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Abstract
The problem of sensor network localization (SNL) can be formulated as a semidefinite
programming problem with a rank constraint. We propose a new method for solving
such SNL problems. We factorize a semidefinite matrix with the rank constraint into
a product of two matrices via the Burer–Monteiro factorization. Then, we add the
difference of the two matrices, with a penalty parameter, to the objective function,
thereby reformulating SNL as an unconstrained multiconvex optimization problem,
to which we apply the block coordinate descent method. In this paper, we also pro-
vide theoretical analyses of the proposed method and show that each subproblem that
is solved sequentially by the block coordinate descent method can also be solved
analytically, with the sequence generated by our proposed algorithm converging to a
stationary point of the objective function. We also give a range of the penalty param-
eter for which the two matrices used in the factorization agree at any accumulation
point. Numerical experiments confirm that the proposed method does inherit the rank
constraint and that it estimates sensor positions faster than other methods without
sacrificing the estimation accuracy, especially when the measured distances contain
errors.
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1 Preliminaries

1.1 Introduction

Sensor network localization (SNL) is the problem of estimating the unknown positions
ofm sensors from the known positions of n anchors and themeasured distances (which
may contain measurement errors) between sensor–sensor or sensor–anchor pairs. In
this problem, let Ess and Esa be the sets of sensor–sensor and sensor–anchor pairs,
respectively, with known measured distances, and let di j and dik be the measured
distances for each i j := {i, j} ∈ Ess and ik := {i, k} ∈ Esa, respectively. Let the
anchor coordinates be ak = (ak1, . . . , akd)� ∈ R

d (k = m + 1, . . . ,m + n). Then,
the SNL problem is formulated as the following system of equations with variables
xi ∈ R

d (i = 1, . . . ,m):

‖xi − x j‖2 = di j (∀i j ∈ Ess), ‖xi − ak‖2 = dik (∀ik ∈ Esa). (1)

When amatrix variable Z is introduced, finding the x1, . . . , xm satisfying system (1) is
known to be equivalent to finding a solution of the following semidefinite programming
(SDP) problem with a rank constraint [4,21]:

min 0

s.t. Ai j · Z = d2i j (∀i j ∈ Ess),

Aik · Z = d2ik (∀ik ∈ Esa),

Z(1:d,1:d) = Id ,

rank(Z) ≤ d,

Z ∈ Sd+m+ .

(2)

Here, for each i j ∈ Ess and ik ∈ Esa,

Ai j :=
(

0d
ei − e j

)(
0d

ei − e j

)�
, Aik :=

(
ak
−ei

) (
ak
−ei

)�
,

where e1, . . . , em is the canonical basis of Rm . See Sect. 1.2 for the definitions of the
other symbols. When di j and dik contain measurement errors, problem (2) generally
does not have a solution. Therefore, to account for the case in which di j and dik contain
errors, researchers have often considered problem (3) defined below [4,8–10,16,19].
In this problem, the distance constraints are incorporated in the objective function in
the form of quadratic errors, and a penalty is imposed for violating those constraints.
In this paper, we also seek to estimate sensor positions in SNL by solving this problem:
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min
1

2

∑
i j∈Ess

(Ai j · Z − d2i j )
2 + 1

2

∑
ik∈Esa

(Aik · Z − d2ik)
2

s.t. Z(1:d,1:d) = Id ,

rank(Z) ≤ d,

Z ∈ Sd+m+ .

(3)

The SNL problem is generally known to be NP-hard [1], and the formulations of
the SNL problem as optimization problems (2) and (3) are also nonconvex. This non-
convexity is due to the rank constraint that appears in problems (2) and (3). Therefore,
many previous SNL studies removed the rank constraint and relaxed the problem into
an SDP problem to estimate approximate sensor positions [2–5,14,22]. Among these
methods, sparse full SDP (SFSDP) as proposed by Kim et al. [13] is an especially
representative one. However, a solution of the SDP relaxation problem is not always
a solution of the original problem. So and Ye [18] referred to problem (1), which
has a unique solution and does not have sensor positions satisfying all of the given
distances in a higher-dimensional space, as “uniquely localizable”. They proved that
problem (1) is uniquely localizable if and only if the maximum rank of the solutions
of the SDP relaxation problem (2) is d. Therefore, when the SDP problem is solved by
the interior-point method, which is a representative method for solving general SDP
problems, if the problem is uniquely localizable, then the exact sensor positions can be
determined by solving the SDP relaxation problem. Otherwise, an optimal solution of
the SDP relaxation problem corresponds to a configuration of the sensors in a higher-
dimensional space because of the max-rank property of the interior-point method [11],
and it thus might give poorly estimated sensor positions in d-dimensional space.

On the other hand, the exact sensor positions in d-dimensional space can be esti-
mated only if problem (1) has a unique solution (Wan et al. [21] referred to a problem
satisfying this condition as “locatable”). Therefore, methods have recently emerged
for estimating the sensor positions by solving problem (2) or (3) itself. Wan et al. [21]
proposed a method that obtains a solution of problem (2) by solving SDP problems
multiple times. This approach is based on the fact that the rank of a matrix being less
than or equal to d is equivalent to its (d + 1)th and subsequent eigenvalues all being
zero. Numerical experiments showed that their method’s estimation accuracy was bet-
ter than that of an SDP relaxation-based method. However, their method took more
time than the latter method, because it requires solving the SDP problem via an SDP
solver at each iteration. Wan et al. [20] also proposed a method that transforms the
SDP problem with the rank constraint into an SDP problem with a complementarity
constraint and alternately performs minimization with regard to the two semidefinite
matrices that appear in the problem. Numerical experiments also confirmed that this
method was more accurate than SDP relaxation methods such as SFSDP. However, as
in [21], it took too long to estimate the sensor positions.

Another method for solving general SDP problems is the Burer–Monteiro fac-
torization, in which a semidefinite matrix Z is factorized into the form VV� and a
nonconvex optimization problem is solved after the factorization [7]. If the number of
columns of V is chosen as r in this factorization, then it introduces the constraint that
the rank must be less than or equal to r . Therefore, this method is suitable for obtain-
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ing low-rank solutions of SDP problems. In a series of studies, Chang and colleagues
[8–10] attempted to estimate sensor positions by using the Burer–Monteiro factoriza-
tion. First, Chang and Xue [9] proposed a method that applies the limited-memory
Broyden–Fletcher–Goldfarb–Shannomethod to the problem after the Burer–Monteiro
factorization. However, they set the number of columns of V used in the factorization
to that of the semidefinite matrix before the factorization, so their method does not
consider the rank constraint. Second, Chang et al. [10] used the same method as in
[9] to estimate sensor positions in three-dimensional space, but unlike in [9], they
set the number of columns of V to three, so we can say that this method takes the
rank constraint into account. They compared it with SFSDP through numerical exper-
iments and reported that the sensor positions could be estimated more quickly and
with the same level of accuracy as SFSDP. However, those experiments involved only
small problems with up to 200 sensors. Finally, Chang and Liu [8] proposed a method
that they called NLP-FD, which solves the optimization problem obtained from the
Burer–Monteiro factorization by the curvilinear search algorithm [23]. Their numer-
ical experiments showed the superiority of NLP-FD over SFSDP when a problem is
large in scale and the measured distances include errors.

In this paper,wepropose a newmethod for SNL that accounts for the rank constraint.
First, we factorize Z in problem (3) into a product of two matrices through the Burer–
Monteiro factorization:

Z =
(

Id
U�

)(
Id
V�

)�
.

This factorization is equivalent under the constraint U − V = O. Therefore, prob-
lem (3) can be transformed into an unconstrained multiconvex optimization problem
by adding the difference between the two matrices, with a penalty parameter γ , to
the objective function. Then, the block coordinate descent method can be applied to
the new objective function, and optimization can be performed sequentially for each
column of U and V . We formalize this procedure as Algorithm 1.

We also analyze the proposed method theoretically. First, we show that each sub-
problem in Algorithm 1 is an unconstrained convex quadratic optimization problem
and can be solved analytically (Theorem 2). Second, we show that any accumulation
point of the sequence generated by Algorithm 1 is a stationary point of the objective
function (Theorem 3). Third, we give a range of γ for which the two matrices U and
V used in the factorization coincide at any accumulation point (Theorem 4). Finally,
we explain the relationship between the objective function in the reformulated prob-
lem and the augmented Lagrangian. Numerical experiments confirm that the proposed
method does inherit the rank constraint; furthermore, the results demonstrate not only
that our method estimates sensor positions faster than SFSDP and NLP-FD with-
out sacrificing estimation accuracy, especially when the measured distances include
errors, but also that our method does not run out of memory even for large-scale SNL
problems.

The rest of this paper is organized as follows. In Sect. 2, we present the proposed
method and analyze it theoretically. In Sect. 3, we compare it with the other methods
to confirm its effectiveness. Finally, in Sect. 4, we present our conclusions and suggest
possible future work.
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1.2 Notation

– N denotes the set of natural numbers without zero. Rp denotes the set of p-
dimensional real vectors, and 0p denotes the zero vector of Rp. When the size is
clear from the context, we omit the size subscript at the lower right.Rp×q denotes
the set of p × q real matrices. Let Ip be the identity matrix of Rp×p and O be the
zero matrix of an appropriate size. S p

+ denotes the set of p× p symmetric positive
semidefinite matrices.

– For x ∈ R
p,‖x‖2 denotes the 2-normof x. For A, B ∈ R

p×q , A·Bmeans the inner
product between A and B, denoted by tr(A�B); ‖A‖F denotes the Frobenius norm
of A; A(i : j,k:l) denotes the submatrix of A obtained by choosing the {i, . . . , j}th
rows of A and the {k, . . . , l}th columns of A; and rank(A) denotes the rank of A.
For any symmetric matrix A, λmax(A) denotes its maximum eigenvalue.

– For i = 1, . . . ,m, Ess[i] and Esa[i] denote the sets of sensors and anchors, respec-
tively, that are connected directly to sensor i .

2 Proposedmethod and analyses

2.1 Proposedmethod

Problem (3) is an SDP problem with a rank constraint and is difficult to solve directly.
In this subsection,we propose a newmethod that transforms problem (3) into an uncon-
strained multiconvex optimization problem and solves the latter problem sequentially
to estimate sensor positions. First, a matrix Z satisfies the three constraints in prob-
lem (3) if and only if it can be factorized into the product of two matrices as follows:

Z =
(

Id U
U� U�U

)
=

(
Id
U�

) (
Id
V�

)�
, U − V = O.

Thus, problem (3) is equivalent to

min f (U , V ) := 1

2

∑
i j∈Ess

(
Ai j ·

(
Id
U�

) (
Id
V�

)�
− d2i j

)2

+ 1

2

∑
ik∈Esa

(
Aik ·

(
Id
U�

) (
Id
V�

)�
− d2ik

)2

s.t. U − V = O.

(4)

To make problem (4) easier to solve, we remove the constraint U − V = O and
add a quadratic penalty term γ /2‖U − V ‖F with a penalty parameter γ (> 0) to
the objective function; as a result, the objective function takes larger values as the
constraint U − V = O is more strongly violated. In other words, we adopt the

123



1056 M. Nishijima, K. Nakata

following unconstrained optimization problem:

min F(U , V ; γ ) := γ

2
‖U − V ‖2F + f (U , V ). (5)

In the proposed algorithm, we let U = (u1, . . . , um) and V = (v1, . . . , vm) and
then perform minimization with regard to u1, . . . , um, v1, . . . , vm , i.e., each column
of U and V sequentially. Specifically, the procedure is as listed in Algorithm 1.

Algorithm 1 Proposed algorithm for problem (5)

Require: an initial pointU (0) = (u(0)
1 , . . . , u(0)

m ), V (0) = (v
(0)
1 , . . . , v

(0)
m ) ∈ R

d×m , a penalty parameter
γ , a parameter ε

Ensure: a generated sequence {(U (p),V (p))}
1: while 1 do
2: for i = 1, . . . ,m do
3: u(p)

i = argminui F(u(p)
1 , . . . , u(p)

i−1, ui , u
(p−1)
i+1 , . . . , u(p−1)

m , V (p−1); γ ).
4: end for
5: for i = 1, . . . ,m do
6: v

(p)
i = argminvi F(U (p), v

(p)
1 , . . . , v

(p)
i−1, vi , v

(p−1)
i+1 , . . . , v

(p−1)
m ; γ ).

7: end for

8: if max

{
2‖U (p)−V (p)‖F

‖U (p)‖F+‖V (p)‖F ,
‖U (p)−U (p−1)‖F

‖U (p−1)‖F ,
‖V (p)−V (p−1)‖F

‖V (p−1)‖F

}
< ε then

9: stop algorithm.
10: else
11: p = p + 1
12: end if
13: end while

The proposed method has the following advantages over other methods:

(i) The SDP problem with the rank constrained (3) is equivalent to problem (4), from
which we obtained problem (5) by incorporating U − V = O in the objective
function as a quadratic penalty term with a penalty parameter γ . As we will see
from Theorem 4, if γ is larger than a real-valued threshold, then theU (p) and V (p)

generated by Algorithm 1 coincide with each other at any accumulation point,
thereby satisfying the constraint of problem (4). Therefore, the proposed method
inherits the rank constraint in problem (3) and retains the potential capability to
estimate sensor positions accurately for problems that are not uniquely localizable.
This advantage will be verified in Sect. 3.1.

(ii) As we will see from Theorem 2, each subproblem appearing inside a for statement
in Algorithm 1 is an unconstrained convex quadratic optimization problem. The
solution of each subproblem can be obtained analytically, because the solution
process can be reduced to solving a system of linear equations with an invertible
coefficient matrix of size d. Because d is at most three in real situations, the system
can be solved rapidly andwithout running out ofmemory, regardless of the number
of sensors m. Moreover, the subproblems only need to be solved 2m times (i.e., a
number proportional to m) for each outer loop. Therefore, especially in the case
of large-scale SNL problems, we expect faster estimates of the sensor positions as
compared with other methods. This advantage will be verified in Sect. 3.2.
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2.2 Analyses of the proposedmethod

In this subsection, we present theoretical analyses of problem (5) and Algorithm 1.
First, we impose an assumption about the problem that we are examining.

Assumption 1 All sensors are connected to an anchor either directly or indirectly.

The same assumption was also made in [8,18,22] and is very natural when estimating
sensor positions: if a sensor is not connected to any anchors, then its absolute position
cannot be determined uniquely.

First, we prove that the optimal solution of each subproblem in Algorithm 1 can be
obtained uniquely as an analytical solution.

Theorem 2 FixU ′ = (u′
1, . . . , u

′
m) and V ′ = (v′

1, . . . , v
′
m) arbitrarily. Then, for each

i = 1, . . . ,m, the solutions u∗
i , v∗

i of the following two optimization problems

min
ui∈Rd

F(u′
1, . . . , u

′
i−1, ui , u

′
i+1, . . . , u

′
m, V ′; γ ),

min
vi∈Rd

F(U ′, v′
1, . . . , v

′
i−1, vi , v

′
i+1, . . . , v

′
m; γ )

are respectively u∗
i = A−1

ui bui , v
∗
i = A−1

vi
bvi , where

Aui := γ Id +
∑

j∈Ess[i]
(v′

i − v′
j )(v

′
i − v′

j )
� +

∑
k∈Esa[i]

(v′
i − ak)(v′

i − ak)�,

bui := γ v′
i +

∑
j∈Ess[i]

((u′
j )

�v′
i − (u′

j )
�v′

j + d2i j )(v
′
i − v′

j )

+
∑

k∈Esa[i]
(a�

k v
′
i − a�

k ak + d2ik)(v
′
i − ak),

Avi := γ Id +
∑

j∈Ess[i]
(u′

i − u′
j )(u

′
i − u′

j )
� +

∑
k∈Esa[i]

(u′
i − ak)(u′

i − ak)�,

bvi := γ u′
i +

∑
j∈Ess[i]

((v′
j )

�u′
i − (v′

j )
�u′

j + d2i j )(u
′
i − u′

j )

+
∑

k∈Esa[i]
(a�

k u
′
i − a�

k ak + d2ik)(u
′
i − ak).

Proof If we focus on only ui in F(U , V ; γ ) in particular, then we can represent
F(u′

1, . . . , u
′
i−1, ui , u

′
i+1, . . . , u

′
m, V ′; γ ) as

F(u′
1, . . . , u

′
i−1, ui , u

′
i+1, . . . , u

′
m, V ′; γ )

= 1

2
u�
i Aui ui − b�

ui ui + [a constant unrelated to ui ]. (6)
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From Eq. (6), we can see that F(u′
1, . . . , u

′
i−1, ui , u

′
i+1, . . . , u

′
m, V ′; γ ) is γ -strongly

convex. Thus, the optimal solution of

min
ui∈Rd

F(u′
1, . . . , u

′
i−1, ui , u

′
i+1, . . . , u

′
m, V ′; γ )

is the stationary point of F(u′
1, . . . , u

′
i−1, ui , u

′
i+1, . . . , u

′
m, V ′; γ ). Because

∇ui F(u′
1, . . . , u

′
i−1, ui , u

′
i+1, . . . , u

′
m, V ′; γ ) = Aui ui − bui

and Aui is positive definite and invertible in particular, we can obtain u∗
i . We can also

obtain v∗
i from the same calculation. 
�

Next, we show that the sequence generated byAlgorithm 1 converges to a stationary
point of the objective function F .

Theorem 3 Fix the penalty parameter γ in problem (5) arbitrarily. LetN be the set of
stationary points of F. Then, the sequence {(U (p), V (p))}∞p=1 generated byAlgorithm1
satisfies

lim
p→∞ inf

(U ,V )∈N
‖(U (p), V (p)) − (U , V )‖F = 0. (7)

In particular, any accumulation point (U∗, V ∗) of the generated sequence is a sta-
tionary point of F.

The consequence of Theorem 3 is based on the result of [25]. By Corollary 2.4 in
[25], if all three of the following conditions are satisfied, then Eq. (7) holds when the
stationary point of F in the definition ofN is replaced by the Nash equilibrium of F
(see Definition 2 below).

Condition (a): F is continuous, bounded below, and has a Nash equilibrium.
Condition (b): The objective function of each subproblem is strongly convex.1

Condition (c): The sequence generated by Algorithm 1 is bounded.

In the following, we prove Theorem 3 by showing the equivalence between the Nash
equilibrium and the stationary point of F and then verifying that all three conditions
are satisfied.

We can see from Eq. (6) that the function F(U , V ; γ ) is convex on Rd if we focus
only on each column of U and V . Such a function F with this property is called
multiconvex [25]. For simplicity, let X := R

n1 × · · · ×R
ns (where n1, . . . , ns ∈ N),2

and when x ∈ X is represented as x = (x1, . . . , xs), then xi ∈ R
ni (i = 1, . . . , s).

Definition 1 A function g : X → R is called multiconvex on X (with respect to the
block division x = (x1, . . . , xs) ∈ X ) if for all i = 1, . . . , s and all x j ∈ R

n j ( j =
1, . . . , i − 1, i + 1, . . . ,m), the function

g(x1, . . . , xi−1, ·, xi+1, . . . , xs) : R
ni → R

1 To be more precise, a stronger assumption about the parameter of the strongly convex function is needed.
However, in the present problem, the stronger assumption is satisfied automatically because the parameter
is a constant γ . See Assumption 2 in [25] for details.
2 In the problem, we are considering the case in which s = 2m and ni ≡ d, so the simplification ofX does
not affect the discussion in this paper.
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is convex.

One of the concepts of minimality for a multiconvex function is the Nash equilib-
rium [25], which appears in Condition (a).

Definition 2 For a function g : X → R, (x∗
1, . . . , x

∗
s ) ∈ X is called a Nash equilib-

rium of g (with respect to the block division as in Definition 1) if

g(x∗
1, . . . , x

∗
i−1, x

∗
i , x

∗
i+1, . . . , x

∗
s ) ≤ g(x∗

1, . . . , x
∗
i−1, xi , x

∗
i+1, . . . , x

∗
s )

holds for all i = 1, . . . , s and all xi ∈ R
ni .

Gorski et al. [12] proved the equivalence between the stationary point and the Nash
equilibrium in the case of s = 2.3 Herein, we extend the equivalence to the case of
arbitrary s.

Lemma 1 Let g : X → R be once differentiable and multiconvex. Then, x∗ =
(x∗

1, . . . , x
∗
s ) ∈ X is a stationary point of g if and only if x∗ is a Nash equilibrium of

g.

Proof We begin by proving the “if” part. If we assume that x∗ is a stationary point of
g, then because

gi (xi ) := g(x∗
1, . . . , x

∗
i−1, xi , x

∗
i+1, . . . , x

∗
s )

is convex on R
ni for all i = 1, . . . ,m,

gi (xi ) ≥ gi (x∗
i ) + ∇xi gi (x

∗
i )

�(xi − x∗
i ) (8)

holds for all xi ∈ R
ni . Because ∇xi gi (x

∗
i ) = 0 follows from the assumption of x∗

being a stationary point of g, we can say from inequality (8) that gi (xi ) ≥ gi (x∗
i ) for

all xi ∈ R
ni . Because i is arbitrary, we can conclude that x∗ is a Nash equilibrium of

g.
Next, we prove the “only if” part. If we assume that x∗ is a Nash equilibrium of g,

then for each i = 1, . . . , s, gi (xi ) attains its minimum value at xi = x∗
i , from which

we obtain ∇xi gi (x
∗
i ) = 0. Thus, x∗ is a stationary point of g. 
�

Lemma 2 Suppose that Assumption 1 holds. Then, for all α, the level set SF (α) :=
{(U , V ) | F(U , V ; γ ) ≤ α} is bounded and closed.

Because similar (but not the same) results were already pointed out in [10,18], we
omit the proof of Lemma 2 because of the page limit. Note that if Assumption 1 does
not hold, then SF (α) is always not bounded.

Corollary 1 For any initial point (U (0), V (0)), the sequence {(U (p), V (p))}∞p=1 gener-
ated by Algorithm 1 is bounded.

Proof Let α := F(U (0), V (0); γ ). Because each minimization subproblem in Algo-
rithm 1 is strictly optimized, we can say that (U (p), V (p)) ∈ SF (α) for all p ∈ N,
i.e., {(U (p), V (p))}∞p=1 ⊆ SF (α), which is bounded from Lemma 2. 
�
3 In [12], the term “partial optimum” is used instead of “Nash equilibrium.”
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We can now prove Theorem 3 on the basis of the above claims.

Proof The continuity and below-boundedness of F are evident from its definition.
When combined with Lemma 2, the global optimal solution of problem (5) is guaran-
teed to exist, fromwhich the existence of a Nash equilibrium can be proved. Therefore,
we can say that Condition (a) holds. In addition, from Eq. (6), the objective function
of each subproblem is γ -strongly convex, and thus Condition (b) holds. Finally, Con-
dition (c) is also satisfied from Corollary 1. Therefore, the conditions of Corollary 2.4
in [25] are all satisfied, from which we can show Eq. (7) by using the equivalence
between the stationary point and the Nash equilibrium that was shown in Lemma 1.
Because F is of class C1,N is closed, from which we can easily show the last part of
Theorem 3. 
�

Finally, we show that the U (p) and V (p) generated by Algorithm 1 coincide with
each other at any accumulation point if γ is larger than a real-valued threshold, which
does not generally hold in the quadratic penalty method.

Theorem 4 For any initial point (U (0), V (0)) such that U (0) = V (0), if

γ >
1

2

√
2 f (U (0), V (0)) max

1≤i≤m

√
4|Ess[i]| + |Esa[i]|, (9)

then any accumulation point (U∗, V ∗) of the sequence {(U (p), V (p))}∞p=1 generated
by Algorithm 1 satisfies U∗ = V ∗.

Proof For each p ∈ N, i j ∈ Ess, and ik ∈ Esa, let

α
(p)
i j := Ai j ·

(
Id

(U (p))�
) (

Id
(V (p))�

)�
− d2i j ,

α
(p)
ik := Aik ·

(
Id

(U (p))�
) (

Id
(V (p))�

)�
− d2ik .

Then, because the initial point satisfies U (0) = V (0) and the value of the objective
function F decreases monotonically by Algorithm 1, we can conclude that for all
p ∈ N,

f (U (0), V (0)) = F(U (0), V (0); γ ) ≥ F(U (p), V (p); γ )

≥ 1

2

∑
i j∈Ess

(α
(p)
i j )2 + 1

2

∑
ik∈Esa

(α
(p)
ik )2. (10)

By taking a subsequence, without loss of generality, we can assume that {(U (p),

V (p))}∞p=1 itself converges to (U∗, V ∗). Then, it follows from inequality (10) that

1

2

∑
i j∈Ess

(α∗
i j )

2 + 1

2

∑
ik∈Esa

(α∗
ik)

2 ≤ f (U (0), V (0)). (11)
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By Theorem 3, (U∗, V ∗) is a stationary point of F , from which we have

∇(U ,V )F(U∗, V ∗; γ ) = O.

Thus, let Ul , Vl ∈ R
m be the respective lth-column vectors of U�, V� for each

l = 1, . . . , d; then, ∇Ul F(U∗, V ∗; γ ) = ∇Vl F(U∗, V ∗; γ ) = 0 holds. For each
ik ∈ Esa and l = 1, . . . , d, let blik be an m-dimensional vector such that its i th
component is−akl and all other components are zeros. Furthermore, for each i j ∈ Ess
and ik ∈ Esa, let Āi j and Āik respectively be

Āi j := (Ai j )(d+1:d+m,d+1:d+m), Āik := (Aik)(d+1:d+m,d+1:d+m).

Using these symbols, we can represent F(U , V ; γ ) as

F(U , V ; γ ) = γ

2

d∑
l=1

‖Ul − Vl‖22 + 1

2

∑
i j∈Ess

(
d∑

l=1

U�
l Āi j Vl − d2i j

)2

+ 1

2

∑
ik∈Esa

(
d∑

l=1

U�
l ĀikVl +

d∑
l=1

(blik)
�(Ul + Vl) + a�

k ak − d2ik

)2

.

Because

∇Ul F(U∗, V ∗; γ ) = γ (U∗
l − V ∗

l ) +
∑
i j∈Ess

α∗
i j Āi j V

∗
l +

∑
ik∈Esa

α∗
ik( ĀikV

∗
l + blik)

= 0,

∇Vl F(U∗, V ∗; γ ) = γ (V ∗
l −U∗

l ) +
∑
i j∈Ess

α∗
i j Āi jU

∗
l +

∑
ik∈Esa

α∗
ik( ĀikU

∗
l + blik)

= 0

for all l = 1, . . . , d, we obtain

(U∗
l − V ∗

l )�∇Ul F(U∗, V ∗; γ ) + (V ∗
l −U∗

l )�∇Vl F(U∗, V ∗; γ )

= (U∗
l − V ∗

l )�
⎧⎨
⎩2γ Im −

⎛
⎝ ∑

i j∈Ess

α∗
i j Āi j +

∑
ik∈Esa

α∗
ik Āik

⎞
⎠

⎫⎬
⎭ (U∗

l − V ∗
l ) = 0.

(12)

For convenience, let
Ā :=

∑
i j∈Ess

α∗
i j Āi j +

∑
ik∈Esa

α∗
ik Āik .

Next, we seek to prove the following inequality:

λmax( Ā) ≤
√
2 f (U (0), V (0)) max

1≤i≤m

√
4|Ess[i]| + |Esa[i]|. (13)
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In fact, if inequality (13) canbe shown, thenbecauseγ satisfies inequality (9), 2γ Im− Ā
is a positive definite matrix, and thus, U∗

l = V ∗
l from equality (12). Because of the

arbitrariness of l, we can eventually conclude thatU∗ = V ∗. Therefore, we need only
prove inequality (13).

It follows from the Gershgorin circle theorem that

λmax( Ā) ≤ max
1≤i≤m

⎧⎨
⎩

∑
j∈Ess[i]

α∗
i j +

∑
k∈Esa[i]

α∗
ik +

∑
j∈Ess[i]

|α∗
i j |

⎫⎬
⎭ . (14)

For each i = 1, . . . ,m, let v(i) be the optimal value of the following optimization
problem:4

max
∑

j∈Ess[i]
αi j +

∑
k∈Esa[i]

αik +
∑

j∈Ess[i]
|αi j |

s.t.
1

2

∑
i j∈Ess

α2
i j + 1

2

∑
ik∈Esa

α2
ik ≤ f (U (0), V (0)),

where the right side of inequality (14) does not exceed max1≤i≤m v(i) because of
inequality (11). We can easily check that v(i) is equal to the optimal value of the
following optimization problem for each i = 1, . . . ,m:

max 2
∑

j∈Ess[i]
αi j +

∑
k∈Esa[i]

αik

s.t.
1

2

∑
j∈Ess[i]

α2
i j + 1

2

∑
k∈Esa[i]

α2
ik = f (U (0), V (0)).

(15)

Using the method of Lagrange multipliers, we can see that the optimal value of prob-
lem (15) is

√
2 f (U (0), V (0))

√
4|Ess[i]| + |Esa[i]|. Therefore,

max
1≤i≤m

⎧⎨
⎩

∑
j∈Ess[i]

α∗
i j +

∑
k∈Esa[i]

α∗
ik +

∑
j∈Ess[i]

|α∗
i j |

⎫⎬
⎭

≤ max
1≤i≤m

v(i) =
√
2 f (U (0), V (0)) max

1≤i≤m

√
4|Ess[i]| + |Esa[i]|,

which implies inequality (13). 
�

2.3 Relationship to the augmented Lagrangian

In this paper, we adopt the quadratic-penalty-based method, in which the equality con-
straintU−V = O is incorporated in the objective function as a quadratic penalty term
and the resulting new objective function isminimized. On the other hand, there are also

4 Although we use the notations “i j” and “ik” to denote the indices of the variables α in the sums in the
constraint of this optimization problem, they are not related to i (= 1, . . . ,m), which is fixed here.
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methods such as the augmented Lagrangian method [17] and the alternating direction
method of multipliers [6] that minimize the augmented Lagrangian, which contains
not only the quadratic penalty term but also the Lagrange multiplier term. It is known
that the augmented Lagrangian method is more efficient than the quadratic penalty
method. For example, while the quadratic penalty method requires the penalty param-
eter to diverge to positive infinity, the augmented Lagrangian method does not require
it to diverge, and the sequence obtained by the augmented Lagrangian method con-
verges faster than that obtained by the quadratic penalty method [17, Example 17.4].
Hence, we explain that problem (5) can be regarded as a minimization problem of the
augmented Lagrangian with an exact Lagrangian multiplier.

Λ = O is the exact Lagrange multiplier of problem (4). In fact, for all local
optimum solutions (U∗, V ∗) of problem (4), because problem (4) satisfies the linear
independence constraint qualification, there exists a Lagrange multiplier Λ∗ ∈ R

d×m

satisfying theKarush–Kuhn–Tucker condition. In otherwords, if we let the Lagrangian
for problem (4) be

L(U , V ,Λ) := f (U , V ) − Λ · (U − V ),

then

∇UL(U∗, V ∗,Λ∗) = ∇U f (U∗, V ∗) − Λ∗ = O, (16a)

∇VL(U∗, V ∗,Λ∗) = ∇V f (U∗, V ∗) + Λ∗ = O, (16b)

∇ΛL(U∗, V ∗,Λ∗) = −(U∗ − V ∗) = O (16c)

hold. We get U∗ = V ∗ from Eq. (16c) and denote both of them as W ∗. Because
f (U , V ) = f (V ,U ) (∀U , V ∈ R

d×m), ∇U f (W ∗,W ∗) = ∇V f (W ∗,W ∗). Using
this equation and Eqs. (16a) and (16b), we obtain Λ∗ = O. Therefore, the augmented
Lagrangian with the Lagrange multiplier Λ = O and penalty parameter γ is

f (U , V ) − O · (U − V ) + γ

2
‖U − V ‖2F = f (U , V ) + γ

2
‖U − V ‖2F ,

which is the definition of F(U , V ; γ ) itself. Hence, problem (5) can be regarded
as a minimization problem of the augmented Lagrangian with the exact Lagrange
multiplier Λ = O for problem (4).

3 Numerical experiments

In this section, we use numerical simulation to verify the advantages (i) and (ii)
described in Sect. 2.1 for the proposed method. We begin by confirming that our
method does inherit the rank constraint; to confirm this, we compare it with an SDP
relaxation-based method for a problem that is locatable but not uniquely localizable.
Next, to confirm the effectiveness of the proposed method, we compare its estimation
time and estimation accuracy with those of other methods by using artificial data under
various conditions. All experiments were conducted on a computer with the macOS
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Catalina operating system, an Intel Core i5-8279U 2.40GHzCPU, and 16GBofmem-
ory. All the algorithms were implemented using MATLAB (R2020a). The parameter
ε in Algorithm 1 was set to 10−5 throughout the experiments.

3.1 Comparison with SFSDP for a problem that is not uniquely localizable

In this subsection, we demonstrate that the proposed method has the capability to
estimate sensor positions accurately for a problem that is locatable but not uniquely
localizable. Specifically, we examine a problem from [18]:

‖x1 − x2‖2 = √
10/5, ‖x1 − a4‖2 = √

5/2, ‖x1 − a5‖2 = √
5/2,

‖x2 − a3‖2 = √
85/10, ‖x2 − a5‖2 = √

65/10,

where a3 = (0, 1.4)�, a4 = (−1, 0)�, and a5 = (1, 0)�, and the true
positions of the two sensors are xtrue1 = (0, 0.5)�, xtrue2 = (0.6, 0.7)�. For
this problem, Algorithm 1 was executed after fixing the penalty parameter γ as√
2 f (U (0), V (0))max1≤i≤m

√
4|Ess| + |Esa|/2 according to Theorem 4. We exam-

ined the two cases of whether the initial points u(0)
i (= v

(0)
i ) ∈ R

2 (i = 1, 2) in
Algorithm 1 are in the interior or the exterior of the convex hull of the three anchors.
Figure 1 shows the sensor positions estimated by SFSDP, the SDP relaxation-based
method described in Sect. 1, and the proposed method. Note that when we estimated
the sensor positions with the proposed method, the randomness of the initial points
was varied 10 times. The results were similar to those of Fig. 1b in all cases in which
the initial points were in the interior of the convex hull of the anchors. On the other
hand, the results were similar to those of either Fig. 1c or d in all cases in which the
initial points were in the exterior of the convex hull. Accordingly, only these three
cases are included in Fig. 1.

When we used SFSDP, the sensor positions were not estimated correctly (Fig. 1a).
For the proposedmethod, the estimation accuracy depended on the initial points.When
the initial points were in the interior of the convex hull of the anchors, the sensor
positions were estimated accurately (Fig. 1b). On the other hand, when the initial
points were in the exterior of the convex hull, the sensor positions were estimated
accurately in some cases (Fig. 1c) but not in others (Fig. 1d).

Of course, because problem (5) examined in this paper is a nonconvex optimiza-
tion problem, whether the sensor positions can be estimated accurately depends on
the initial points. However, as shown in Fig. 1b and c, the proposed method still has
the capability to estimate sensor positions accurately even for problems that are not
uniquely localizable, although the example here is quite simple. On the other hand,
when we use SDP relaxation-based methods, if a given problem is not uniquely local-
izable, there is no capability for accurate estimation because of the max-rank property
of the interior-point method, as described in Sect. 1. Therefore, we can say that the
proposed method does inherit the rank constraint.
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(a) SFSDP (b) Initial points in the interior of the convex
hull

(c) Initial points in the exterior of the convex
hull (case 1)

(d) Initial points in the exterior of the convex
hull (case 2)

Fig. 1 Estimated sensor positions when the locatable but non-uniquely localizable problem was solved by
a SFSDP and b–d the proposed method

3.2 Comparison of estimation time and accuracy

In this subsection, we quantitatively compare the estimation time and the estimation
accuracy of the proposed method with those of existing methods for sensors located
in two- or three- dimensional space. The compared methods are SFSDP, which was
also used in Sect. 3.1, and NLP-FD, which takes the rank constraint into account
as our proposed method does. Although we introduced the methods proposed by
Wan et al. [20,21] in Sect. 1, which also account for the rank constraint, we do not
compare them here because of their extremely low scalability. In these experiments,
m = 1000, 3000, 5000, and 20,000 sensors and n = 0.1m anchors were placed
randomly in [0, 1]d . Ess and Esa were defined as

Ess := {i j | 1 ≤ i < j ≤ m, ‖xtruei − xtruej ‖2 < ρ},
Esa := {ik | 1 ≤ i ≤ m, m + 1 ≤ k ≤ m + n, ‖xtruei − ak‖2 < ρ},

where the xtruei (i = 1, ...,m) are the sensors’ true positions. In other words, we
considered a model in which the distance between two sensors or between a sensor
and an anchor is observed if and only if it is less than a radio range ρ (> 0). We set ρ
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to 0.1 and
√
10/m in the case of d = 2 and to 0.25 and 3

√
15/m in the case of d = 3.

The measured distances di j (i j ∈ Ess) and dik (ik ∈ Esa) were given by

di j = max{(1 + σεi j ), 0.1}‖xtruei − xtruej ‖2,
dik = max{(1 + σεik), 0.1}‖xtruei − ak‖2,

where εi j , εik were selected independently from the standard normal distribution, and
σ is a noise factor determining the influence of the error. σ was set to 0, 0.1, and 0.2.
As an indicator to measure the estimation accuracy, we used the root-mean-square
distance (RMSD), which has been used in many other papers on SNL [8,13,20,22]
and is defined as

RMSD :=
√√√√ 1

m

m∑
i=1

‖x̂i − xtruei ‖22,

where x̂i is the estimated position of sensor i . For each set of (m, n, ρ, σ ), five different
problems of varying randomness were created, and the final results were the averages
of five measurements of the estimation time (CPU time) and the estimation accuracy
(RMSD).

The initial point (U (0), V (0)) ∈ R
d×m×R

d×m inAlgorithm1was decided similarly
to the method in [8]. That is, for each sensor i (i = 1, . . . ,m), if it was connected
directly to an anchor, then u(0)

i and v
(0)
i were set to the coordinates of the anchor

nearest to sensor i ; otherwise, u(0)
i and v

(0)
i were set to

1

2

⎛
⎜⎝

⎛
⎜⎝
maxk ak1

...

maxk akd

⎞
⎟⎠ +

⎛
⎜⎝
mink ak1

...

mink akd

⎞
⎟⎠

⎞
⎟⎠ .

The penalty parameter γ was updated dynamically according to Theorem 4 by the
following procedure.

Step 1. Let

γ (0) = 5 × 10−3 ×
√
2 f (U (0), V (0)) max

1≤i≤m

√
4|Ess[i]| + |Esa[i]|/2.

Byusing γ (0) as the penalty parameter, (U (1), V (1)) is calculated by the update
rule in the while loop of Algorithm 1. Let γ (1) = γ (0)/2. Then, by using γ (1)

as the penalty parameter, (U (2), V (2)) is also calculated by this update rule.
Let p = 2.

Step 2. If

f (U (p−1), V (p−1)) − f (U (p), V (p))

f (U (p−1), V (p−1))

≥ f (U (p−2), V (p−2)) − f (U (p−1), V (p−1))

f (U (p−2), V (p−2))
,
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then γ (p) = (γ (p−1)/γ (p−2))γ (p−1); otherwise, γ (p) = γ (p−2). By using
γ (p) as the penalty parameter, (U (p+1), V (p+1)) is calculated by the update
rule in the while loop of Algorithm 1.

Step 3. If | f (U (p), V (p))− f (U (p+1), V (p+1))|/ f (U (p), V (p)) < 10−2 or the overall
stopping criterion (line 8 of Algorithm 1) is satisfied, then go to Step 4;5

otherwise, set p = p + 1 and go to Step 2.
Step 4. Let W := (U (p) + V (p))/2 and

γ = √
2 f (W ,W ) max

1≤i≤m

√
4|Ess[i]| + |Esa[i]|/2.

Restart Algorithm 1withW as the initial point and γ as the penalty parameter.

The method of updating γ described above consists of two components. First, in
Steps 1–3, γ is updated so that the value of f , which represents the squared error of
the squared distances, decreases rather than the penalty term ‖U − V ‖F . However, if
we keep reducing the value of f rather than the penalty term, then the penalty term
does not decrease much, and U and V may end up taking very different values from
each other. Therefore, in Step 4, we try to reduce the difference between U and V by
fixing γ according to Theorem 4.

First, the results for d = 2 are given in Table 1,6 wherein the proposed method is
referred to as “BCD.”We can see that when the measured distances included no errors
(σ = 0), the estimation time of the proposed method was the lowest in most cases;
furthermore, even when the proposed method was not the fastest, its estimation time
was almost the same as that of the fastest method. In terms of the estimation accuracy,
SFSDP estimated the sensor positions with the best accuracy of all the methods, by an
order of magnitude. However, comparing the proposed method and NLP-FD shows
that therewas no appreciable difference between their estimation accuracies.When the
measured distances included errors (σ = 0.1 and 0.2), the proposed method estimated
the sensor positions the most rapidly of all the methods, by an order of magnitude in
all cases, and the estimation accuracy was about the same as those of the other two
methods.

Next, the results for d = 3 are given in Table 2.7 The results for the three-
dimensional scenario were similar to those for the two-dimensional scenario; that
is, when the measured distances did not include errors, the estimation time of the pro-
posed method was the lowest in each case. In terms of the estimation accuracy, SFSDP
estimated the sensor positions with the highest accuracy of all themethods, by an order
of magnitude; however, comparing the proposed method and NLP-FD again shows
that there was no appreciable difference between their estimation accuracies. When
the measured distances included errors, the estimation time of the proposed method
was the lowest in all cases except (m, n, ρ, σ ) = (1000, 100, 0.1, 0.2), and even in

5 Even if the overall stopping criterion is satisfied at this stage, the entire algorithm does not end but always
proceeds to Step 4.
6 For m = 1000, only the case of ρ = 0.1 is shown because

√
10/m = 0.1.

7 For m = 1000, the case of ρ = 3√15/m is omitted because 3√15/m = 0.24 ≈ 0.25. An entry of
“OOM” means that we could not estimate the sensor positions because of insufficient memory (i.e., “out
of memory”).
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Table 1 Results of numerical experiments for sensors and anchors placed randomly in [0, 1]2

ρ σ CPU time RMSD

BCD SFSDP NLP-FD BCD SFSDP NLP-FD

m = 1000, 0.1 0 4.1 4.2 14.6 3.13e–02 1.18e–05 1.27e–02

n = 100 0.1 4.2 13.7 20.1 3.38e–02 1.92e–02 1.37e–02

0.2 8.8 14.5 33.6 3.74e–02 2.94e–02 1.87e–02

m = 3000, 0.1 0 12.8 12.7 44.0 4.02e–04 4.64e–07 7.87e–04

n = 300 0.1 1.7 77.7 81.9 2.78e–03 8.78e–03 3.18e–03

0.2 2.0 63.8 120.3 6.96e–03 1.72e–02 6.02e–03√
10/m 0 11.2 15.3 38.0 1.28e–02 1.51e–05 4.03e–03

0.1 4.9 85.9 49.6 1.53e–02 8.47e–03 5.07e–03

0.2 4.1 91.3 52.5 1.83e–02 1.39e–02 7.03e–03

m = 5000, 0.1 0 18.3 23.2 54.3 8.22e–08 2.00e–07 4.75e–04

n = 500 0.1 2.5 184.8 162.0 1.90e–03 8.26e–03 2.17e–03

0.2 2.2 135.6 223.6 3.74e–03 1.62e–02 4.19e–03√
10/m 0 22.0 30.2 57.6 9.01e–03 5.26e–05 5.81e–03

0.1 11.4 198.7 70.4 1.17e–02 6.56e–03 5.29e–03

0.2 9.4 160.0 87.8 1.43e–02 1.04e–02 5.96e–03

m = 20,000, 0.1 0 82.7 176.2 718.2 5.81e–06 6.50e–07 3.23e–04

n = 2000 0.1 29.2 643.5 1300.8 9.14e–04 8.33e–03 9.54e–04

0.2 26.0 544.9 1450.2 2.22e–03 1.76e–01 1.79e–03√
10/m 0 223.0 357.9 213.8 3.35e–03 6.73e–05 2.25e–03

0.1 129.2 1527.9 215.2 4.16e–03 3.10e–03 2.30e–03

0.2 110.6 1558.2 240.5 5.47e–03 4.86e–03 2.63e–03

For each parameter combination, the lowest CPU time and shortest root-mean-square distance (RMSD) are
in bold

that case, its estimation time was also almost the same as that of the fastest method
(SFSDP). The estimation accuracy of the proposed method was also comparable to
those of the other two methods. In addition, form =20,000, SFSDP could not estimate
the sensor positions because of insufficient memory, while the proposed method could
estimate the positions without running out of memory.

Overall, these results for the two- and three-dimensional cases show that the pro-
posed method has practical advantages over the other methods: it can estimate sensor
positions faster than those methods can without sacrificing the estimation accuracy,
especially when measurement errors are included, and it does not run out of memory
even for large-scale SNL problems.

It is interesting to consider why the proposed method and NLP-FD, both of which
account for the rank constraint, could not estimate the sensor positions with as much
accuracy as SFSDPwhen there were nomeasurement errors. The reason was probably
because a formulation that accounts for the rank constraint is a nonconvex optimiza-
tion problem and thus might converge to a stationary point that is not a global optimal
solution. In contrast, if a problem is uniquely localizable, then SFSDP can estimate
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Table 2 Results of numerical experiments for sensors and anchors placed randomly in [0, 1]3

ρ σ CPU time RMSD

BCD SFSDP NLP-FD BCD SFSDP NLP-FD

m = 1000, 0.1 0 5.3 11.5 34.6 8.19e–03 2.79e–05 7.62e–03

n = 100 0.1 18.5 25.8 32.5 3.21e–02 5.50e–02 2.77e–02

0.2 29.4 25.4 42.4 4.71e–02 8.18e–02 5.28e–02

m = 3000, 0.1 0 8.6 24.7 62.3 3.97e–05 1.22e–06 1.06e–03

n = 300 0.1 3.3 100.6 132.0 7.01e–03 3.11e–02 1.09e–02

0.2 3.6 102.0 194.2 1.47e–02 5.79e–02 2.45e–02
3√15/m 0 35.6 61.6 83.1 2.12e–02 6.25e–05 4.26e–03

0.1 26.8 185.7 102.5 3.29e–02 3.22e–02 1.48e–02

0.2 69.5 158.6 113.8 4.32e–02 5.12e–02 2.75e–02

m = 5000, 0.1 0 17.5 47.5 126.0 5.11e–05 4.41e–07 1.09e–03

n = 500 0.1 5.5 195.5 291.2 5.50e–03 2.94e–02 7.95e–03

0.2 24.0 170.3 284.9 1.19e–02 5.35e–02 1.38e–02
3√15/m 0 30.4 199.9 114.0 1.11e–02 2.13e–04 7.15e–03

0.1 11.9 554.8 182.8 2.43e–02 2.51e–02 1.18e–02

0.2 66.5 522.3 164.7 3.76e–02 4.04e–02 2.08e–02

m = 20,000, 0.1 0 128.9 288.6 1813.7 5.53e–05 4.24e–07 6.26e–04

n = 2000 0.1 56.9 1271.6 2551.9 2.81e–03 2.93e–02 3.37e–03

0.2 56.9 1028.0 2679.0 7.59e–03 2.43e–01 5.61e–03
3√15/m 0 304.4 OOM 341.3 3.93e–03 OOM 4.00e–03

0.1 149.9 OOM 606.7 1.18e–02 OOM 6.08e–03

0.2 107.5 OOM 628.1 2.01e–02 OOM 1.06e–02

For each parameter combination, the lowest CPU time and shortest RMSD are in bold

accurate sensor positions because the convergence to the global optimum of a relax-
ation problem is guaranteed.On the other hand,whenmeasurement errors are included,
even if a global minimum solution of the objective function f is obtained and the opti-
mal value is zero, it does not mean that the true sensor positions are estimated, but
rather that the positions are estimated incorrectly. In other words, even if the objective
function is strictly minimized, it does not necessarily mean that a good estimate of the
sensor positions is obtained; thus, when measurement errors are included, estimation
accuracy comparable to that of SFSDP can be obtained evenwithmethods that account
for the rank constraint and may cause the generated sequence to fall into a stationary
point that is not a global optimal solution.

4 Conclusion

In this paper, we proposed a new method that transforms the formulation of problem
(3), which appears in SNL, into an unconstrained multiconvex optimization prob-
lem (5), to which the block coordinate descent method is applied. We also presented
theoretical analyses of the proposed method. First, we showed that each subproblem
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that appears in Algorithm 1 can be solved analytically. In addition, we showed that
any accumulation point (U∗, V ∗) of the sequence {(U (p), V (p))}∞p=1 generated by
the proposed algorithm is a stationary point of the objective function of problem (5),
and we gave a range of γ such that (U∗, V ∗) satisfies U∗ = V ∗. We also pointed
out the relationship between the objective function of problem (5) and the augmented
Lagrangian. Numerical experiments showed that our method does inherit the rank
constraint and that it can estimate sensor positions faster than other methods without
sacrificing the estimation accuracy, especially when the measured distances contain
errors, and without running out of memory.

The present study suggests three directions for future work. First, Algorithm 1
uses a cycle rule in which the 2m subproblems are solved in the order of
u1, . . . , um, v1, . . . , vm . However, in the general coordinate descent method, there
are other update rules such as a random rule and a greedy rule [15,24]. In SNL, the
strategyof updating fromvariables corresponding to sensors that are connecteddirectly
to anchors is also expected to improve the estimation accuracy and time. Therefore,
there is still room to consider how the order of solving the 2m subproblems affects the
estimation time and accuracy. Second, we performed the minimization sequentially
with respect to each column of U and V for computational efficiency, but updating
some columns ofU and V together is also possible, and the manner of block division
in applying the block coordinate descent method should be examined further. Finally,
the proposed method could be extended to general quadratic SDP problems with a
rank constraint.
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