
Optimization Letters (2020) 14:801–814
https://doi.org/10.1007/s11590-019-01396-y

ORIG INAL PAPER

SUSPECT: MINLP special structure detector for Pyomo

Francesco Ceccon1 · John D. Siirola2 · Ruth Misener1

Received: 1 June 2018 / Accepted: 23 January 2019 / Published online: 16 February 2019
© The Author(s) 2019

Abstract
We present SUSPECT, an open source toolkit that symbolically analyzes mixed-
integer nonlinear optimization problems formulated using the Python algebraic
modeling library Pyomo.We present the data structures and algorithms used to imple-
ment SUSPECT. SUSPECT works on a directed acyclic graph representation of the
optimizationproblem toperform: bounds tightening, boundpropagation,monotonicity
detection, and convexity detection. We show how the tree-walking rules in SUSPECT
balance the need for lightweight computation with effective special structure detec-
tion. SUSPECT can be used as a standalone tool or as a Python library to be integrated
in other tools or solvers. We highlight the easy extensibility of SUSPECT with sev-
eral recent convexity detection tricks from the literature. We also report experimental
results on the MINLPLib 2 dataset.

Keywords Mixed-integer nonlinear optimization · Convexity · Open-source software

1 Introduction

Mixed-integer nonlinear optimization problems (MINLP) arise in many engineer-
ing applications [5,8,25,26]. Existing solvers that globally optimize MINLP include:
ANTIGONE [38,40], Baron [49], Couenne [6,34], LINDOGlobal [19],Minotaur [35],

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11590-
019-01396-y) contains supplementary material, which is available to authorized users.

B Ruth Misener
r.misener@imperial.ac.uk

Francesco Ceccon
francesco.ceccon14@imperial.ac.uk

John D. Siirola
jdsiiro@sandia.gov

1 Department of Computing, Imperial College London, 180 Queens Gate, London SW7 2AZ, UK

2 Center for Computing Research, Sandia National Laboratories, P.O. 5800, Albuquerque, NM 87185,
USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-019-01396-y&domain=pdf
http://orcid.org/0000-0001-5612-5417
https://doi.org/10.1007/s11590-019-01396-y
https://doi.org/10.1007/s11590-019-01396-y

802 F. Ceccon et al.

Table 1 Notation used in this paper

Symbol Description

y ∈ {R,±∞}C A vector of continuous variables

w ∈ {0, 1}B A vector of binary variables

z ∈ {Z, ±∞}I A vector of integer variables

S
N {{R,±∞}C , {0, 1}B , {Z, ±∞}I }

x ∈ S
N A vector of variables

C, B, I Number of continuous (C), binary (B), and integer (I) variables

N C + B + I

f0(y,w, z) The problem objective function

fm (y,w, z) ∀m ∈ {1, . . . , M} The problem constraints

bLm ∈ {−∞, R}, bUm ∈ {R,+∞} Lower and upper bounds of fm (y,w, z)

xi The i-th element of x

[xLi , xUi] Lower and upper bounds of xi

g(x), h(x), k(x) An expression of x

X Domain of h : X → Z , X ⊆ R
n

Z Domain of g : Z → Y , Z ⊆ R
l

Y Image of g, Y ⊆ R

and SCIP [54]. The special structure of an optimization problem may expedite its
solution, e.g. convexity may be exploited to generate polyhedral cutting planes [41,49]
or only relax the nonconvexities [1,46]. MINLP have the form [15]:

minimize f0(y,w, z),

subject to bLm ≤ fm(y,w, z) ≤ bUm ∀m ∈ {1, . . . , M},
y ∈ {R,±∞}C ,w ∈ {0, 1}B, z ∈ {Z,±∞}I .

(MINLP)

Simplifying, we write fm(x) : S
N �→ R instead of fm(y,w, z) and denote S as the

domain of x. Table 1 contains this manuscript’s notation.

Contributions This paper presents data structures and algorithms used to imple-
ment SUSPECT. The primary contribution of SUSPECT is its easy extensibility to
detect the convexity of complex expressions. Custom MINLP solvers can leverage
SUSPECT during preprocessing to make informed decisions about how to best cus-
tomize the solution process. For example, a solver could use SUSPECT to identify
which problem variables appear in nonconvex expressions, thereby reducing the space
over which it must apply spatial branch and bound. SUSPECT’s extensibility allows
domain experts to add new convexity detectors, thereby expanding the range of expres-
sions that SUSPECT can correctly classify. Finally, SUSPECT may also be used to
provide special structure detection and bounds tightening when developing new global
optimization tools. This paper is published alongside the source code [10], licensed
under the Apache License, version 2. All global solvers have some convexity detection

123

SUSPECT: MINLP special structure detector for Pyomo 803

facilities, but SUSPECT is the first open source code to explicitly detect convexity as
a stand-alone utility.

The rest of the paper is organized as follows. Section 2 introduces convexity detec-
tion, the Python library Pyomo and data structures to represent nonlinear optimization
problems. Bound tightening and propagation algorithms are described in Sect. 3, while
Sect. 4 gives an overview of the monotonicity and convexity propagation rules used
in SUSPECT. In Sect. 5 we describe the data structures and algorithms implemented
in SUSPECT and in Sect. 6 we introduce the plugin-based architecture used to extend
SUSPECT. The test suite and results are presented in Sect. 7. We conclude in Sect. 8.

2 Background

Different methods exist for proving or disproving convexity of an expression (or an
optimization problem). Tree-walking approaches [17,18] are suited for preprocessing
given their low computational complexity. More computationally expensive methods
(i) use automatic differentiation techniques to compute the interval Hessian [42,44],
(ii) reduce convexity questions to real quantifier elimination problems [45], or (iii)
sample to verify convexity [12]. Some solvers, e.g. CVX [22,23], CVXPY [14] and
Convex.jl [51], impose a set of conventions when constructing problems and thereby
obtain a convex optimization problem [24].

The bound tightening techniques described in this paper are similar to those used
in interval arithmetic and constraint programming [37,47]. Other bound tightening
techniques use pair of inequalities [3], tightening with a linear optimization problem
(LP) [4], or solving two LPs for each variable [20].

2.1 Pyomo expression trees

SUSPECT works with optimization models formulated using Pyomo [27,28], a
Python-based Algebraic Modeling Language (AML). Pyomo supports most features
common to AMLs, e.g. (i) separating the model definition from the instance data and
solution method, (ii) supporting linear and nonlinear expressions, and (iii) structuring
modeling using indexing sets and multi-dimensional variables, parameters, and con-
straints. Pyomo focuses on an open, extensible object model. As with most AMLs,
Fig. 1 shows that Pyomo represents objectives and constraints using expression trees,1

with internal nodes representing operators and leaf nodes representing operands.
Operands may be variable objects, literal constants (integer or floating point numbers,
or strings), or placeholders for literal constants (“mutable parameters”). Internal nodes
come in three fundamental categories: Unary operators (negation, absolute value, and
trigonometric functions), binary operators (subtraction, multiplication, division, expo-
nentiation, and comparison), and n-ary operators (addition, linear expressions).

1 Pyomo supports several systems for representing expression trees. SUSPECT targets “Pyomo4” expres-
sion trees, and as such the discussion here focuses on that expression system.

123

804 F. Ceccon et al.

BaseExpression

Linear LinearOp Division ProductPowerNegationUnaryFunc

Inequality EqualitySumAbs

Fig. 1 Pyomo expression hierarchy. Expression classes If, GetItem and ExternalFunction are not
supported by SUSPECT and therefore they are not included in the diagram

x0

x1

x2

∑

∑

∑

√

log

f0

+

f1

f2

d(v) = 0 d(v) = 1 d(v) = 2 d(v) = 3 d(v) = 4

Fig. 2 Pictorial representation of Optimization Problem (1), with vertices grouped by depth d(v)

2.2 Directed acyclic graphs

SUSPECT represents problems using a Directed Acyclic Graph (DAG) to group com-
mon subexpressions in a single node [47,55]. Variables and constants in the problem
are sources, while the functions f0 and fm ,m ∈ {1, . . . , M} are sinks. SUSPECT rep-
resents an MINLP instance as a DAG G, G = (V , E), where V is the set of vertices
and E the set of directed edges E ⊆ V ×V . Each vertex v represents an operation⊗v ,
the children of v are its operands, while the parents of v are the expressions of which v

is an operand.More formally, define the children of v as c(v) = {w ∈ V : (w, v) ∈ E}
and the parents of v as p(v) = {w ∈ V : (v,w) ∈ E}. Note that sources have c(v) = ∅
since they don’t have any operand, and sinks have p(v) = ∅ since they are top level
operations. The vertex v depth is:

d(v) =
{
0, if c(v) = ∅,

max{d(w) : w ∈ c(v)} + 1, otherwise.

TheSUSPECT instance graphG is similar to combining all Pyomo expression trees for
that instance except that Pyomo explicitly avoids shared subexpressions and restricts
each operator vertex to have at most one parent. Therefore, any two Pyomo expres-
sions share no common internal nodes. In contrast, SUSPECT actively identifies and
combines common vertices across expressions [54]. Figure 2 represents Optimization
Problem (1) and shows the DAG vertices grouped by depth d(v).

minimize x0 + x1 + x2
subject to log(x1 − x2) ≥ 0

x1 − x2 + √
x0 + x1 ≤ 2

x ∈ S
N .

(1)

123

SUSPECT: MINLP special structure detector for Pyomo 805

3 Bound tightening and propagation

Feasibility-based bounds tightening propagates bounds from sources to sinks and from
sinks to sources. To propagate bounds from sources to sinks, SUSPECT computes the
new bounds B ′

v of each node v with existing bound Bv and bounds on its children
nodes Bu as:

B ′
v =

⎧⎪⎨
⎪⎩

[c, c] if v is a constant c

[x Li , xUi] if v is variable xi
Bv ∩ ⊗v(Bu |u ∈ c(v)) otherwise.

For each operator ⊗v , SUSPECT computes the bound using the interval arithmetic
rules in Appendix A [32,43]. For functions g(x), x ∈ X , X ⊆ dom g, the expression
bound g(x) is the image of g(X) := {g(x)|x ∈ X}. If X � dom g for some DAG
vertex, SUSPECT throws an exception. In normal operation, SUSPECT has X ⊆
dom g, but this feature helps researchers extend SUSPECT.

Example 1 Consider the function g(x1) := √
x1, SUSPECT will compute the bound

of g as [0, 2] if x1 ∈ [0, 4], but will throw an exception for x1 ∈ [−1, 1].

The reverse step of feasibility-based bound tightening propagates bounds fromsinks
to sources. A DAG vertex v with unary function ⊗v and bound Bv implies a child
u with bound Bu that is equal to or tighter than ⊗−1

v (Bv), where ⊗−1
v is the inverse

of the function ⊗v if it exists, otherwise it is a function that maps all arguments to
[−∞,∞]. The absolute value and square functions are the only exceptions in the
current implementation: they are not invertible, but we update the bound of Bu using
⊗−1

v (Bv) = Bv ∪ (−Bv) and ⊗−1
v (Bv) = √

Bv ∪ (−√
Bv

)
, respectively. Equation (2)

gives the bound tightening step SUSPECT performs for each vertex v that represents
an unary function:

Bu = Bu ∩ ⊗−1
v (Bv). (2)

Example 2 Consider the function k(x1) := √
x1, with k(x1) ∈ [0, 2], then the bound

of x1 will be [0, 4]. If the expression is k(x1) := |x1|, with k(x1) ∈ [1, 2], then
x1 ∈ [−2, 2]. SUSPECT does not support disjoint intervals because their support is
uncommon in most solvers, so the bound is not [−2,−1] ∪ [1, 2].

Appendix B shows that SUSPECT also tightens the bounds of the children of linear
expressions, but not of other non-unary functions, e.g. product and division.

4 Special structure detection

SUSPECT detects monotonicity and convexity recursively. The rules assume an
expression has only unary or binary vertices, but SUSPECT deduces properties of
n-ary vertices k = g0 ◦ g1 ◦ · · · ◦ gl by applying the rules as (((g0 ◦ g1)◦ g2)◦ · · · ◦ gl),

123

806 F. Ceccon et al.

where gi : Z → Y , Z ⊆ R
l , Y ⊆ R. This section introduces rules computing the

monotonicity and convexity properties of the composition k = g ◦ h : X → Y of
the functions g : Z → Y and h : X → Z , where X ⊆ R

n , Y ⊆ R, Z ⊆ R
l , and

dom k = {x ∈ dom h|h(x) ∈ dom g} [9]. A function k(x) is nondecreasing (nonin-
creasing) if its gradient∇k(x) ≥ 0 (∇k(x) ≤ 0) ∀ x ∈ X . Applying the chain rule and
computing the gradient of k, the monotonicity of k depends on the signs of ∇g(h(x))

and ∇h(x):

∇k(x) = ∇g(h(x))∇h(x).

A function k(x) is convex (concave) if its Hessian ∇2k(x) ≥ 0 (∇2k(x) ≤ 0) for all
x ∈ X :

∇2k(x) = ∇h(x)T∇2g(h(x))∇h(x) + ∇g(h(x))∇2h(x).

If any of g or h are not differentiable, then the monotonicity and convexity of k are
considered unknown. SUSPECT has special routines for the absolute value function: if
the domain of |x | specifies x ≥ 0 (x ≤ 0) then we compute first and second derivatives
as if |x | = x (|x | = −x). We assume nothing if x = 0 is in the interior of the domain.
For a more detailed list of monotonicity and convexity rules refer to Appendix C of
the supplementary material.

5 Implementation details

SUSPECT is implemented in Python and is compatible with Python version 3.5 and
later. The source code is freely available on GitHub.2 SUSPECT can be used as a
standalone command line application or included in other applications as a library.

5.1 Data structures

SUSPECT implements a problem DAG by storing all vertices in a list, sorted by
ascending depth. This sorting ensures that if SUSPECT traverses the list forward
(backward), it visits a vertex after having visited all its children (parents). Each vertex
stores a reference to its children and parents. Other approaches to representing the
DAG are possible, e.g. using adjacency lists [13]. The SUSPECT class hierarchy for
vertices, which is diagrammed in Fig. 3, is similar to Pyomo, but SUSPECT has a class
for each available unary function because we often need to dispatch based on a vertex
type. Having a type for each unary function enables leveraging the same functions
used by the other vertex types. Figure 4 represents Optimization Problem (1): the
DAG also contains dictionaries to map variables, constraints, and objectives names to
their respective vertex.

2 https://github.com/cog-imperial/suspect.

123

https://github.com/cog-imperial/suspect

SUSPECT: MINLP special structure detector for Pyomo 807

Expression

ProductDivision Sum BoundedExpr LinearExprPowObjective UnaryFunc

Constraint VariableConstant

Negation Abs Sqrt ExpLogSinCos TanAsin AcosAtan

Fig. 3 SUSPECT expression hierarchy. Different from the Pyomo classes shown in Fig. 1, each unary
function has its own class, and constraints and objectives are a special type of expression

d(v) = 0 d(v) = 1 d(v) = 2 d(v) = 3 d(v) = 4

x0 x1 x2 ∑ ∑ ∑
√

log f0 + f1 f2vertices

variables "x0" "x1" "x2" objectives "f0" constraints "f1" "f2"

Fig. 4 Implementation of the DAG for Optimization Problem (1). The DAG is a list of vertices sorted by
d(v), together with dictionaries to map variables, constraints, and objectives names to the relative object

5.2 Converting Pyomomodels to SUSPECT

SUSPECT represents an optimization problem as a DAG, but Pyomo represents prob-
lems using separate expression trees for each constraint and objective. SUSPECT
uses a hashmap-like data structure to correctly map a Pyomo expression to an existing
SUSPECT expression if present, or otherwise create a new expression. The heuristic
approach of hashing Pyomo expressions may not converge to the DAGwith the fewest
vertices, but it should obtain an acceptable DAG. The DAG structure depends on the
model building style since no simplifications are performed.

The hash function needs: (i) to compute the same value for equivalent expressions
but different values for different expressions, and (ii) to limit collisions with a uniform
distribution.Computing the hash is recursive: SUSPECT starts from the expression tree
leaves and moves to the root. The hash of a variable is its ID. SUSPECT implements
two possible strategies for the hash of a constant coefficient:

– Each unique number gets an increasing ID [SUSPECT default] This is best
when there are few distinct floating point numbers, e.g. many coefficients are 1.
SUSPECT stores floating point numbers in a binary tree with their associated ID.

– Rounded number is the hash value This is best when there are many unique
floating point numbers.

Hashes of non-leaf nodes combine the hashes of their children expressions, together
with the node. Equation (3) shows how the hash function of a vertex v is computed
[30], where h is the hash function and c0, . . . , cn are the children of the vertex v.

h(v) =
{
ID(v) if v is a source,

ID(VertexClass) ⊕ h(c0) ⊕ h(c1) ⊕ · · · ⊕ h(cn) otherwise.
(3)

123

808 F. Ceccon et al.

h(·)
h(·) sin(2x0 + x1) SinExpression(·) sin(x0 − x1) SinExpression(·)

2x0 + 3x1 LinearExpression(·)
Fig. 5 ExpressionDict implementation. Floating point coefficients make building a dictionary of
expressions and values (in this case Bound objects) challenging. SUSPECT uses a hash function that
ignores coefficients to insert similar expressions in the same bucket, then compares each expression for
equality

Figure 5 represents the expression hashmap. SUSPECT inserts an expression by hash-
ing the expression into a bucket index and then iterating through the bucket to check
for the expression, otherwise SUSPECT appends it to the list. The Python built-in
hash map manages the buckets. For lookups, SUSPECT hashes the expression for
the bucket and then searches linearly through the bucket. This method matches some
equivalent expressions, e.g. reordering a summation x0+x1 to x1+x0. SinceSUSPECT
represents linear expressions as a summation of variables with the associated coeffi-
cients, the expressions x0 + x1 and x0 + x2 + x3 would be represented by different
linear expression vertices. SUSPECT could be improved by matching polynomials,
e.g. (x − 2)2 = (

x2 − 4x + 4
)
.

SUSPECT builds the DAG by: (i) associating Pyomo expressions to SUSPECT
expressions, (ii) adding all problem variables, and (iii) visiting all Pyomo constraint
and objective trees. For each Pyomo tree, SUSPECT walks from the leaves (vari-
ables and constants) to the root (functions) and modifies the DAG when it finds new
subexpressions. This process terminates with a DAG equivalent to the Pyomo model.

5.3 Tree-walking rules: forward and backward visitors

The rules detecting monotonicity and convexity are naturally expressed recursively.
The SUSPECT implementation avoids recursion because it can lead to stack overflows.
To overcome this challenge, we devise a strategy to compute recursive rules without
recursion. A node’s vertex depth is greater than the depth of its children, so visiting
nodes in ascending order: (i) visits a node after visiting its children and (ii) visits a
node at most once. The problem DAGmethods that visit vertices take two parameters:
a visitor object (a subclass of ForwardVisitor or BackwardVisitor) and a
context. The visitor is called on a node while the context shares information between
visitors. SUSPECT uses this context to store information, e.g. bounds, polynomiality,
monotonicity, and convexity.

Thevisitor classes implement theregister_handlers andhandle_result
methods. The first method returns a dictionary associating expression types to a call-
back. SUSPECT calls the second after each vertex visit to update special structure
information. The callbacks registered in the visitor are called with two parameters:
the current expression and the context object. Callbacks can use the context to lookup
information about other vertices, e.g. children in forward mode and parents in back-
wardmode. To reduce computation time in forward (backward) mode, SUSPECT only
visits nodes if any of its children (parents) changed in the previous iteration. To use

123

SUSPECT: MINLP special structure detector for Pyomo 809

this feature, implementations return a Boolean from the handle_result method
to indicate if the vertex value was updated or not. If the vertex value changes, then
SUSPECT adds the node parents (children) to the list of nodes to visit.

5.4 Bound tightening and propagation

DAGs are commonly used for bound propagation and tightening [47,55]. SUSPECT
implements the bound propagation rules defined in Sect. 3 using the Sect. 5.3 tree-
walking rules. Since convergence time of the bound tightening step can be infinite
[31], SUSPECT incorporates a maximum iteration parameter (default 10).

Floating point operations are subject to rounding errors [21] that are propagated in
bounds tightening. To mitigate errors, SUSPECT algorithms work with the generic
Bound interface. SUSPECT provides an implementation of this interface using
arbitrary precision arithmetic [36], but users can supply their own implementation,
e.g. using interval arithmetic [7]. Appendix D discusses the Bound interface.

6 Extending SUSPECT

SUSPECTmay be extended to include other convexity structures detectors. SUSPECT
already incorporates convexity detection for four important convex expressions:

1. Quadratic expression g(x) = xT Qx is convex ifmatrix Q is positive semidefinite
and concave if Q is negative semidefinite.

2. Second-Order Cone, i.e. the Euclidean norm ||x||2 :=
√∑

x∈x x2 is convex [33].
3. Perspective Functions with x2 ≥ 0 and 0 ≤ x1 ≤ 1 are defined:

g(x1, x2) :=
{
x1h(x2/x1) x1 > 0,

0 otherwise.

If the function h(x) is convex (concave), then g(x) is convex (concave) [29,48].
4. Fractional Expressions where x, a1, a2, b1, b2 ∈ R have the form:

g(x) := a1x + b1
a2x + b2

The second derivative g′′(x) derives rules for concavity and convexity [40].

SUSPECT adopts a plugin-based architecture to enable third parties to extend its
convexity detection capabilities without having to change SUSPECT itself. SUSPECT
is distributed with the aforementioned convexity extensions. SUSPECT uses the
numpy library, which provides Python wrappers around LAPACK dsyevd routines,
to compute the Q matrix eigenvalues. Since dsyevd uses double precision float-
ing point arithmetic, it may obtain incorrect results because of numerical issues. An
alternative approach to determine whether Q is positive (negative) semidefinite is to
perform two Cholesky decompositions with pivoting, this could also result in a more

123

810 F. Ceccon et al.

stable algorithm. As numpy does not currently implement Choelesky decomposition
with pivoting, this method has not yet been implemented in SUSPECT.

Writing a new convexity detector requires the user to implement the detector as
a class extending ConvexityDetector, and register it with SUSPECT. A con-
vexity detector visitor is similar to the Sect. 5.3 visitors, but each callback returns
a Convexity object. When SUSPECT visits a vertex and the built-in convexity
detector is inconclusive, it will iterate over the registered detectors that can handle the
expression and assign the convexity as the first conclusive result encountered.

SUSPECT uses Python’s setuptools entry points to handle extensions reg-
istration. Entry points are a mechanism for the SUSPECT package to adver-
tise extension points in its source. SUSPECT looks for extensions registered
under the suspect.convexity_detection and suspect.monotonicity
_detection groups for convexity and monotonicity detectors. Users extending
SUSPECT need to package their extensions using setuptools and provide a
setup.py file.

Example 3 Optimizing heat exchanger network design uses the reciprocal of log mean
temperature difference (RecLMTDβ) with the limits defined:

RecLMTDβ(x, y) =
⎧⎨
⎩

(
ln (x/y)
x−y

)β

x �= y,

1/xβ x = y,

with variables x, y ∈ R+, and constant parameter β ≥ −1. RecLMTDβ is concave if
β = −1, strictly concave if −1 < β < 0, linear if β = 0, and convex if β > 0 [41].

Listings 1–3 in Appendix E contain the detector source code.
The register_handlers method returns a callback for the expression with
PowerExpression as root (case x �= y) and one for the expression with
DivisionExpression as root (case x = y). Both callbacks check whether the
expression they are given matches the subgraph representing the RecLMTDβ expres-
sion.

Listing 4 contains the setup.py source code necessary to register the new con-
vexity detector with SUSPECT.

7 Numerical results

We consider theMINLPLib 2 dataset [53] which, whenwe accessed it on 13th Decem-
ber 2017, contained 1527 problems. We conducted the tests as a batch job on a cluster
of Amazon AWS C5 instances. Each problem was assigned a single instance to run
and each instance is equivalent to 2 cores of a 3.0 GHz Intel Xeon processor with 4 GB
memory. To increase reproducibility, the SUSPECT command line tool was packaged
as a Docker image running Python 3.5. The results shown in this manuscript were
generated using the version of SUSPECT with Git tag v7, dated 18th of May 2018.
Together with SUSPECT, we used Pyomo version 5.2. The problems are expected to

123

SUSPECT: MINLP special structure detector for Pyomo 811

be in the OSiL [16] format and we use the binary tree strategy for hashing floating
point constants.

Figure 6 shows the time (inCPU seconds) needed to run the special feature detection
algorithms. The horizontal line marks the percentage of instances SUSPECT can
read and start processing. Recall that SUSPECT can manage the Fig. 4 functions.
SUSPECT fails at reading 135 (9%) of the 1527 instances because of unsupported
nonlinear functions, e.g. the error function, or because the problem size is too big
and SUSPECT time outs after more than 5min converting from Pyomo to SUSPECT.
SUSPECT processes 1003 (72%) of the remaining 1392 instances instances in under
2 s. This low computational overhead is due to the strength of tree-walking algorithms.
Using the MINLPLib structure information as an oracle and considering the 1392
instances SUSPECT processes, our results matched the expected results in 1275 cases
(91.6%). In 35 cases (2%), SUSPECT times out or encounters an exception while
performing special structure detection. Table 15 of Appendix F lists the instances
where SUSPECT did not detect the convexity properties.

SUSPECT does not have false positives on the test set, this gives confidence in the
implementation and makes it possible to use it for solver selection. The johnall
problem is labeled as having nonlinear objective function byMINLPLib but SUSPECT
detects it as having polynomial objective type. The lip objective function is detected
as concave because it is a convexmaximization problem.Of the remaining 82 problems
not recognized as convex (or concave), 53 fail because of numerical errors when
computing the eigenvalues of the quadratic expressions. These problems are marked
with a dagger† in Table 15. The trim loss minimization problems (tls{2, 4, 5,
6, 7, 12}) are convex but SUSPECT fails at detecting it because they contain
the square root of the product of two nonnegative variables. The problem st_e17
contains the constraint x1 − (0.2458x21)/x2 ≥ 6 that SUSPECT fails to recognize as
convex.

10−2 10−1 100 101 102

0

0.2

0.4

0.6

0.8

1

Time (logs)

In
st

an
ce

s
Pr

oc
es

se
d

(%
)

Fig. 6 Percentage of instances processed vs run time on a log scale. The dashed horizontal line marks
the percentage of instances SUSPECT reads and starts processing. Of the 1392 instances SUSPECT can
process, 70% are processed in less than 2s and 87% less than 10s

123

812 F. Ceccon et al.

8 Conclusions and future work

This manuscript presents SUSPECT, a tool detecting and reporting special structure
in optimization problems formulated using the Pyomo algebraic modeling library. The
project can be developed further in different directions. On the convexity detection
side, we can add an additional step of convexity disproving if the convexity detection
is inconclusive.We can add the ability to detect nonconvex objective functions, e.g. the
difference of two convex expressions [2,50] to take advantage of new algorithms [52]
specialized in solving this class of problems or to recognize pooling problem structure
[11]. We can improve the bound tightening step using Optimization Based Bound
Tightening, for example using one of the recent implementations [20] that started to
emerge. It would be easy to extend SUSPECT to work with other algebraic modeling
languages since the special structure detection algorithms work on SUSPECT’s own
DAG or to extend the family of expression forms known [39]. SUSPECT could be
integrated with existing nonlinear solvers to detect the problem type and choose the
best optimization algorithm for it.

Acknowledgements This work was funded by an Engineering & Physical Sciences Research Council
Research Fellowship to RM [Grant Number EP/P016871/1]. Sandia National Laboratories is amultimission
laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a
wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energys National
Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical
results and analysis. Any subjective views or opinions thatmight be expressed in the paper do not necessarily
represent the views of the U.S. Department of Energy or the United States Government.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: Global optimization of mixed-integer nonlinear prob-
lems. AIChE J. 46(9), 1769–1797 (2000)

2. An, L.T.H.: D.C. Programming for solving a class of global optimization problems via reformulation
by exact penalty. In: Global Optimization and Constraint Satisfaction, pp. 87–101. Springer, Berlin,
Heidelberg (2003)

3. Belotti, P.: Bound reduction using pairs of linear inequalities. J. Glob. Optim. 56(3), 787–819 (2013)
4. Belotti, P., Cafieri, S., Lee, J., Liberti, L.: Feasibility-based bounds tightening via fixed points. In:

Combinatorial Optimization and Applications, pp. 65–76. Springer, Berlin, Heidelberg (2010)
5. Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear

optimization. Acta Numer. 22, 1–131 (2013)
6. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques

for non-convex MINLP. Optim. Met. Softw. 24(4–5), 597–634 (2009)
7. Benhamou, F., Older, W.J.: Applying interval arithmetic to real, integer, and boolean constraints. J.

Log. Program. 32(1), 1–24 (1997)
8. Boukouvala, F., Misener, R., Floudas, C.A.: Global optimization advances in mixed-integer nonlinear

programming, MINLP, and constrained derivative-free optimization, CDFO. Eur. J. Oper. Res. 252(3),
701–727 (2016)

9. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
10. Ceccon, F.: SUSPECT: https://doi.org/10.5281/zenodo.1216808 (2018)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.1216808

SUSPECT: MINLP special structure detector for Pyomo 813

11. Ceccon, F., Kouyialis, G., Misener, R.: Using functional programming to recognize named structure
in an optimization problem: application to pooling. AIChE J. 62(9), 3085–3095 (2016)

12. Chinneck, J.W.: Analyzing mathematical programs using MProbe. Ann. Oper. Res. 104(1–4), 33–48
(2001)

13. Cormen, T.H.: Introduction to Algorithms. MIT Press, New York (2009)
14. Diamond, S., Boyd, S.: Cvxpy: a python-embedded modeling language for convex optimization. J.

Mach. Learn. Res. 17(1), 2909–2913 (2016)
15. Floudas, C.A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford

University Press, Oxford (1995)
16. Fourer, R., Ma, J., Martin, K.: OSiL: an instance language for optimization. Comput. Optim. Appl.

45(1), 181–203 (2010)
17. Fourer, R., Maheshwari, C., Neumaier, A., Orban, D., Schichl, H.: Convexity and concavity detection

in computational graphs: tree walks for convexity assessment. INFORMS J. Comput. 22(1), 26–43
(2010)

18. Fourer, R., Orban, D.: DrAmpl: a meta solver for optimization problem analysis. Comput. Manag. Sci.
7(4), 437–463 (2010)

19. Gau, C.Y., Schrage, L.E.: Implementation and Testing of a Branch-and-Bound Based Method for
Deterministic Global Optimization: Operations Research Applications, pp. 145–164. Springer, Boston
(2004)

20. Gleixner, A.M., Berthold, T.,Müller, B.,Weltge, S.: Three enhancements for optimization-based bound
tightening. J. Glob. Optim. 67(4), 731–757 (2017)

21. Goldberg, D.: What every computer scientist should know about floating-point arithmetic. ACMCom-
put. Surv. 23(1), 5–48 (1991)

22. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Recent Advances in
Learning and Control, pp. 95–110. Springer (2008)

23. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1. http://
cvxr.com/cvx (2014)

24. Grant, M.C.: Disciplined convex programming. Ph.D. thesis, Stanford University (2004). Accessed
May 2018

25. Grossmann, I.E.: Global Optimization in Engineering Design. Springer, New York (1996)
26. Grossmann, I.E., Kravanja, Z.: Mixed-integer nonlinear programming: a survey of algorithms and

applications. In: Large-scale optimization with applications, pp. 73–100. Springer, New York, NY
(1997)

27. Hart, W.E., Laird, C.D., Watson, J.P., Woodruff, D.L., Hackebeil, G.A., Nicholson, B.L., Siirola, J.D.:
Pyomo-Optimization Modeling in Python, 2nd edn. Springer, Berlin (2017)

28. Hart, W.E., Watson, J.P., Woodruff, D.L.: Pyomo: modeling and solving mathematical programs in
Python. Math. Program. Comput. 3(3), 219–260 (2011)

29. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I, Grundlehren
der mathematischen Wissenschaften, vol. 305. Springer Berlin Heidelberg, Berlin, Heidelberg (1993)

30. Hoad, T.C., Zobel, J.: Methods for identifying versioned and plagiarised documents. J. Assoc. Inf. Sci.
Technol. 54(3), 203–215 (2003)

31. Hooker, J.N.: Integrated Methods for Optimization, International Series in Operations Research &
Management Science, vol. 170. Springer, Boston (2012)

32. Kulisch, U.W.: Complete interval arithmetic and its implementation on the computer. In: Numerical
Validation in Current Hardware Architectures, pp. 7–26. Springer Berlin Heidelberg (2009)

33. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming.
Linear Algebra Appl. 284(1–3), 193–228 (1998)

34. Lougee-Heimer, R.: The common optimization INterface for operations research: promoting open-
source software in the operations research community. IBM J. Res. Dev. 47(1), 57–66 (2003)

35. Mahajan, A., Leyffer, S., Linderoth, J., Luedtke, J., Munson, T.: Minotaur: AMixed-Integer Nonlinear
Optimization Toolkit (2017)

36. Millman, K.J., Aivazis, M.: Python for scientists and engineers. Comput. Sci. Eng. 13(2), 9–12 (2011)
37. Misener, R., Floudas, C.A.: Global optimization of mixed-integer quadratically-constrained quadratic

programs (MIQCQP) through piecewise-linear and edge-concave relaxations. Math. Program. 136(1),
155–182 (2012)

38. Misener, R., Floudas, C.A.: GloMIQO: global mixed-integer quadratic optimizer. J. Glob. Optim.
57(1), 3–50 (2013)

123

http://cvxr.com/cvx
http://cvxr.com/cvx

814 F. Ceccon et al.

39. Misener, R., Floudas, C.A.: A framework for globally optimizing mixed-integer signomial programs.
J. Optim. Theory Appl. 161(3), 905–932 (2014)

40. Misener, R., Floudas, C.A.: ANTIGONE: Algorithms for coNTinuous/Integer Global Optimization of
Nonlinear Equations. J. Glob. Optim. 59(2–3), 503–526 (2014)

41. Mistry, M., Misener, R.: Optimising heat exchanger network synthesis using convexity properties of
the logarithmic mean temperature difference. Comput. Chem. Eng. 94, 1–17 (2016)

42. Mönnigmann,M.: Efficient calculation of bounds on spectra ofHessianmatrices. SIAMJ. Sci. Comput.
30(5), 2340–2357 (2008)

43. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. Society for Industrial and
Applied Mathematics, Philadelphia (2009)

44. Nenov, I.P., Fylstra, D.H., Kolev, L.: Convexity determination in the Microsoft Excel Solver using
automatic differentiation techniques. In: Fourth International Workshop on Automatic Differentiation
(2004)

45. Neun, W., Sturm, T., Vigerske, S.: Supporting global numerical optimization of rational functions
by generic symbolic convexity tests. In: Computer Algebra in Scientific Computing, pp. 205–219.
Springer, Berlin, Heidelberg (2010)

46. Nowak, I., Vigerske, S.: LaGO: a (heuristic) Branch andCut algorithm for nonconvexMINLPs. Central
Eur. J. Oper. Res. 16(2), 127–138 (2008)

47. Schichl, H., Neumaier, A.: Interval analysis on directed acyclic graphs for global optimization. J. Glob.
Optim. 33(4), 541–562 (2005)

48. Stubbs, R.A., Mehrotra, S.: A branch-and-cut method for 0–1 mixed convex programming. Math.
Program. 86(3), 515–532 (1999)

49. Tawarmalani,M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization.Math.
Program. 103(2), 225–249 (2005)

50. Tuy, H.: A General Deterministic Approach to Global Optimization VIA D.C. Programming, vol. 129,
pp. 273–303. North-Holland Mathematics Studies, Amsterdam (1986)

51. Udell, M., Mohan, K., Zeng, D., Hong, J., Diamond, S., Boyd, S.: Convex optimization in Julia.
In: Proceedings of the 1st First Workshop for High Performance Technical Computing in Dynamic
Languages, pp. 18–28. IEEE Press (2014)

52. Van Voorhis, T., Al-Khayyal, F.A.: Difference of convex solution of quadratically constrained opti-
mization problems. Eur. J. Oper. Res. 148(2), 349–362 (2003)

53. Vigerske, S.: (MI)NLPLib 2. Tech. Rep. July (2015)
54. Vigerske, S., Heinz, S., Gleixner, A., Berthold, T.: Analyzing the computational impact of MIQCP

solver components. Numer. Algebra Control Optim. 2(4), 739–748 (2012)
55. Vu, X.H., Schichl, H., Sam-Haroud, D.: Interval propagation and search on directed acyclic graphs for

numerical constraint solving. J. Glob. Optim. 45(4), 499–531 (2009)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	SUSPECT: MINLP special structure detector for Pyomo
	Abstract
	1 Introduction
	2 Background
	2.1 Pyomo expression trees
	2.2 Directed acyclic graphs

	3 Bound tightening and propagation
	4 Special structure detection
	5 Implementation details
	5.1 Data structures
	5.2 Converting Pyomo models to SUSPECT
	5.3 Tree-walking rules: forward and backward visitors
	5.4 Bound tightening and propagation

	6 Extending SUSPECT
	7 Numerical results
	8 Conclusions and future work
	Acknowledgements
	References

