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Abstract
We derive an a priori parameter range for overrelaxation of the Sinkhorn algorithm,
which guarantees global convergence and a strictly faster asymptotic local conver-
gence. Guided by the spectral analysis of the linearized problem we pursue a zero cost
procedure to choose a near optimal relaxation parameter.

Keywords Sinkhorn algorithm · Matrix scaling · Overrelaxation · Optimal transport

1 Introduction and statement of result

The Sinkhorn algorithm is the benchmark approach to fast computation of the entropic
regularization of optimal transportation [1]. Ultimately, one is facedwith the following
numerical problem: Given two probability vectors a ∈ R

m+, b ∈ R
n+ and a matrix

K ∈ R
m×n+ , the goal is to find a pair of vectors (u, v) ∈ R

m+ × R
n+ such that

u ◦ Kv = a and v ◦ K Tu = b, (1)

where x ◦ y denotes the componentwise multiplication (Hadamard product) of vectors
of equal dimension. Here R+ refers to the positive reals. We assume min(m, n) ≥ 2.

In the standard Sinkhorn algorithm an approximating sequence (u�, v�) starting
from an initial vector v0 ∈ R

n+ is constructed via the update rule

u�+1 = a

Kv�

, v�+1 = b

K Tu�+1
,
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where x
y denotes the componentwise division of vectors of equal dimension. It is a

classic result by Sinkhorn [2] that for any initial point v0 ∈ R
n+ the algorithm converges

to a solution (u∗, v∗) of (1), which is unique modulo rescaling (tu∗, t−1v∗), t > 0.
Moreover, the convergence, e.g. of suitably normalized iterates u�/‖u�‖ and v�/‖v�‖,
or using other equivalent distance measures like the Hilbert metric, is R-linear with
an asymptotic rate at least �(K )2, where �(K ) < 1 is the Birkhoff contraction ratio
defined in (8) further below [3]. See also [4] for an overview.

In this note we discuss a modified version of the Sinkhorn algorithm employing
relaxation, which was recently proposed in [5,6]. It uses the update rule

u�+1 = u1−ω
� ◦

(
a

Kv�

)ω

, v�+1 = v1−ω
� ◦

(
b

K Tu�+1

)ω

, (2)

where ω > 0 is are suitably chosen relaxation parameter, and exponentiation is under-
stood componentwise. In a log-domain formulation such as (7) further below, the
relation to the classic concept of relaxation in (nonlinear) fixed point iterations will
become immediately apparent. Note that the iteration (2) still has the solution of (1) as
its unique (modulo scaling) fixed point. As illustrated in [5,6], choosing the parameter
ω larger than one can significantly accelerate the convergence speed compared to the
standard Sinkhorn method, which sometimes can be slow. For optimal transport, such
an improvement could be in particular relevant in the regime of small regularization,
or when a high target precision is needed, such as in applications in density functional
theory [7].

While global convergence for ω �= 1 is not obvious anymore, local convergence
of the modified method is ensured for all 0 < ω < 2, and the asymptotically optimal
relaxation parameter can be determined from its linearization at a fixed point (u∗, v∗).
In logarithmic coordinates, the linearization of the standard Sinkhorn method has the
iteration matrix

M = diag

(
1

a

)
P∗ diag

(
1

b

)
PT∗ , where P∗ = diag(u∗)K diag(v∗). (3)

The local convergence rate equals the second largest eigenvalue

0 ≤ ϑ2 < 1

of that matrix; see [8]. Note that M has real and nonnegative eigenvalues since it is
similar to a positive semidefinite matrix, and its largest eigenvalue equals one (the
eigenvector having constant entries), which accounts for the scaling indeterminacy in
the problem formulation. For themodifiedmethodwith relaxation, the local rate is also
related to ϑ2, which has been worked out in [5] and is summarized in the following
theorem. For convenience, we provide a brief outline how this result can be obtained
at the end of Sect. 2.

Theorem 1 (cf. [5]) Assume ϑ2 > 0. For all choices of 0 < ω < 2 the modified
Sinkhorn algorithm (2) is locally convergent in some neighborhood of (u∗, v∗). Its
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asymptotic (R-linear) convergence rate is

ρϑ(ω) :=
⎧⎨
⎩

1
4

(
ωϑ + √

ω2ϑ2 − 4(ω − 1)
)2

, if 0 < ω ≤ ωopt,

ω − 1, if ωopt ≤ ω < 2,
(4)

where

ωopt = 2

1 + √
1 − ϑ2

> 1. (5)

It holds ρϑ(ω) < 1 for all 0 < ω < 2, and ωopt provides the minimal possible rate
(independent of the starting point) on that interval, namely

ρopt = ωopt − 1 = 1 − √
1 − ϑ2

1 + √
1 − ϑ2

< ϑ2.

By the above theorem, the optimal relaxation parameter ωopt is always larger than
one (if ϑ2 > 0). In fact, by the exact formula (4) for the convergence rate, the range
of ω for which the modified method is asymptotically strictly faster than the standard
Sinkhorn method, that is, ρϑ(ω) < ϑ2 = ρϑ(1), is precisely the interval

1 < ω < 1 + ϑ2. (6)

However, the value of ϑ2 depends on the solution and is therefore not known in
advance. To deal with this problem, an adaptive procedure for choosing ω is proposed
in [5].

As our contribution, themain goal in this note is to provide an a priori interval for the
relaxation parameterω forwhich themodified iteration is both globally convergent and
locally faster than the standard Sinkhorn method. In Theorem 3 we first prove global
convergence of the modified method for parameters in the interval 0 < ω < 2

1+�(K )
.

In Theorem 4 we then provide an a priori lower bound ϑ2 ≥ δK ,a,b > 0, which
depends only on the data of the problem, but requires a full rank assumption on K .
By (6), any ω ∈ (1, 1 + δK ,a,b) then satisfies ρϑ(ω) < ϑ2. Taken together this yields
the following result.

Theorem 2 Assume rank(K ) = min(m, n) ≥ 2. For any 1 < ω < 1+ ϑ2 the asymp-
totic local convergence rate of the modified Sinkhorn method (2) is faster than for

the standard Sinkhorn method. For 1 < ω < min
(
1 + δK ,a,b,

2
1+�(K )

)
the modi-

fied method is both globally convergent and asymptotically faster than the standard
method.

We remark that our derived a priori interval for ω is usually very small, and hence
our result is of rather theoretical interest. In the relevant cases, when ϑ2 is close to
one, significant acceleration is achieved only when ω is close to ωopt (which tends
to two for ϑ2 → 1). A possible heuristic to select a nearly optimal relaxation is to
approximate the second largest eigenvalue of M based on the current iterate. After a
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similarity transform, this requires to compute the spectral norm of a symmetric matrix.
An even simpler approach, as suggested in [5], is to directly estimate ϑ2, and hence
ωopt, bymonitoring the convergence rate of the standard Sinkhornmethod in terms of a
suitable residual. In the final Sect. 4 we include numerical illustrations, which indicate
that in certain cases such heuristics can be quite precise already in the initial phase of
the algorithm, resulting in the almost optimal convergence rate at almost no additional
cost. This confirms that overrelaxation is a simple way to significantly accelerate the
Sinkhorn method in cases where it is slow. For completeness, we should mention that
alternative approaches for solving problem (1) and aiming at fast convergence have
been proposed based on Newton’s method, see, e.g., [9,10] and references therein.

The convergence analysis of the Sinkhorn method is usually carried out in a log-
domain formulation [4]. We choose the closely related framework of compositional
data space used, e.g., in statistics [11], which we think could be of independent interest
in this context. In this space, which is introduced in the next section, the Sinkhorn
algorithm with a positive matrix K reads as a nonlinear fixed point iteration for an
essentially contractive iteration function, as is known from theBirkhoff–Hopf theorem.
The main results are then presented in Sect. 3. Let us note that the assumption that
K has strictly positive entries is not essential for all of the results. While global
convergence of the standard Sinkhorn method to a unique (up to scaling) positive
solution (u, v) of (1) can be shown under several weaker assumptions, most notably
when a = b = 1 and K is square, nonnegative and has total support [12], we require
the global contractivity of the process in Hilbert metric (which holds for positive K )
in our proof that global convergence can still be ensured for some ω > 1 (Theorem 3).
The idea of accelerating convergence by overrelaxation, on the other hand, is very
general and the local spectral analysis provided by Theorem 1 applies whenever the
iteration (2) is locally well defined around a (positive) fixed point (u∗, v∗) and ϑ2 < 1.
Correspondingly, Theorem4 on a lower bound forϑ2 does not require K to be positive.
Hence one has guaranteed acceleration of local convergence for 1 < ω < 1 + δK ,a,b

in several scenarios where K is only nonnegative.

2 Formulation in compositional data space

The problem (1) as well as the Sinkhorn algorithm and its modified variant inherit a
natural scaling indeterminacy of the variables u and v. It can be therefore formulated
in a suitable equivalence space. Here we recast the algorithm in the framework of what
is called compositional data space; see, e.g., [11,13]. To this aim, let

Cm := R
m+/ ∼,

where

x ∼ x ′ :⇐⇒ ∃t > 0 : x = t x ′.
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The resulting equivalence class of x will be denoted by x . One specifies a vector
addition and a scalar multiplication on Cm via

x + y := x ◦ y, γ · x := xγ , γ ∈ R,

where xγ has the components (xγ
1 , . . . , xγ

n ). As a result (Cm,+, ·) becomes a real
vector space of dimensionm−1. In this space we consider the so calledHilbert norm

‖x‖H := logmax
i, j

xi
x j

,

turning (Cm, + , · , ‖ · ‖H ) into a finite dimensional Banach space. Note that this
norm on the equivalence classes coincides with the well-known Hilbert distance on
the representatives:

dH (x, y) = ‖x − y‖H .

Similarly we construct a Banach space Cn = R
n+/ ∼.

The modified Sinkhorn algorithm (2) can be interpreted as an iteration in the space
Cm × Cn and reads

u�+1 = (1 − ω) · u� + ω · a − ω · K(v�),

v�+1 = (1 − ω) · v� + ω · b − ω · KT(u�+1),
(7)

where K : Cn → Cm and KT : Cm → Cn are now the nonlinear maps given by

K(v) = Kv, KT(u) = K Tu.

The convergence of the standard Sinkhorn algorithm (ω = 1) is based on a famous
result of Birkhoff and Hopf on the contractivity of K and KT. To state it, define the
quantities

η(K ) := max
i, j,k,�

KikK j�

K jkKi�
and �(K ) :=

√
η(K ) − 1√
η(K ) + 1

. (8)

Then the following holds; for a proof, see, e.g., [14, Theorems 3.5 & 6.2].

Theorem (Birkhoff–Hopf) For any K ∈ R
m×n+ and v, v′ ∈ R

n+ let �(K ) be defined
as above. Then

sup
v,v′∈Rm+

dH (Kv, Kv′)
dH (v, v′)

= �(K ).

Note that �(K ) = �(K T) < 1. As a result, bothK andKT are contractive maps in
the Hilbert norm with Lipschitz constant �(K ), which is also called the Birkhoff con-
traction ratio of K . Based on this, it is not difficult to establish the global convergence
of the standard Sinkhorn algorithm in the space Cm × Cn at a rate O(�(K )2).
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It is important to emphasize that studying the convergence in Cm × Cn , that is,
convergence of equivalence classes, is sufficient for understanding the method in
R
m+ × R

n+. Indeed, a pair (u∗, v∗) is a fixed point of (7) if and only if for any choice
of representatives (u∗, v∗) there exist λ,μ such that λu ◦ Kv = a and μv ◦ K Tu = b.
From 1Tma = 1Tnb (here 1 denotes a vector of all ones) it follows that λ = μ, and
hence, e.g. u+ := λ−1/2u∗ and v+ := λ−1/2v∗ solve the initial problem (1), where
λ = uTKv. Moreover, choosing representatives (u�, v�) of the iterates (u�, v�) such

that 1Tmu� = 1Tnv� = 1, and setting u+
� := λ

− 1
2

� u�, v
+
� := λ

− 1
2

� v� with λ� = uT�Kv�,
yields a sequence which converges exponentially fast to (u∗, v∗).

We now briefly outline how the local convergence analysis for (7) can be con-
ducted [5], leading to Theorem 1. By combining both steps of the iteration (7) into a
nonlinear fixed point iteration (u�+1, v�+1) = F(u�, v�) in the space Cm × Cn , one
finds that its derivative at the fixed point (u∗, v∗) takes the form

Mω := (Im+n − ω · L)−1[(1 − ω) · Im+n + ω ·U ], (9)

where

L =
(

0 0
−K′

T(u
∗) 0

)
, U =

(
0 −K′(v∗)
0 0

)
.

Matrices of the form Mω are well known as error iteration matrices of block SOR
methods for linear systems. The spectral radius of Mω can be computed exactly from
formula (4), if the spectral radius ϑ of L + U is known; see [15, Sec. 6.2] or [16,
Thm. 4.27]. The eigenvalues of L+U , however, are square roots of the eigenvalues of
the composition of derivativesK′(v∗)K′

T(u
∗), which is a linear map on Cm . It remains

to show that the largest eigenvalue of that operator is precisely the second largest
eigenvalue of the matrix M in (3). Indeed, by elementary calculations, M is the matrix
representation of K′(v∗)K′

T(u
∗) under the isomorphism u �→ exp(u) between the

subspace {u ∈ R
m : 1Tmu = 0} ⊆ R

m and Cm .

3 Main results

We prove the global convergence of the modified method for a range of valuesω larger
than one.

Theorem 3 Let � = �(K ) be the Birkhoff contraction ratio of K . For 0 < ω < 2
1+�

,
the modified Sinkhorn algorithm (7) converges, for any starting point, to (u∗, v∗)
exponentially fast.
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Proof Starting from (7), using the triangle inequality and the contractivity of K and
KT provided by the Birkhoff-Hopf theorem, we obtain

‖u�+1 − u∗‖H ≤ |1 − ω| ‖u� − u∗‖H + ω� ‖v� − v∗‖H ,

‖v�+1 − v∗‖H ≤ |1 − ω|‖ v� − v∗‖H + ω� ‖u�+1 − u∗‖H
≤

(
|1 − ω| + (ω�)2

)
‖ v� − v∗‖H + ω�|1 − ω| ‖u� − u∗‖H .

As a consequence, for�u� := ‖u�+1−u∗‖H and�v� := ‖v�+1−v∗‖H we obtain

(
�u�+1

�v�+1

)
≤ Tω

(
�u�

�v�

)
, where Tω =

( |1 − ω| ω�

ω�|1 − ω| |1 − ω| + (ω�)2

)
,

and the vector inequality is understood entry-wise. Since all involved quantities are
non-negative the inequality can be iterated, which gives

(
�u�+1

�v�+1

)
≤ (Tω)�+1

(
�u0
�v0

)
.

Hence, to prove exponential convergence it suffices to show that the spectral radius

of Tω is strictly less than one. Since the spectral radius equals |1 − ω| + (ω�)2

2 +√
(ω�)4

4 + (ω�)2|1 − ω| , this is the case if and only if 0 < ω < 2/(1 + �). ��

Next we provide a lower bound for the second largest eigenvalue ϑ2 of the matrix
M in (3), which by (6) then yields an interval for ω such that the modified method has
a strictly faster asymptotic convergence rate than the standard Sinkhorn method.

Theorem 4 Let rank(K ) = min(m, n) ≥ 2 and

δ1 = amin

bmax
· 1 − bmax( ‖K‖∞

σmin(K )

)2 − amin

> 0, δ2 = bmin

amax
· 1 − amax( ‖K T‖∞

σmin(K )

)2 − bmin

> 0,

where σmin(K ) is the smallest positive singular value of K , ‖K‖∞ = max‖v‖∞=1
‖Kv‖∞, and the subscripts min, max denote the smallest and largest entry of the
corresponding vector. Then it holds

ϑ2 ≥ δK ,a,b :=

⎧⎪⎨
⎪⎩

δ1 if m > n,

δ2 if m < n,

max(δ1, δ2) if m = n.

Note that for a positive matrix ‖K‖∞ > σmin(K ). Moreover, amin ≤ 1
m ≤ 1

n ≤
bmax < 1 if m ≥ n, and vice versa if m ≤ n. Hence δK ,a,b is indeed smaller than one,
which is in line with the bound ϑ2 ≤ �(K )2.
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Proof We consider the case m ≥ n. Instead of matrix M we consider the positive
semidefinite matrix

H = diag

(
u∗

a1/2

)
K diag

(
v∗ ◦ v∗

b

)
K T diag

(
u∗

a1/2

)
∈ R

m×m,

which is obtained from M by a similarity transformation (and using (1)). Since the
dominant eigenvector of H (with eigenvalue one) is a1/2, we have

ϑ2 = max

{ 〈w, Hw〉
〈w,w〉 : 〈w, a1/2〉 = 0

}
.

By projecting on the orthogonal complement of a1/2, and noting that ‖a1/2‖2 = 1,
we first rewrite this as

ϑ2 = max
〈w, Hw〉 − 〈w, a1/2〉2
〈w,w〉 − 〈w, a1/2〉2 ,

where the maximum is taken over all w that are not collinear to a1/2. For such w the
numerator is always nonnegative and the denominator is positive. Next we substitute

w = a−1/2 ◦ Kv∗ ◦ z

with a new variable z. This yields

ϑ2 = max
〈K Tz, v∗◦v∗

b ◦ K Tz〉 − 〈K Tz, v∗〉2〈
z, Kv∗◦Kv∗

a ◦ z
〉 − 〈K Tz, v∗〉2 ,

where themaximum is taken over all z not collinear with u∗ (the numerator is then non-
negative and the denominator is positive). To obtain a lower bound, we now evaluate
the expression at z satisfying

K Tz = e j

where e j denotes the j-th unit vector. Note that such z exists (K T has full row rank)
and is indeed not collinear to u∗, since otherwise K Tu∗ would be collinear with e j ,
which contradicts K Tu∗ ◦ v∗ = b. Therefore, using this z, we get

ϑ2 ≥
(

1
bmax

− 1
)

(v∗)2j〈
z, Kv∗◦Kv∗

a ◦ z
〉 − (v∗)2j

.

We can choose j as the position of a largest entry of the vector v∗. Then in the
denominator

〈
z,

Kv∗ ◦ Kv∗

a
◦ z

〉
≤ max

i

(Kv∗)2i
ai

‖z‖2 ≤ ‖K‖2∞(v∗)2j
amin

1

σmin(K )2
.
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This leads to the asserted lower bound ϑ2 ≥ δ1.
When m ≤ n, we can simply interchange the roles of K and K T, a and b, as well

as u∗ and v∗ in this proof to obtain ϑ2 ≥ δ2. ��
Taken together, Theorems 3 and 4 result in Theorem 2.

4 Numerical illustration

We illustrate the effect of overrelaxation by two numerical experiments related to
optimal transport. The first is motivated by an application to color transfer between
images [17]. The matrix K = Kε is generated as

Ki j = exp

(
−‖xi − y j‖2

ε

)

where xi , y j ∈ R
3 are RGB values (scaled to [0, 1]) of m = n = 1000 randomly

sampled pixels in two different color images, respectively.1 The vectors a and b are
chosen as uniform distributions, i.e. a = 1m/m and b = 1n/n. We choose ε = 0.01.
In this scenario the standard Sinkhorn method is reasonably fast, but still can be
accelerated using overrelaxation. A typical outcome for different relaxation strategies
is shown in Fig. 1 left, where we plot for 500 iterations the �1-distance ‖P� − P∗‖1
between the matrices P� = diag(u�)K diag(v�) and a numerical reference solution
P∗ = diag(u∗)K diag(v∗). This error corresponds to the total variation distance of the
corresponding transport plan. Even if this quantity (specifically P∗) is not available in a
practical computation it is a naturalmeasure for the convergenceof themethod.Besides
the standard Sinkhorn method (ω = 1), we run the method with a fixed relaxation
ω = 1.5, and with the ‘optimal’ relaxation ωopt, which is computed via formula (5)
from the second largest singular value ϑ of matrix diag(1/a1/2)P∗ diag(1/b1/2) [then
ϑ2 is the second largest eigenvalue of (3)]. We do not consider relaxation based on
the lower bound on ϑ2 in Theorem 4, since the resulting ω is too close to one. In all
variants of the algorithm the same (uniformly) random starting vectors u0 and v0 are
used.

As can be seen, using ωopt significantly accelerates the convergence speed. More-
over, althoughωopt only provides the optimal local rate, the positive effect shows quite
immediately. However, the value of ωopt is a priori unknown in practice. Therefore we
also tested a simple heuristic, similar to one suggested in [5]. It is known that the con-
vergence of the Sinkhornmethod can bemonitored, e.g., through the error ‖P�1n−a‖1;
cf. [4, Remark 4.14]. Therefore, since ϑ2 equals the asymptotic convergence rate of
the standard Sinkhorn method, we may take

ϑ̂2 =
√

‖P�1n − a‖1
‖P�−21n − a‖1

1 The setup follows the OT for image color adaptation example from the Python Optimal Transport tool-
box [18]. The used images ocean_day.jpg and ocean_sunset.jpg are contained in the toolbox.
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Fig. 1 Effect of different relaxation strategies in two examples

as a current approximation for ϑ2. In the purple curve (diamond markers) in Fig. 1
left, we updated ω a single time after 20 steps of the standard method based on this
quantity, and using formula (5). This comes at almost no additional cost, but yields the
near optimal rate in this example. Of course such a heuristic could be applied in a more

systematic way, e.g., by monitoring the changes of
( ‖P�1n−a‖1‖P�−p1n−a‖1

)1/p
for a suitable

value of p over several iterations. We note that adapting ω in (linear and nonlinear)
SOR methods based on currently observed convergence rates is a classical idea and
has been proposed, e.g., in [15] or [19].

As a second example we consider a 1D transport problem between two random
measures a and b (generated from a uniform distribution) on an equidistant grid in
[0, 1], and with �1-norm as a cost. The matrix K in this case is given as

Ki j = exp

(
−| i

m−1 − j
n−1 |

ε

)
.

Again we choose m = n = 1000 and ε = 0.01, and then compare different
relaxation strategies, but starting from the same random intitialization (u0, v0). As can
be seen in Fig. 1 right, which shows 500 iterations with different relaxation strategies,
this problems seems to bemore difficult and the standardSinkhornmethod is extremely
slow. A suitable relaxation compensates this and restores fast convergence, however,
as illustrated by the slow convergence of the curve for ω = 1.5, the estimation of
ωopt, and hence of ϑ2, needs to be rather precise. Since here the convergence rate
of the standard method stabilizes later, we apply the above heuristic of estimating
ϑ2 only after 200 iterations of the standard iteration, resulting in the purple curve
(diamond markers). The oscillatory behavior occurs because ω is estimated larger
than ωopt, in which case the spectral radius ω − 1 of the linearized iteration matrix
Mω in (9) is achieved at complex eigenvalues. It is possible in this example to update
ω earlier using computationally more expensive heuristics. For instance, the green
curve (triangle markers) is obtained by computing after 50 iterations of the standard
method an approximation of ϑ as the second largest singular value of the matrix
diag(1/a1/2� )P� diag(1/b

1/2
� ), where a� = u� ◦ Kv� and b� = v� ◦ K Tu�. This could
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A note on overrelaxation in the Sinkhorn algorithm 2219

be done iteratively, we used the Matlab function svds. This results in an almost
optimal convergence rate in this example. Of course, several similar strategies could
be devised.
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