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Abstract
We consider the generalized moment problem (GMP) over the simplex and the
sphere. This is a rich setting and it contains NP-hard problems as special cases,
like constructing optimal cubature schemes and rational optimization. Using the
reformulation-linearization technique (RLT) and Lasserre-type hierarchies, relax-
ations of the problem are introduced and analyzed. For our analysis we assume
throughout the existence of a dual optimal solution as well as strong duality. For the
GMP over the simplex we prove a convergence rate of O(1/r) for a linear program-
ming, RLT-type hierarchy, where r is the level of the hierarchy, using a quantitative
version of Pólya’s Positivstellensatz. As an extension of a recent result by Fang and
Fawzi (Math Program, 2020. https://doi.org/10.1007/s10107-020-01537-7) we prove
the Lasserre hierarchy of the GMP (Lasserre in Math Program 112(1):65–92, 2008.
https://doi.org/10.1007/s10107-006-0085-1) over the sphere has a convergence rate
of O(1/r2). Moreover, we show the introduced linear RLT-relaxation is a generaliza-
tion of a hierarchy for minimizing forms of degree d over the simplex, introduced by
De Klerk et al. (J Theor Comput Sci 361(2–3):210–225, 2006).
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1 Introduction

For a compact set K ⊂ R
n let M(K ) denote the (infinite-dimensional) vector space

of signed finite Borel measures with support contained in K . Let [m] = {1, . . . ,m}
for m ∈ N. The generalized moment problem (GMP) is an optimization problem of
the following form:

val := inf
μ∈M(K )+

∫
K

f0(x)dμ(x)

s.t.
∫
K

fi (x)dμ(x) = bi ∀i ∈ [m]
∫
K
dμ(x) ≤ 1, (1)

where m ∈ N, bi ∈ R for all i ∈ [m], M(K )+ is the convex cone of positive finite
Borel measures supported on K , and f0, f1, . . . , fm are continuous on K . We will
always assume theGMP (1) has a feasible solution, which implies that it has an optimal
solution as well (see Theorem 1).

The constraint
∫
K dμ(x) ≤ 1 essentiallymeans that we know an upper bound on the

measure of K for the optimal solution, since, in this case, we may scale the functions
fi a priori to satisfy this condition.
The GMP is a conic linear optimization problem whose duality theory is well

understood, see e.g. [18]. A wide range of optimization problems can be modeled as
an instance of the GMP. The list includes problems from optimization, probability,
financial economics and optimal control to name only a few, see e.g. [11].

For polynomial data, i.e. when all the fi ’s are polynomials (i ∈ {0, 1, . . . ,m}), and
the set K is a basic closed semialgebraic set, Lasserre [10] introduced a monotone
nondecreasing hierarchy of semidefinite programming (SDP) relaxations of (1). For a
survey on SDP approaches to the GMP with polynomial data and their error analysis,
we refer to the survey of De Klerk and Laurent [4].

In this paper,wewill consider the casewhere K is the standard (probability) simplex

Δn−1 = {
x ∈ R

n+ : x1 + · · · + xn = 1
}
,

where Rn+ is the nonnegative orthant, or the Euclidean sphere

Sn−1 =
{
x ∈ R

n : ‖x‖22 = x21 + · · · + x2n = 1
}

.

Our main result is to establish a rate of convergence for the Lasserre hierarchy
[10] for the GPM with polynomial data on the sphere, and for a related, RLT
(reformulation-linearization technique)-type linear programming hierarchy for the
GPM with polynomial data on the simplex. This RLT hierarchy is in fact a gener-
alisation of LP hierarchies for polynomial optimization on the simplex, as introduced
by Bomze and De Klerk [2], and De Klerk et al. [5], and is closely related to the
original work on RLT hierarchies by Sherali and Adams [19].
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Outline of the paper

First we introduce some notation in Sect. 2.1. In Sect. 2.2 we review the duality
theory of the GMP. A brief overview of possible applications of our setting is given
in Sect. 2.3. For K the simplex we introduce a linear relaxation hierarchy in this
setting in Sect. 3 and prove a convergence rate of O(1/r). Section 4 contains the new
convergence analysis of the Lasserre [11] SDP hierarchies of the GPM on the sphere.
In Sect. 5 we take a mathematical view of how the optimal measure is obtained in
the limit as the level of the hierarchies approaches infinity. In Sect. 6 we explain how
our LP hierarchy is a generalization of an approximation hierarchy for the problem
of minimizing a form of degree d over the simplex introduced by De Klerk et al. [5]
based on earlier results obtained by Bomze and De Klerk [2].

2 Preliminaries

2.1 Notation

Let N = {0, 1, 2, . . .} denote the set of nonnegative integers, N+ = N\{0} and N
n
t

the set of sequences α ∈ N
n for which |α| = ∑n

i=1 αi ≤ t for t ∈ N. For α ∈ N
n ,

xα denotes the monomial xα1
1 · · · xαn

n and its degree is |α|. The ring of multivariate
polynomials in n variables x = (x1, . . . , xn) is denoted by R[x] = R[x1, . . . , xn]
and R[x]t is its subspace of polynomials of degree at most t . The (total) degree of
a polynomial is the maximal degree of its appearing monomials. A monomial basis
vector of order t is given by

[x]t = (1, x1, . . . , xn, x
2
1 , x1x2, . . . , xn−1xn, x

2
n , . . . , x

t
1, . . . , x

t
n)

T .

Any polynomial p ∈ R[x] can be written as p = ∑
α∈Nn pαxα , where only finitely

many pα are non-zero. A polynomial p ∈ R[x] is a sum of squares (sos) if p =∑k
j=1(h j )

2 for h j ∈ R[x] and k ≥ 1. The set of sos polynomials is denoted by Σ[x]
and the set of sos polynomials of degree at most t is denoted by Σ[x]t .

2.2 Duality of the generalized problem of moments

We shall briefly discuss the duality theory associated with the GMP (1). To this end,
let C(K ) denote the space of bounded continuous functions on K endowed with the
supremum norm ‖·‖∞. For two vector spaces E, F of arbitrary dimension, a non-
degenerate bilinear form 〈〉 : E × F → R is called a duality of E and F . The spaces
M(K ) and C(K ) can be put in duality by defining 〈〉 : C(K ) × M(K ) → R as

〈 f , μ〉 =
∫
K

f (x)dμ(x). (2)
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2194 F. Kirschner, E. de Klerk

Let f0, f1, . . . , fm be continuous functions on K and b1, . . . , bm ∈ R. The dual of
(1) is given by

val′ = sup
(y,t)∈Rm×R+

m∑
i=1

yibi − t

s.t. f0(x) −
m∑
i=1

yi fi (x) + t ≥ 0 ∀ x ∈ K . (3)

Note that the dual problem (3) is always strictly feasible, due to the constraint
∫
K dμ ≤

1 in the primal GMP (1).
Weak duality holds for this pair of problems, meaning val′ ≤ val. The difference

val − val′ is called duality gap. In fact, the duality gap is always zero, as the next
theorem shows. Note that a zero duality gap does not imply the existence of a dual
optimal solution.

Theorem 1 (see, e.g. [11, Theorem 1.3]) Assume problem (1) is feasible. Then it has
an optimal solution (the inf is attained), and val = val′.

We continue by recalling a sufficient condition for a dual optimal solution to exist.

Theorem 2 (see, e.g. [18, Proposition 2.8]) Suppose problem (1) is feasible. If

b ∈ int((〈 f1, μ〉, . . . , 〈 fm, μ〉) : μ ∈ M(K )+) (4)

then the set of optimal solutions of (3) is nonempty and bounded.

As discussed in Lasserre [10], it is customary in the literature to assume that con-
dition (4) holds, but in practice it may be a non-trivial task to check whether it does.
We do stress, however, that condition (4) does hold for the applications discussed in
the next subsection.

Another result worth mentioning is that if the GMP (1) has an optimal solution, it
has one which is finite atomic.

Theorem 3 (see, e.g. [4, Theorem 3]) If the GMP (1) has an optimal solution, then it
has onewhich is finite atomicwith atmostm atoms, i.e., of the formμ∗ = ∑m

�=1 ω�δx(�)

where ω� ≥ 0, x(�) ∈ K and δx(�) denotes the Dirac measure supported at x(�)(� ∈
[m]).

2.3 Applications

We now review some examples of problems which can be formulated as a GMP with
polynomial data, and discuss the special cases considered in this paper, namely when
the set K is a simplex or sphere.
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2.3.1 Polynomial and rational optimization

Consider the problem of minimizing a rational function over K :

p∗ = inf
x∈K

p(x)
q(x)

, (5)

where q, p ∈ R[x] are relatively prime and we may assume q(x) > 0 for all x ∈ K .
Indeed, if q changes signs on K , Jibetean and De Klerk [9, Corollary 1] showed that
p∗ = −∞. We will in fact make the stronger assumption that q(x) ≥ 1 on K , i.e.
that we know a positive lower bound on the minimum of q over K . The optimization
problem (5) can be modeled as a GMP:

val = inf
μ∈M(K )+

{∫
K
p(x)dμ(x) :

∫
K
q(x)dμ(x) = 1

}
. (6)

The inequality constraint
∫
K dμ(x) ≤ 1 is redundant if q(x) ≥ 1 ∀x ∈ K and can

be added to obtain a problem of form (1). Note that setting q(x) = 1 for all x ∈ K
problem (5) becomes a polynomial optimization problem.

We now consider the special case where K is the simplex. Motzkin and Strauss [12]
showed that the maximum stable set problem can be formulated as a quadratic poly-
nomial optimization problem over the simplex. Indeed, for a graph G with adjacency
matrix adjacency matrix A,

1

α(G)
= min

x∈Δn−1
xT (A + I )x,

where I is the identity matrix, and α(G) is the stable set number (independence num-
ber) of G. This gives a quadratic polynomial optimization problem over the simplex,
that may be written as the GMP (6) with p(x) = xT (A + I )x and q(x) ≡ 1.

To give an example for the special case when K is a sphere, recall that deciding
convexity of a homogeneous polynomial f of degree 4 or higher is known to be
NP-hard [1]. A homogeneous polynomial f is convex if and only if

min
(x,y)∈S2n−1

yT∇2 f (x)y ≥ 0,

which can again be cast as a GMP over the sphere via (6).

2.3.2 Polynomial cubature

Another application that goes beyond polynomial optimization is concernedwith poly-
nomial cubature rules, see e.g. [7, 21]. Let N ∈ N. Consider the problemofmultivariate
numerical integration of a function f over a set K with respect to a given (reference)
measure μ0 ∈ M(K )+. Loosely speaking, a cubature scheme consists of a set of
nodes x(�) ∈ K and weights ω� ≥ 0 for � ∈ [N ], respectively, such that
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2196 F. Kirschner, E. de Klerk

∫
K

f (x)dμ(x) ≈
N∑

�=1

ω� f
(
x(�)

)
.

We call a rule consisting of nodes x(�) and weights ω� for � ∈ [N ] a polynomial
cubature scheme of degree d if it is exact for polynomials up to degree d. Finding
polynomial cubature rules is NP-hard in general, see [3]. The problem of finding such
weights and nodes can be cast as a GMP. Let d ∈ N and β ∈ N

n any vector such that
|β| > d. Assume the reference measure μ0 is a probability measure, otherwise set
μ0 ← μ0/μ0(K ). In the GMP given by

val := inf
μ∈M(K )+

∫
K
xβdμ(x)

s.t.
∫
K
xαdμ(x) =

∫
K
xαdμ0(x) ∀α ∈ N

n
d (7)

the redundant constraint
∫
K dμ(x) ≤ 1 can be added to turn it into a GMP of form

(1). The the solution μ∗ to (7) will be of the form μ∗ = ∑N
�=1 ω�δx (�) , where N ≤

|Nn
d | = (n+d

d

)
by Theorem 3. This result is known as Tchakaloff’s theorem [20]. There

is some freedom in the choice of the objective function, however, note that it should
be linearly independent of {xα} for α ∈ N

n
d .

In the special cases where K is a simplex or sphere, many cubature schemes are
known, but this remains an active field of study. The interested reader is referred to
the book [6] for more details.

3 A linear relaxation hierarchy over the simplex

In the remainder of the paper we will only deal with the GMP (1) with polynomial
data, i.e. we assume in what follows that all fi ’s are polynomials (i ∈ {0, . . . ,m}).

Amoment sequence (yα)α∈Nn ⊂ R of ameasureμ ∈ M(K ) is an infinite sequence
such that

yα =
∫
K
xαdμ(x) ∀α ∈ N

n .

Let L : R[x] → R be a linear operator

p(x) =
∑
α∈Nn

pαxα �→ L(p) =
∑
α∈Nn

pα yα

that maps monomials to their respective moments. Thus, to an optimal solutionμ∗ of a
GMP there is an associated linear functional L∗ such that L∗( f0) = val and L∗( fi ) =
bi for all i ∈ [m] as well as L∗(1) ≤ 1. The idea of the relaxation we are about to
introduce is to approximate the optimal solution by a sequence (hierarchy) of linear
functionals L(r) that depend on r = 1, 2, . . .. Let K = Δn−1. For i = 0, 1, . . . ,m
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let fi be a real homogeneous polynomial of degree d and let r ≥ d. Let L(r) be the
optimal solution of the following RLT-type relaxation of (1):

f (r)
LP

= min
L:R[x]→R

L linear

L( f0)

s.t. L( fi ) = bi ∀ i ∈ [m]
L(1) ≤ 1

L(xα) ≥ 0 ∀ |α| ≤ r

L(xα) = L

(
xα

n∑
i=1

xi

)
∀ |α| ≤ r − 1. (8)

Every feasible solutionμ′ to (1) provides an upper bound for (8) by setting L(xα) =
〈xα, μ′〉. Hence, f (r)

LP
≤ val. The second last constraint is reflecting the necessary

condition for a positive measure μ over the simplex:

〈xα, μ〉 =
∫

Δn−1

xαdμ ≥ 0 ∀α ∈ N
n .

The last constraint in (8) arises from the fact that

L(p) = L(q) if p(x) = q(x) ∀x ∈ Δn−1.

Equivalently, defining the ideal I = {x �→ p(x)
(
1 − ∑n

i=1 xi
) : p ∈ R[x]} we

require

L(p) = L(q) ⇔ p = q mod I,

where p = q mod I means p(x) = q(x) + (1 − ∑n
i=1 xi )h(x) for some h ∈ R[x].

Our formulation (8) is closely related to the RLT approach by Sherali and Adams
[19], that was originally introduced for 0–1 mixed integer linear programming prob-
lems and subsequently extended for more general problems (but not to the GMP, to
the best of the authors’ knowledge). In fact, for the special case of polynomial opti-
mization, problem (8) is essentially a Sherali–Adams RLT approach. To see this, note
that our linearization operator L corresponds to the approximation L(xα) ≈ 〈xα, μ∗〉,
where μ∗ again denotes an optimal solution to the GMP (1). For the special case of
polynomial optimization, we may assume that μ∗ is a Dirac delta centered at an opti-
mal solution, say x∗. In this case, L(xα) ≈ 〈xα, μ∗〉 = x∗α , i.e. L corresponds to the
type of linearization operator introduced by Sherali and Adams [19].

We now state two lemmas that will come in handy in our later analysis.

Lemma 1 Let r , k ∈ N with k ≤ r and let L be a feasible solution to the linear
relaxation (8) for some f0, f1, . . . , fm. Then for all xγ with γ ∈ N

n and |γ | ≤ r − k
we have
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2198 F. Kirschner, E. de Klerk

L
(
xγ

) = L

⎛
⎝xγ

(
n∑

i=1

xi

)k
⎞
⎠ .

Proof The proof is immediate, by using induction on k. ��
Lemma 2 Consider the GMP given in (1) and let (y, t) ∈ R

m × R+. Then the pair
(y, t) is dual optimal only if

0 = min
x∈K

(
f0(x) −

m∑
i=1

yi fi (x) + t

)
.

Proof The proof is a direct consequence of the GPM duality theory, and is omitted
here. ��

When we consider the case where K = Δn−1, we may, without loss of generality,
assume the fi to be homogeneous of the samedegree for all i = 0, 1, . . . ,m. Indeed, let
f (x) = ∑d

j=0 f j (x), where deg( f j ) = j . Then, g(x) := ∑d
j=0 f j (x)

(∑n
i=1 xi

)d− j

is homogeneous of degree d and f (x) = g(x) for all x ∈ Δn−1.

3.1 Convergence analysis

The following theorem is a refinement of a result by Powers andReznick [15], obtained
by de Klerk et al. [5, Theorem 1.1]. It is a quantitative version of Pólya’s Positivstel-
lensatz (see, e.g. [17] for a survey), and it will be crucial in our analysis of the simplex
case.

Theorem 4 Suppose f ∈ R[x] is a homogeneous polynomial of degree d of the form
f (x) = ∑

|α|=d fαxα. Let ε = minΔn−1 f (x) and define

B( f ) = max|α|=d

α1! · · · αn !
d! fα. (9)

Then the polynomial (x1 + · · · + xn)k f (x) has only positive coefficients if

k >
d(d − 1)

2

B( f )

ε
− d. (10)

We continue by stating and proving one of the main results of this paper.

Theorem 5 Let val be the optimal value of the GMP (1) for input data K =
Δn−1, f0, f1, . . . , fm ∈ R[x] homogeneous of degree d and b1, . . . , bm ∈ R. Assume
there exists a dual optimal solution (ȳ, t) and let fm+1(x) := 1 for every x ∈ Δn−1
and set ȳm+1 = −t . Then, setting y0 = 1 and yi = −ȳi for i ∈ [m + 1] we have

0 ≤ val − f (r)
LP

≤
(∑m+1

i=0 B(yi fi ) + t
)
d(d − 1)

2(r − 1) − d(d − 1)
, (11)

for B(·) as in (9) and r > d(d − 1)/2 + 1.
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Remark 1 The bound we give in Theorem 5 depends on the dual optimal solution
(y, t). We cannot bound the dual variables in terms of the problem data a priori in
general, as they may become arbitrarily large. There are, however, cases in which one
can bound the variables in terms of the problem data. An example of this case can be
found in Sect. 6.

Proof By Theorem 1 there is no duality gap. Let r > d(d − 1)/2 + 1 and let L(r) be
an optimal solution to (8). Fix some ε > 0. Then,

0 ≤ val − f (r)
LP

= val − L(r)

(
m∑
i=1

ȳi fi − t + f0 −
m∑
i=1

ȳi fi + t

)

= val −
m∑
i=1

ȳi L
(r)( fi ) + t L(r)(1) − L(r)

(
f0 −

m∑
i=1

ȳi fi + t

)

≤ val −
m∑
i=1

ȳi bi + t − L(r)

(
f0 −

m∑
i=1

ȳi fi + t

)

= −L(r)

(
f0 −

m∑
i=1

ȳi fi + t

)

= −L(r)

(
f0 −

m∑
i=1

ȳi fi + t + ε

)
+ εL(r)(1)

≤ −L(r)

(
f0 −

m∑
i=1

ȳi fi + t + ε

)
+ ε,

where both inequalities follow from the fact that L(r)(1) ≤ 1. By Lemma 2 we have
minx∈Δn−1 f0(x) − ∑m+1

i=1 ȳi fi (x) + ε = ε. We assume wlog that f0 − ∑m+1
i=1 ȳi fi is

homogeneous of degree d. Define

f := f0 −
m+1∑
i=1

ȳi fi + ε

(
n∑

i=1

xi

)d

,

which is homogeneous as well and its minimum over the simplex is ε. The aim now
is to show that L(r)( f ) ≥ 0 for the appropriate choice of r and then bound r in terms
of ε. By Theorem 4 for k as in (10) we have

f (x)

(
n∑

i=1

xi

)k

=
∑

β∈Nn
d+k

cβx
β

with cβ > 0 for all β ∈ N
n
d+k . To determine the smallest integer k for which the

theorem holds we will first bound B( f ). For this, set y0 = 1 and yi = −ȳi . We may
rewrite f as
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2200 F. Kirschner, E. de Klerk

f =
m+1∑
i=0

yi fi + ε

(
n∑

i=1

xi

)d

=
m+1∑
i=0

yi fi + ε

⎛
⎝ ∑

|α|=d

(
d

α1 · · · αn

)
xα

⎞
⎠

=
∑

|α|=d

(
m+1∑
i=0

yi fi,α + ε

(
d

α1 · · · αn

))
xα.

Then,

B( f ) = max
α

[(
m+1∑
i=0

yi fi,α + d!
α1! · · ·αn !ε

)
α1! · · · αn !

d!

]

=
(
max

α

(
m+1∑
i=0

yi fi,α

)
α1! · · · αn !

d!

)
+ ε

≤
m+1∑
i=0

(
max

α
yi fi,α

α1! · · · · · · αn !
d!

)
+ ε

=
m+1∑
i=0

B(yi fi ) + ε.

With this bound on B( f ) we find that if r is large enough, i.e.,

r ≥
⌈
d(d − 1)

2

∑m+1
i=0 B(yi fi ) + ε

ε

⌉
≥

⌈
d(d − 1)

2

B( f )

ε

⌉
,

it follows from Lemma 1 that

−L(r)

(
f0 −

m+1∑
i=1

ȳi fi + ε

)
+ ε = ε − L(r)( f )

= ε − L(r)

⎛
⎝ f

(
n∑

i=1

xi

)k
⎞
⎠

= ε − L(r)

⎛
⎝ ∑

β∈Nn
k+d

cβx
β

⎞
⎠ ≤ ε,
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where the last inequality follows from the fact that L(r)(xα) ≥ 0 for all |α| ≤ r . To
find a bound on r in terms of ε we set

r =
⌈
d(d − 1)

2

∑m+1
i=0 B(yi fi ) + ε

ε

⌉
.

Then, one may bound r as follows

r − 1 ≤ d(d − 1)

2

(∑m+1
i=0 B(yi fi )

ε
+ 1

)

⇔ ε ≤
∑m+1

i=0 B(yi fi )d(d − 1)

2(r − 1) − d(d − 1)
,

concluding the proof. ��

4 Lasserre hierarchy over the sphere

We now consider the GMP (1) over the sphere, i.e. we consider the case K = Sn−1.
Additionally, we assume the f0, f1, . . . , fm in (1) are homogeneous polynomials of
even degree 2d.

The Lasserre hierarchy [11] of semidefinite relaxations of the GMP (1) over the
sphere is given by

f (2r)
SDP

= min min
L:R[x]→R

L linear

L( f0)

s.t. L( fi ) = bi ∀i ∈ [m]
L(1) ≤ 1

L
(
[x]r [x]Tr

)
� 0

L(xα) = L
(
xα‖x‖22

)
∀ |α| ≤ 2r − 2, (12)

where the L operator is now applied entry-wise to matrix-valued functions, where
needed and the optimal solution is denoted by L(2r).

The following lemma enables us to use a quantitative Positivstellensatz by Fang
and Fawzi [8] for positive polynomials on the sphere, to obtain a rate of convergence
of the Lasserre hierarchy. It is a folklore result and certainly known to be true, however
we did not find a suitable reference. Hence, we give a short proof for completeness.

Lemma 3 Let L : R[x]2k → R be a linear operator and suppose L
([x]k[x]Tk

) � 0,
where the operator is applied entrywise to the matrix [x]k[x]Tk . Then, L(σ ) ≥ 0 for
all σ ∈ Σ[x]k .
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Proof Let σ ∈ Σ[x]k be a sum of squares of degree 2k. Then there exists A � 0 such
that σ = [x]Tk A[x]k . Let 〈·, ·〉 denote the trace inner product. We have

L(σ ) = L
(
[x]Tk A[x]k

)
=

∑
i, j

Ai, j L
(
([x]k)i ([x]k) j

) = 〈A, L
(
[x]k[x]Tk

)
〉 ≥ 0,

since both A and L
([x]k[x]Tk

)
are psd. ��

The quantitative Positivstellensatz by Fang and Fawzi [8] is as follows.

Theorem 6 [8, Theorem 3.8] Assume f is a homogeneous polynomial of degree 2d
such that 0 ≤ f (x) ≤ 1 for all x ∈ Sn−1 and d ≤ n. There are constants Cd ,C ′

d that
depend only on d such that if r ≥ Cdn then

f + C ′
d(d/r)2 = σ(x) + (1 − ‖x‖22)h(x)

for σ(x) ∈ Σ[x]r and h ∈ R[x]2r−2.

We may now use the theorem by Fang and Fawzi [8] and Lemma 3 to derive a rate
of convergence for Lasserre hierarchy [11] of the GMP on the sphere as follows.

Theorem 7 Let val be the optimal value of the GMP (1) for input data K =
Sn−1, f0, f1, . . . , fm ∈ R[x] homogeneous of even degree 2d, b1, . . . , bm ∈ R and
d ≤ n. Let (ȳ, t) be a dual optimal solution and let fm+1(x) := 1 for every x ∈ Sn−1,
set ȳm+1 = −t and set y0 = 1 and y = −ȳ. Further, let f i,yimax = maxx∈Sn−1 yi fi (x).
There exist constants Cd ,C ′

d , only dependent on d, such that if r ≥ Cdn we have

0 ≤ val − f (2r)
SDP

≤ C ′
dd

2 ∑m+1
i=0 f i,yimax

r2
.

Proof The proof is similar to that of Theorem 5, essentially the only difference being
that Lemma 3 is used, and we omit the details. ��

5 Limiting behavior of the hierarchies of linear operators

The purpose of this section is to show that the limit functionals of the introduced
hierarchies correspond to measures, in the sense that they are the Riesz functional of
the optimal solution of the corresponding GMP. In the following we will define the
limit of the optimal solutions L(r) of the introduced hierarchies in a meaningful way
and prove that the corresponding moment sequences have a representing measure.

5.1 The simplex case

Consider the case when K = Δn−1. When looking at the linear operators in the
relaxation hierarchies (8) one would expect that in the limit, i.e. for r → ∞, the
operators L(r)(·) behave like 〈·, μ〉 for some positive measure μ. In the rest of this
section we prove that this is in fact the case and wewill define the limit in a meaningful
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way. Consider again the ideal I = {x �→ p(x)
(
1 − ∑n

i=1 xi
) : p ∈ R[x]} and let

L̄ : R[x]/I → R be a linear operator such that

1. L̄(xα) ≥ 0 for all α ∈ N
n

2. L̄(1) ≤ 1

and let
L = {L̄ : R[x]/I → R : L̄ fulfills conditions 1. and 2.}

be the class of all linear operators that satisfy the conditions above. Note that for every
L̄ ∈ L the relation

L̄

((
1 −

n∑
i=1

xi

)
xα

)
= 0 for all α ∈ N

n

trivially holds. If ‖ f ‖ = supx∈Δn−1
| f (x)|, then (R[x]/I, ‖·‖) is a normed vector

space.

Theorem 8 (see, e.g. [13, Theorem 1.4.2]) Suppose F : X → Y is a linear operator
between two normed vector spaces (X , ‖·‖X ) and (Y , ‖·‖Y ), then the following are
equivalent

1. F is continuous
2. ‖Fx‖Y ≤ M‖x‖X for some M ∈ R.

Using Theorem 8 we can prove that the operators we consider are continuous in
the limit.

Lemma 4 Every L̄ ∈ L is continuous.

Proof By Theorem 8 it suffices to show that every L̄ ∈ L satisfies
|L̄( f )| ≤ M‖ f ‖ = M sup

x∈Δn−1

| f |

for all f ∈ R[x]/I. Hence, let f ∈ R[x]/I and let ‖ f ‖ = supx∈Δn−1
| f (x)|. Also set

fmin = min
x∈Δn−1

f (x) ≥ −‖ f ‖ and fmax = max
x∈Δn−1

f (x) ≤ ‖ f ‖.

Let L̄∗ be the optimizer of
min L̄( f ) s.t. L̄ ∈ L.

Then L̄∗( f ) ≥ −‖ f ‖. To see this suppose fmin ≥ 0, fromwhich follows that L̄∗( f ) ≥
0 ≥ −‖ f ‖ by Theorem 5. If fmin < 0, consider L̄∗( f − fmin) ≥ 0 and so L̄∗( f ) ≥
fmin ≥ −‖ f ‖. Hence, for all L̄ ∈ L we have

L̄( f ) ≥ L̄∗( f ) ≥ −‖ f ‖.

Similarly, let L̄ ′ be the optimizer of

max L̄( f ) s.t. L̄ ∈ L.
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By the same reasoning we have L̄ ′( f ) ≤ ‖ f ‖. Hence one can set M = 1 and we see

|L( f )| ≤ ‖ f ‖.

��
The set R[x]/I is dense in C(Δn−1). This means we can employ the following

theorem in the next step.

Theorem 9 (see, e.g. [13, Theorem 1.9.1]) Suppose that M is a dense subspace of a
normed space X, that Y is a Banach space, and that T0 : M → Y is a bounded linear
operator. Then there is a unique continuous function T : X → Y that agrees with T0
on M. This function T , called a continuous linear extension of T0, is a bounded linear
operator and ‖T ‖ = ‖T0‖.

Now let

T = {
T : C(Δn−1) → R : T is the continuous linear extension of some L̄ ∈ L

}
.

Proposition 1 Let T ∈ T and f ∈ C(Δn−1). Then

T ( f ) =
∫

Δn−1

f (x)dμ(x)

for some positive measure μ supported on Δn−1, satisfying μ(Δn−1) ≤ 1.

Proof It is sufficient to show T ( f ) ≥ 0 for all f ∈ C(Δn−1)+ = { f ∈ C(Δn−1) :
f (x) ≥ 0 ∀x ∈ Δn−1}. To see this, note that the space C(Δn−1) can be ordered
by the convex cone C(Δn−1)+. Now T ( f ) ≥ 0 for all f ∈ C(Δn−1)+ implies that
T ∈ (C(Δn−1)+)∗, i.e. the dual cone of C(Δn−1)+ which is known to be the set of
finite Borel measures on Δn−1. Let f be a homogeneous continuous function that is
non-negative on the simplex and consider its Bernstein approximation of order r given
by

Br
f (x) =

∑
α∈Nn

r|α|=r

f
(α

r

)(
r

α

)
xα.

The approximation converges uniformly to f as r → ∞ since f is continuous. Using
Lemma 4 we see

T ( f ) = T ( lim
r→∞Br

f )

T cont.= lim
r→∞ T (Br

f )
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= lim
r→∞

∑
α∈Nn

r|α|=r

f
(α1

r
, . . . ,

αn

r

)
︸ ︷︷ ︸

≥0

(
r

α

)
︸︷︷︸
≥0

T (xα)︸ ︷︷ ︸
≥0

≥ 0.

Hence, it follows that T ( f ) = 〈 f , μ〉 for some positive measure μ, such that
μ(Δn−1) ≤ 1. ��
Remark 2 By the proof given above, it becomes clear that the continuous linear exten-
sion can in fact be defined in terms of the limit of the Bernstein approximation, i.e.,
define T ( f ) := limr→∞ L̄(Br

f ) for f ∈ C(Δn−1) and L̄ ∈ L.

5.2 The sphere case

For the sphere case, i.e. K = Sn−1 consider the following theorem.

Theorem 10 (see, e.g. [11, Theorem 3.8]) Let y = (yα)α∈Nn ⊂ R
∞ be a given infinite

real sequence, L̄ : R[x] → R be the linear operator defined by

p(x) =
∑
α∈Nn

pαxα �→ L̄(p) =
∑
α∈Nn

pα yα,

and let K = {x ∈ R
n : g1(x) ≥ 0, . . . , gm(x) ≥ 0}. The sequence y has a finite Borel

representing measure with support contained in K if and only if

L̄( f 2gJ ) ≥ 0 ∀J ⊆ {1, . . . ,m} and f ∈ R[x],

where gJ (x) = ∏
j∈J g j (x).

Now, let L̄ be a linear operator such that

1. L̄(1) ≤ 1
2. L̄([x]t [x]Tt ) � 0 ∀t ∈ N

3. L̄(xα) = L̄(xα‖x‖22) ∀α ∈ N
n

and let L′ = {L̄ : R[x] → R : L̄ satisfies 1. - 3.}. Recall that as a semialgebraic
set the sphere can be written as Sn−1 = {x ∈ R

n : g1(x) := 1 − ‖x‖22 ≥ 0, g2(x) :=
‖x‖22 − 1 ≥ 0}. Then for K = Sn−1 every L̄ ∈ L′ satisfies all conditions of Theorem
10. To see this, note that the only possibilities for J are {∅, {1}, {2}, {1, 2}}. Because
of condition 3 we have that L̄(±(1− ‖x‖22)p) = 0 for all p ∈ R[x] covering all cases
except J = ∅. For J = ∅ the condition reduces to L̄(p2) ≥ 0 which holds for all
p ∈ R[x] because of Lemma 3. Hence, every L̄ ∈ L′ has a representing measure
whose support is contained in Sn−1.

6 Concluding remarks

In this last section we conclude by outlining the connection of our results to previous
work. We show that—in the special case of polynomial optimization on the simplex—
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our RLT hierarchy reduces to one studied earlier by Bomze and De Klerk [2], and De
Klerk et al. [5].

De Klerk et al. [5] introduced the following hierarchy for minimizing a homoge-
neous polynomial p ∈ R[x] of degree d over the simplex.

p(r) = max λ s.t. the polynomial

(
n∑

i=1

xi

)r
⎛
⎝p(x) − λ

(
n∑

i=1

xi

)d
⎞
⎠

has only nonneg. coefficients.

(13)

It was proved that limr→∞ p(r) = pmin = minx∈Δn−1 p(x). The LP hierarchy
introduced in Sect. 3 of this paper is a generalization of the hierarchy (13), in the sense
made precise in the following theorem.

Theorem 11 For some homogeneous polynomial p ∈ R[x] of degree d let f (r+d)
LP

be
the solution to the LP relaxation of the problem

min
x∈Δn−1

p(x) = val = inf
μ∈M(Δn−1)+

{∫
Δn−1

p(x)dμ(x) :
∫

Δn−1

dμ(x) = 1

}

for some r ∈ N. Then,

p(r) = f (r+d)

LP
.

Proof The proof is straightforward, and omitted for the sake of brevity. ��
Ashas been noted before, the estimate of Theorem (5) depends on the dual variables.

While it is in general not possible to get rid of these variables in the estimate there are
cases in which we can. In the following we present an example of such a case.

Example 1 Consider the case of polynomial optimization over the simplex. Let f ∈
R[x] be of degree d and set

fmin = min
x∈Δn−1

f (x),

and analogously define fmax. We can cast this as a GMP of type (1)

fmin = inf
μ∈M(Δn−1)

{∫
Δn−1

f (x)dμ :
∫

Δn−1

dμ = 1,
∫

Δn−1

dμ ≤ 1

}
.

A dual optimal solution is in this case given by (y∗, t∗) = ( fmin, 0). Noting that in
the estimate we set y0 = 1, our estimate (11) becomes

fmin − f (r+d)

LP
≤ d(d − 1)

2(r + d − 1) − d(d − 1)
(B( f ) − fmin)
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and applying the inequality

B( f ) − fmin ≤
(
2d − 1

d

)
dd ( fmax − fmin) ,

shown in [5, Theorem 2.2], we find

fmin − f (r+d)

LP
≤ d(d − 1)

2(r + d − 1) − d(d − 1)

(
2d − 1

d

)
dd ( fmax − fmin) .

This is essentially the same result as was obtained in [5, Theorem 1.3]. The presented
example highlights the fact that results for convergence rates of the GMP may not be
as clean as for simpler problems like polynomial optimization, even though the tools
that are used to obtain these results are the same. This, of course, is due to the fact that
the GMP is much more complicated in general.

Moreover, we would like to emphasize that the conceptual tools of this paper are
not limited to the cases that were treated. In fact, given a quantitative version of a
Positivstellensatz, it is possible to perform a convergence analysis of the kinds we
proposed in this paper as long as the nature of the relaxation hierarchy, i.e. linear or
semidefinite, is coherent with the positivity certificate given by the Positivstellensatz.
For example, for more general sets K there is a (muchweaker) quantitative Positivstel-
lensatz available found byNie and Schweighofer [14]. This result can be used to bound
the rate of convergence of the GMP for more general sets. We chose to discuss the
simplex and the sphere as there are strong Positivstellensätze available in these cases
and to expose the fact that the relaxation must be in line with the certificate. For the
sphere case, one could also use the following Positivstellensatz by Reznick.

Theorem 12 (cf. Theorem 3.12 in Reznick [16]) Assume f is a homogeneous poly-
nomial of degree 2d such that 0 ≤ f (x) ≤ 1 for all x ∈ Sn−1. Then one has

f (x) + d(d − 1)n

r log 2
= σ(x) + (1 − ‖x‖2)‖h(x)

for some σ ∈ Σ[x]2(r+d) and h ∈ R[x]2(r+d)−2.

By using this theorem instead of Theorem 6, one obtains a convergence result with
fewer assumptions than the one presented in Theorem 7, but at the cost of a worse
convergence rate. In particular, one may avoid the assumption n ≤ d in Theorem 6
by using the result by Reznick, leading to a convergence rate of O(1/r) on the sphere
(as opposed to the O(1/r2) in Theorem 7).
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