LMV: The weighted �1 regularized portfolio selection model [11].
• SMV: The sparse portfolio selection model.
• RDMV: The risk diversification portfolio selection model.

The optimal solutions of the MV and LMV models are computed by the optimization 
package CVX [13]. The equally-weighted risk contributions solution is solved as in 
[20]. The accelerated proximal gradient algorithm are used to solve the SMV, RDMV 
and JMV models, where we terminate the algorithms when an �-optimal solution is 
achieved or the number of iterations exceed 3000. The error precision is set to � = 10−5.

To compare the above models, three different data sets are considered, including the 
weekly returns of the S &P 500, as well as the monthly returns of the 48 and 100 Fama 
French portfolios. The detail information of data set are list in Table 1. Note that the 
investment period includes the 2008 financial crisis, which is selected on purpose to 
test the portfolios performance in an unstable investment environment. Consequently, 
their ability to resist dramatic fluctuations can be compared.

We set � = 0 in the tested models. The weight parameters w in the LMV, SMV and 
JMV models are determined by considering specific financial time series properties, as 
suggested in [11]. The acceleration parameters in the APG algorithm are selected as

The parameter � is set as

�k ≡ 0.98

√
L

L + l
.

Table 1  Information of data set No Data set Time period Source Frequency

1 S &P 500 5/1/2006 – 13/12/2011 Datastream Weekly
2 FF-48 01/2000 – 02/2020 K. French Monthly
3 FF-100 01/2000 – 02/2020 K. French Monthly
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where x is the optimal portfolio solution of the MV model, K = ‖x‖0.

5.2  Performance measures

We demonstrate the theoretical results and evaluate the out-of-sample performance of 
the proposed JMV by the two tests included in-sample test on JMV and out-of-sample 
evaluation via realistic investment.

We use backtesting to compare the out-of-sample performances of the optimal port-
folios generated by the tested models. The tests are performed in a rolling horizon fash-
ion as follows: We choose a window with the size of Γ = 100 to construct the estima-
tion. The tested models are then respectively solved to generate portfolio strategies for 
the following 10 weeks. At Γ + 11 , the estimation is updated using the data from 11 up 
to Γ + 10 . The models are re-solved to produce new optimal portfolios for the follow-
ing 10 weeks. The above procedure repeats until the end of the out-of-sample period.

We utilize the optimal portfolios generated by the tested models to compute the fol-
lowing performance measures. The out-of-sample mean ( r ), the out-of-sample risk ( s2 ) 
and the out-of-sample Sharpe ratio (Sh) are defined as:

where rt is the random return vector at time t, xt is the optimal portfolio vector at 
time t. The number of selected assets for investment (No) is computed as:

The larger the value of the number, the more assets need to manage. Suppose that 
there are M selected assets and the maximum marginal risk (MMR) in selected 
assets is:

The smaller the value of MMR, the better effect of risk diversification. The turnover 
(TO) represents the average weekly trading volume, which is defined as:

Taking the transaction fee into account, a large turnover will wipe out the gains of 
portfolios. Let W0 is the initial wealth, the cumulative profit (W) is

𝜃 =
x
⊤
Σx

K
,

r =
1

T − Γ

T−1∑
t=Γ

r⊤
t+1

xt, s =

√√√√ 1

T − Γ − 1

T−1∑
t=Γ

(
r⊤
t+1

xt − r
)
, Sh =

r

s
.

No =
1

Γ

Γ∑
i=1

∣ supp(xi) ∣ .

MMR = max
i=1,2,⋯,M

MRi(x).

TO =
1

T − Γ − 1

T−1∑
t=Γ

‖‖xt+1 − xt
‖‖1.
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Transaction cost is closely related to the turnover, in our empirical analysis, we con-
sider that the transaction cost is 1% of the trading volume for each trade (selling and 
buying) of asset. Then the net profit can be computed as

5.3  Empirical results

5.3.1  In‑sample test on JMV

We consider a portfolio selection problem with historical data from the S &P 500, 
where the weekly returns of 50 randomly selected stocks from 5th, January 2006 
to 27th, September 2010 are used to construct the test model. We set a grid of 90 
ascending values from 8000 to 39600 and from 8 × 10−5 to 3.96 × 10−5 for the regu-
larization parameter �1 and �2 in the JMV model, respectively.

Figure 1 shows how the sparsity, Sharpe ratio, risk and max marginal risk of the 
optimal portfolios generated by JMV vary with the regularization parameters �1 and 
�2 . Unsurprisingly, we can see that when the value of �1 increases, the max marginal 

W = W0

T−1∏
t=Γ

(1 + r⊤
t+1

xt).

Net Profit = Profit − Transaction Cost.

Fig. 1  No, Sh, s2 and MMR for Optimal Portfolios Generated by JMV
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risk is decreasing and the number of nonzero assets in the optimal portfolio is both 
decreasing. When the value of �2 increases, the max marginal risk and the num-
ber of nonzero assets in the optimal portfolio are all increasing. Moreover, the val-
ues of the sparsity, Sharpe ratio, risk and max marginal risk are more sensitive to 
the parameter �1 . With the increase of �1 , the Sharpe ratio of the optimal portfolio 
decreases and the risk of the optimal portfolio increases. On the other hand, with the 
increase of �2 , the Sharpe ratio of the optimal portfolio increases and the risk of the 
optimal portfolio decreases.

Note that, in more than 50% area, the value of the Sharpe ratio is basically similar 
from 8.36 to 9.15, while the values of the sparsity and the max marginal risk are 
quite different. This illustrates that JMV model can generate a portfolio with a suf-
ficient sparsity level, a good effect of risk diversification and a large Sharpe ratio.

Moreover, to demonstrate the theoretical guarantee of the local minimizer of 
JMV, Fig. 2 shows how the smallest eigenvalue of Hessian matrix for nonzero assets 
vary with �1 and �2 in this test. From Fig. 2, we can see that the smallest eigenvalue 
of Hessian matrix are lager than zero, which means the JMV model can achieve the 
local minimizer in numerical experiments.

5.3.2  Out‑of‑sample evaluation via realistic investment

To further demonstrate the strength of JMV, we report the real market perfor-
mances of different models via backtesting on the three data sets shown in 
Table 1. The initial wealth is set as 100 at the beginning of backtesting. For each 
rolling window, a sufficiently wide range of regularization parameter in tested 
models is implemented to produce an ensemble of portfolios containing different 

Fig. 2  The smallest eigenvalue of Hessian matrix for different �
1
 and �

2
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numbers of nonzero portfolios and effect of risk diversification. Among these, we 
select the best regularization parameters in tested models which produces a port-
folio with the largest Sharpe ratio.

Fig.  3 illustrates the portfolio values from 6 December 2007 to 13 Decem-
ber 2011 for S &P 500. During the time period from December, 2007 to Janu-
ary, 2009, the portfolio values of all the tested models are decreasing, where the 
EW decreasing fastest. Notice that the period from December, 2007 to January, 
2009 is mainly a period featured by financial crisis. Moreover, we set � = 0 in 
out-of-sample analysis which means that we focus on risk minimization in the 
MV model, so the performance of the JMV model is a little better than that of 
the MV model. The financial market begin growing in the beginning of 2009. 
From the beginning of 2009 to the end of 2010, the portfolio values of the JMV 
and RDMV models preform better than those of the EW, LMV, SMV and MV 
models, among which the performance of MV is the worst. At the end of 2010 
the economy began to grow steadily, the performance of the EW, SMV and LMV 
models is getting better. Figures 4 and 5 illustrate the portfolio values from June 
2008 to February 2020 for FF 48 and FF 100, respectively. They exhibit that the 
portfolio values of JMV perform the best during the whole period, compared with 
other tested models.

In addition, the results are shown in Table 2, including the number of nonzero 
portfolios, turnover and net profit of the optimal portfolios generated by all 
the tested models for S &P 500, FF 48, and FF 100. Looking at the number of 
nonzero portfolios in Table 2, we note that the risk of the portfolio generated by 
JMV model is neither concentrated on a few assets nor distributed to many assets. 
SMV model can produce optimal portfolios with the fewest number of nonzero 
portfolios for FF48 and FF100, and fewer number than MV, EW, RDMV and 
JMV for S &P 500. With regard to the turnover, equally-weighted risk contribu-
tions portfolio is the lowest. Because equally-weighted risk contributions portfo-
lio assigns the capital equally to all stocks, which making it difficult to manage. 

2007/12/6 2008/9/11 2009/6/18 2010/3/25 2010/12/29 2011/10/4
60

80

100

120

140

160

180
MV
LMV
SMV
RDMV
JMV

Fig. 3  Evolution of portfolio values for S &P 500
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Fig. 4  Evolution of portfolio values for FF 48
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Fig. 5  Evolution of portfolio values for FF 100

Table 2  Recovery results of a signal with different number of samples

MV EW LMV SMV RDMV JMV

S &P 500 No 11.905 50 7.810 9.238 14.476 10.761
To 0.303 0.0864 0.992 0.635 0.598 0.895
Net profit 19.863 57.840 46.390 49.356 44.034 73.846

FF 48 No 5.923 48 5.231 2.615 39.846 38.523
To 0.223 0.041 0.389 0.226 0.584 0.605
Net profit 227.713 204.997 225.164 229.997 305.725 308.349

FF 100 No 4.9231 98 6.231 4.231 68.077 60.846
To 0.527 0.032 0.574 0.819 0.6845 0.701
Net profit 210.809 202.093 216.338 220.392 228.053 229.800
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JMV is comparatively similar with RDMV in the aspect of turnover. However, in 
the terms of profit, the JMV model generates the largest net profit.

6  Numerical experiments

In this section, we compare the computational results of APG algorithm on JMV 
with the other two important first-order algorithms, including the proximal gradient 
algorithm [15] and the fast iterative shrinkage-thresholding algorithm (FISTA) [2]. 
The APG algorithm and FISTA are the accelerated first-order algorithms, the dif-
ference is that the acceleration parameters are different. The numerical experiments 
are carried out using MATLAB 2018(a) on a PC with 2.50GHZ CPU processor and 
8GB of RAM.

The randomly generated problems are used to test these algorithms. The test pro-
belms are randomly generated by the same method mentioned in Li et al. [19]: The 
mean vector 𝜇 = (𝜇1,𝜇2,… ,𝜇n)

⊤ . The variance matrix

• �i ∈ [0, 0.03] and ��i ∈ [0, 0.002] are generated by the uniform distribution, 
i = 1, 2,… , n.

• �ij is calculated with randomly sampled series from [0,  0.03], i = 1, 2,… ,m, 
j = 1, 2,… ,m , m = n∕10.

• �ij ∈ [0.3, 2]∕m is randomly generated by the uniform distribution, i = 1, 2,… , n, 
j = 1, 2,… ,m.

In this part, the regularization parameters are set as �1 = 100 , �2 = 0.00001 . The 
weighted parameters are set as wi = 1∕2, i = 1, 2,… , n , while the error precision is 
set as � = 10−5.

The comparison results of three first-order algorithms are summarized in Fig. 6, 
where n is the dimension of the problem and “Iteration” is the average number of 
iterations consumed to solve the ten randomly generated test problems. We can see 
that the accelerated first-order algorithms outperform the PG algorithm. Moreover, 
the APG algorithm is always the fastest one.

7  Conclusion

In this paper, we have utilized the weighted piecewise quadratic approximation func-
tion as a penalty term to promote sparsity, and the variance associated with the mar-
ginal risk as another penalty term to diversify the risk. Then, the optimal portfolio 
selection model which jointly considering risk diversification and sparse asset selec-
tion have been proposed. By exposing the feature of the JMV model, it is proved that 

Σ =

(
m∑
l=1

m∑
k=1

�ik�kl�jl

)

n×n

+ diag(��1 , ��2 ,⋯ , ��n ).
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the KKT point of JMV is the local minimizer under a mild condition. To solve this 
model, we have introduced the accelerated proximal gradient (APG) algorithm and 
presented the linear convergence rate of APG algorithm for solving JMV.

To demonstrate the validity and usefulness of this model, empirical analysis have 
been constructed on the historical datas of the S &P 500, FF48 and FF100. In-sam-
ple test is shown that JMV can attain portfolios with a sufficient sparsity level, a 
good effect of risk diversification and a large Sharpe ratio. Compared with the MV, 
EW, LMV, SMV, and RDMV models, JMV has a better out-of-sample performance 
and achieves a better balance among risk diversification, sparsity and some other 
practical investment factors. Numerical experiments also illustrate the superiority of 
APG algorithm on JMV model.
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