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Abstract Motivated by the growing interest in the smart grid and intelligent energy
management mechanisms we study two classes of domestic energy allocation prob-
lems. In the first case we work with a system that is tasked with scheduling the work
on a number of appliances over a given time window. In the second one a collection
of air conditioning appliances is used to control the temperature of a given domes-
tic environment. Our framework for this case includes a simplified mechanism for
modelling the heat exchange between the interior and the exterior of the given envi-
ronment. We present various polynomial time algorithms and NP-hardness proofs. In
particular the main result of the paper is a proof that although it is NP-hard to schedule
the operation of a single air-conditioning unit, working at various temperature levels
in a variable energy price regime, there is a polynomial time algorithm for controlling
one such device working at a single temperature level, for houses with low thermal
inertia. The algorithm analysis hinges on the properties of a polynomial time variant
of the minimisation version of the knapsack problem which may be of independent
interest.
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1 Introduction

The last ten years have seen the rapid development of the concept of smart grid,
and significant work in the area of demand side load management [10,17]. With the
increasingly large range of (renewable) energy sources and tariffs, optimization in
energy management is more and more important. Koutsopoulos and Tassiulas [15]
studied a type of optimization problem that is typical in this setting: an energy grid
operator receives consumer requests with different power requirements, durations, and
deadlines. The objective of the operator is to devise a scheduling policy that minimizes
the grid operational cost, seen as a convex function of the total load, over a given time
horizon. The authors showed that if power demands can be served preemptively then
the allocation problem can be solved effectively, and if that is not the case then the
problem is NP-hard. Arikiez et al. [3] studied a Micro-Grid scenario that generalizes
Koutsopoulos et al’s model. A set of houses and a set of (renewable) energy generators
is given, fully connected to each other and connected to a national electricity generator
(NEG). Each house has a set of appliances which must be run a certain number of
times in specified time periods (must-use constraints). Additionally some appliances
may be used to control the temperature in (part of) the house (comfort constraints). The
time horizon is finite and subdivided in constant length time intervals. The collection
of such intervals is identified with an initial segment T = {1, 2, . . . , τ } of the set
of positive natural numbers (“0” often refers to a generic moment in time before the
process of interest starts). The system state is only allowed to change, instantaneously,
between successive time intervals. Hence we talk equivalently of “time (steps)” or
“time intervals”. Some of the system settings are described by finite sequences defined
over T . For instance each generator r has an available energy function: Pr (t) indicates
how much electricity this generator can deliver during the t-th time (interval) and we
assume that this stays constant during such interval. Also, a cost function γr,h(t) is
defined for each house-generator pair (h, r) which indicates the unit price at which
house h can buy electricity from generator r at time t . TheNEG is represented by a cost
function λh(t) which indicates the unit price at which any house can buy electricity
from NEG at time t . To avoid trivialities we assume that γr,h(t) < λh(t) for all r, h,

and t .
The main purpose of this paper is to study the complexity of classes of optimization

problems which can be defined within Arikiez’s et al. framework. For this reason, in
the rest of the paper, we restrict to systems formed by a single house, connected to
NEG and to a single generator (hence we drop indices h and r from our notations). In
this setting P1 (equivalent to the non-preemptive case studied by Koutsopoulos and
Tassiulas) is the problem of finding an appliance schedule compatible with a given set
of must-use constraints which minimizes the energy cost for the house, assuming no
temperature controlling appliance is present. After describing a few polynomial time
cases, we show that P1 is actually NP-hard in the strong sense even if a certain amount
of renewable energy is available free of charge. The main contribution of this paper,
though, is the first theoretical analysis of a second, much richer, variant which we call
P2. Here there is no limit on how many times each appliance is run, but the house has
internal temperature constraints and appliances are air-conditioning (AC) units used
to keep the internal temperature within such constraints. In the forthcoming sections
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we investigate the effect of energy cost variability as well as the type and distribution
of the AC units on the problem complexity. If there are many units the problem is
NP-hard, in the variable cost scenario. Therefore the most interesting case is that of an
apartment with a single unit. If the device can operate at many different temperature
states the problem is NP-hard. However if the AC unit only has a single operating
mode then the problem can be solved efficiently. This is simple if the energy cost is
fixed, however, if the cost varies, we found that the existence of an efficient algorithm
solution depends crucially on the house thermal inertia. Our main algorithmic result
on the problem at hand involves the study of the properties of a minimization version
of Knapsack, which may be of independent interest.

Variants of the allocation problem considered here have been studied before [5,9,
13,16]. In fact research in domestic energy management, technologies for the smart
grid, and home automation is thriving with hundreds of papers published every year
and dozens of conferences and journals devoted to these topics. However it seems
that most of the effort concentrated on finding feasible allocation heuristics, while
relatively little [1] attention has been given to the scalability of such heuristics or the
problems complexity. Some of these problems are related to machine scheduling [4]
and bin packing [15]. But the way in which the appliances are used, their arrangement
and different price strategies are specific features of the smart grid setting. Problem P2
is related to the minimum cost resource allocation studied in [7] and the capacitated
covering problems of [6]. However our hardness proofs hold in simpler cases than
those considered in the cited papers, and nobody seems to have considered exact
polynomial time algorithms for non-trivial special cases.

In the next Section we focus on P1. We define the problem and discuss its com-
plexity. In Sect. 3 we work on P2. We start by providing all relevant definitions. Then
we analyze the problem’s complexity first in the case of many appliances (Sect. 3.1)
then looking at single room single appliance systems (Sects. 3.2, 3.3). The main result
of this paper is the design of a polynomial time strategy for the optimization problem
P2 in the case of a single AC unit, with a single operating state, in a poorly isolated
house. In all our complexity results if Π1 and Π2 are two computational problems
then Π1 ≤ Π2 will stand for the statement “Π1 is polynomial time reducible to Π2”
in the sense that there is a polynomial time algorithm translating instances of Π1 into
instances of Π2 that preserve solvability (the reader is referred to [12] for all basic
complexity theoretic definitions and notations).

2 Allocating “must use” appliances

In this section we focus on problem P1. The given house contains n appliances, iden-
tified by the integers 1, . . . , n. The model presented in [3] is quite general but to
simplify our presentation we restrict ourselves mainly to so called uniphase interrupt-
ible appliances: at each time step t each unit i is either “OFF” or it is “ON” and if it is
“ON” it uses an amount of power equal to αi . Each appliance’s state can be changed
freely at any time. Given τ consecutive time steps the goal is to run each appliance
exactly once for a single time step, minimizing the total energy cost for the house. The
problem admits a natural Linear Program formulation. The total amount of electricity
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Fig. 1 Multiphase appliance,
with three phases each running
for four time steps, using power
α1, α2, and α3 respectively

needed at time t is
∑

1≤i≤n αi · xi (t) where, for each i ∈ {1, . . . , n}, xi (t) = 1 (resp.
xi (t) = 0) if appliance i is ON (resp. OFF) at time t . Electricity may come either
from the NEG or from the local renewable power generator. Let G(t) (resp. L(t))
denote the amount of power taken from the generator (resp. from the NEG) at time t .
Problem P1 is then described as follows (bold typeface symbols denote vectors with
τ components, so, for instance, P = (P(1), . . . , P(τ )), etc and notations like “x · y”
have the usual algebraic interpretation):

min λT · L + γ T · G s.t.
1T · xi = 1 ∀i ∈ {1, . . . , n}

G ≤ P
L + G = ∑

1≤i≤n αi · xi
xi ∈ {0, 1}(τ ) ∀i ∈ {1, . . . , n}

where the vector xi describes the state of appliance i at each time step, the first
constraint forces xi (t) to be one at a single point t , the second one forces the required
amount of renewable power not to be larger than the total renewable power available,
the third constraint is an energy balance one, and the last one restricts the range of the
vectors xi .

Note that if the number of appliances is fixed the set of feasible solutions for
instances of P1 can be enumerated in time polynomial in τ . In fact this is true also
if we required each appliance to be used an arbitrary, but fixed, number of times, or
if the appliances had any of the more complex energy usage patterns defined in [3]
(Fig. 1 gives an example of the energy requirements for amultiphase non-interruptible
appliance.) Also, if the system has no renewable power generator then, again, the
allocation is easy as we can simply allocate everything at a time for which λ(t) is
minimal. Conversely, if the number of appliances is large the problem is NP-hard,
even for τ = 2 [1,3]. Here we strengthen such result. Arikiez et al. [3] evaluate the
performances of an exact algorithm for P1 and observe that they degrade rapidly if
n or τ become large. However it is not clear whether a so called pseudo-polynomial
[12, Chapter 4] algorithm may exist that allow P1 to be solved in time polynomial in
the magnitude of the numbers involved in the problem instance (this has proved to be
beneficial in practical contexts [2]). Our next result makes this rather unlikely.

The 3- partition problem is defined as follows (see [12]):

data: a1, . . . , a3m positive integers adding up to mB such that each ai satisfies
B/4 < ai < B/2.

solution: A partition of the given set of numbers into m blocks such that the sum
of the elements in each block is equal to B.

123



Easy knapsacks and the complexity of energy allocation… 1557

It is well-known that 3- partition is NP-hard in the strong sense (see [12, p. 99]) and
this in turns rules out the possibility of a pseudo-polynomial time algorithm for this
problem (unless P=NP). We describe a reduction from 3- partition to the decision
version of P1 that preserves strong NP-hardness. This leads to the following result.

Theorem 1 Problem P1 is NP-hard in the strong sense.

Proof We show that a generic instance of 3- partition can be reduced to the deci-
sion version of P1 with a pseudo polynomial transformation (as defined in [11]). Let
a1, . . . , a3m and B > 0 be an instance of 3- partition. Define an instance of P1
by taking τ = m, and using 3m appliances with αi = ai for each i ∈ {1, . . . , 3m}.
Assume that there is a single renewable power generator. Let γ (t) = 0, and P(t) = B,
for all t ∈ T . Set λ(t) to be some arbitrary fixed positive value.

The transformation preserves strong NP-hardness since the largest numerical value
of the resulting instance is B < 4 · a1. It is easy to see that if there is partition in
m blocks then there is an appliance allocation over τ(= m) time steps that uses all
renewable power available and costs nothing. Conversely, if there is no good partition
then there must be a time step t in which we need more than P(t) energy (and hence
we must pay for it, buying it from NEG). ��

3 Controlled temperature environments

So far we have looked at energy optimisation in a rather isolated environment: a house
connected to several energy sources, has a number of appliances that consume energy
and need to be scheduled in a given time window. In this section we change this in
two ways. First, appliances do not correspond to tasks that must be executed at all
costs. Second, the house sits in an environment that exchange heat with the building.
In this context appliances should be thought of as air conditioning (AC) units used
to control the interior temperature. This second framework is again inspired by the
work in [3] but as in Sect. 2, our goal is to understand the problem features that affect
its complexity and for this reason the model is presented in a somewhat simplified
fashion.

The given house is split into a setS of rooms, each having a thermostat formeasuring
the room temperature. The external environment affects the house in two ways. First,
like before, the house can use the renewable energy generated by a single local micro-
generation plant. Second, the house sits in an environment whose temperature Tout is
known in advance throughout the time window of interest. Each room s ∈ S contains
ns > 0 AC units. Each unit can either be OFF or making a certain contribution to the
temperature of the room it is in. Assume that unit i in room s has a finite set of allowed
temperatures contributions ΔTs,i = {T s,i

1 , . . . , T s,i
ns,i }. Positive (negative) elements of

ΔTs,i correspond to the appliance being used as a heater (resp. cooler). The goal is
to keep each room’s temperature in a predefined comfort interval [T s

min(t), T
s
max (t)]

for all t ∈ T . Following [14], for each room s, we assume that the room temperature
at time t , denoted by Ts(t), is linked to the outside temperature and the room’s units
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behaviour by the equation:

∀t ∈ T Ts(t) = ε · Ts(t − 1) + (1 − ε)(Tout (t) + xs(t)), (1)

where xs(t) is the average of the contributions of all appliances in the room that are
ON at time t and ε ∈ [0, 1] is an inertia factor. A discussion on the validity of (1) is
beyond the scope of this paper (the interested reader is referred to [14]). However it
is instructive to understand how the formula works. The room temperature at time t
is viewed as a linear combination of its temperature at time t − 1 and contributions
from external sources, and that of the air conditioning appliances it contains. The
coefficients of this combination depend on physical properties of the house, like its
volume or the materials it is made of. Note that, if ε = 1, the internal environment
is perfectly isolated from the outside and, in fact, we also have no way to control the
internal temperature. On the other hand, if ε = 0, then there is no isolation and the
system has no memory. At every moment in time the internal temperature is equal to
the external one plus a value dependent on the contribution of the AC units. Therefore,
to avoid trivialities, from now on we further assume that 0 < ε < 1. The problem of
interest admits a natural mixed integer linear programming formulation:

min λT · L + γ T · G s.t.
G ≤ P

L + G = ∑
s∈S

∑ns
i=1

1
ηsi

∑ns,i
j=1 |T s,i

j |ys,ij
xs = 1

ns

∑ns
i=1

∑ns,i
j=1 T

s,i
j ys,ij ∀s ∈ S

∑ns,i
j=1 y

s,i
j ≤ 1 ∀s ∈ S, i ∈ {1, . . . , ns}

ys,ij ∈ {0, 1}(τ ) ∀s ∈ S, i ∈ {1, . . . , ns}, j ∈ {1, . . . , ns,i }
Eε · xs ≥ Ts

min ∀s ∈ S
Eε · xs ≤ Ts

max ∀s ∈ S

where ys,ij (t) is one (resp. zero) if the i th appliance in room s is in state j at time t .

Binary variables ys,ij (t) are use to model the fact that each AC unit can only be in one
of its ns,i states at any given time step. Discrete variables xs(t) model the temperature
change in room s at time t . We are after an assignment to these variables that minimize
the cost of the house appliances and keeps the temperature of room s in the comfort
ranges [T s

min(t), T
s
max (t)] for every t ∈ T and s ∈ S. The first four sets of constraints

model the energy allocation process. The right-hand side of the second one is a vector
describing the total amount of energy used by the house. Here ηsi > 0 is the efficiency

of unit i in room s, thus if the unit contributes T s,i
j in a particular time step, then

|T s,i
j |/ηsi is the amount of power needed by the unit during that step. The last three

sets of constraints restrict the appliance choices at any given time to those that keep the
room temperatures within the prescribed limits. Notice that the recursive contraints
(1) have been solved and the internal temperature variablesTs replaced by their values
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(1 − ε)Fε[Tout + xs] + Tε . Here Eε and Fε are the following τ × τ matrices:

Eε =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ετ−1 0 . . . . . . 0
ετ−1 ετ−2 0 . . . 0

...
...

. . .
. . .

...

ετ−1 ετ−2 . . . ε 0
ετ−1 ετ−2 . . . ε 1.

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Fε =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 . . . 0

ε 1
. . .

...
...

. . .
. . . 0

ετ−1 . . . ε 1

⎞

⎟
⎟
⎟
⎟
⎠

.

Also, the bounds on the products Eε · xs , which, abusing notations, we still call Ts
min

and Ts
max , are, in fact, the only part of this model that depends on the initial internal

temperature, the comfort limits, and the outside temperature. They stand for, respec-
tively

ετ

(
1

1 − ε

(
Ts
min − Ts

ε

) − Fε · Tout

)

and ετ

(
1

1 − ε

(
Ts
max − Ts

ε

) − Fε · Tout

)

with
(ετ )T = (ετ−1, ετ−2, . . . , 1), (2)

and TT
ε = Ts(0) · (ε, ε2, . . . , ετ ).

3.1 Many heathers

We first consider the case of a house containing many AC units. First assume that
they are all part of a single room. Starting from [8], various authors have defined a
natural minimization version of the classicalKnapsack problem. For future reference
denote byMinsack(w,p, M) an instance of such problem involving item weights w,
profits p and knapsack bound M . This is exactly the problem we are interested in here
where items correspond to appliances, and the allocation is over a single time step.
Next, we will show that many single state heaters make P2 NP-hard even if the heaters
are installed in different rooms in a variable energy price regime. In what follows
Partition is the well-known NP-hard [12, Problem SP12] computational problem
defined as follows:

Data: a1, . . . , an positive integers.
Solution: a subset I ⊆ {1, . . . , n} such that

∑
i∈I ai = ∑

i∈{1,...,n}\I ai .

Theorem 2 Partition ≤ P2.

Proof Each instance of Partition is translated into an instance of P2 having τ = 2,
n rooms, each equipped with a single heater having a single “ON” state. Value as
becomes the amount of energy needed by the unit in room s to run in a single time
step. Thus for each s ∈ {1, . . . , n}, T s = ηs ·as (the house and the rooms thermostatic
parameters ε and ηs can be chosen arbitrarily). For each s ∈ {1, . . . , n}we set T s

min(1)
is an arbitrary negative number and choose T s

min(2) in the interval (0, ε T s), Similarly
we choose T s

max (1) > ε T i and T s
max (2) ∈ (T s, (1+ ε) T s). P(1) = P(2) = 1

2

∑
as
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and we assume that renewable energy costs nothing, whereas the energy from the grid
has an arbitrary price λ.

To complete the proof we need to show that if a1, . . . , an is a “YES” instance of
Partition then the resulting instance of P2 can be solved with an allocation that has
zero cost and if a1, . . . , an is a “NO” instance of Partition any solution of P2 will
have a positive cost. This will follow from a key property shared by all solutions to
the instances of P2 under consideration: each solution requires each of the n heaters
to be switched on exactly once. To prove this notice that the temperature constraints
simplify to

Ts
min/T

i ≤
(

ε 0
ε 1

)

· ys ≤ Ts
max/T

i

and the product in the middle, depending on the value y, is equal to
(
0
0

)

,

(
ε

ε

)

,

(
0
1

)

,

or

(
ε

1 + ε

)

. But only the two middle values (corresponding to ys having only one of

the two components equal to one) satisfy the stated inequalities.
Suppose now that the given instance of Partition is a “YES” instance and let I

be one of its solutions. Then scheduling all units in I to run at the same time step will
result in a feasible solution for P2 with cost zero. Conversely if the given instance of
Partition is a “NO” instance then any solution of P2 must have a positive cost. ��

The upshot of the analysis in this section is that P2 does not seem very easy to solve
if the system contains a large number of AC units. In the rest of the paper we will
concentrate on increasingly restricted versions of this problem.

3.2 One heater, a hard case

From now onwe focus on a further restriction, whichwe call PS, obtained by assuming
that the house only contains one room, that there is always enough renewable power,
and that the single AC unit can be used in n different states, all of them providing
a positive temperature contribution. We start our analysis by showing that PS is still
NP-hard if the electricity price varies and n is large. The SubsetSum problem [12,
Problem SP13] is defined as follows:

Data: a1, . . . , an and M positive integers.
Solution: a subset I ⊆ {1, . . . , n} such that

∑
i∈I ai = M .

Theorem 3 SubsetSum ≤ PS.

Here PS denotes the decision version of the energy allocation problem at hand. The
reduction translates each instance ofSubsetSum to an instance of PS involving a single
heater withmany different (positive) temperature contributions. Let a1, a2, . . . , an and
M define an instance of Subset sum. We set τ = n. Furthermore set

– ε = 1
2 min

(
1

τ max{ai } ,
1
M

)
;

– the energy prices γ (t) = ετ−t for all t ∈ T ,
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– the heater temperature contributions Tj = a j/ε
τ− j for all j ∈ {1, . . . , n}, and

η = 1, and
– finally set Tmin(t) = 0 for all t ∈ T \{τ } and Tmin(τ ) = M .

We argue that the SubsetSum instance is a “YES” instance if and only if the instance
of PS admits a solution of cost M . First notice that with these choices we can easily
see that the first τ − 1 temperature constraints are always verified since expressions

∑

1≤i≤t

∑

1≤ j≤n

Tj · y j (i) · ετ−i t ∈ T \{τ }

are non-negative. Denote by 
 the problem’s objective function. The last temperature
constraint actually implies that a “YES” instance of PS must have 
 = M . The next
lemma states a property that can be used to complete the proof of Theorem 3.

Lemma 1 If y is a solution of our reduced problem then for all t ∈ T we have
x(t) = Tt or x(t) = 0.

Proof We will show that for all t ∈ T we have x(t) /∈ {T1, . . . , Tt−1} and then that
x(t) /∈ {Tt+1, . . . , Tτ }. The first step just comes from the fact that if we have a t such
as x(t) = Tl with l < t we would have ετ−t · x(t) = ετ−t · Tl = ετ−t · al/ετ−l =
al/εt−l ≥ al/ε and since ε < 1/M this value is greater than M . So the objective
function would also be greater that M . Now to the second step. Suppose we have
found a solution such that 
 = M and that for some t ∈ {1, . . . , n} we have
x(t) = Tl with l > t . Let A be the set of these t , we decompose 
 in two sums:∑

t /∈A ετ−t · x(t)+∑
t∈A ετ−t · x(t) = M . Note that since we already proved that for

all t ∈ T we have x(t) /∈ {T1, . . . , Tt−1} what we sum in the first sum are either 0s
or at s and the first sum is an integer. Let’s take a closer look at the second sum: for all
t ∈ A we have a lt such that x(t) = Tlt with lt > t by definition, so we have:

∑

t∈A

ετ−t · x(t) =
∑

t∈A

ετ−t · alt
ετ−lt

by the choice of x(t)

≤
∑

t∈A

ε · alt since 0<ε<1 and lt , t are integers with lt > t

≤ |A| · ε · max{a j } by defition of max

≤ τ · ε · max{a j } by defition of A

hence, since ε < 1/τ max{a j }, this sum is less than 1, thus it is not an integer, and
this in turns contradicts the fact that M and the first sum are integers. ��

3.3 Polynomial time algorithms

So far we have discovered that instances of PS involving variable energy costs and
heaters with many temperature levels may be hard to solve. We complete this section
by describing a variant of PS that can be solved in polynomial time. Consider the
following problem:
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min γ T · y s.t.
y ∈ {0, 1}(τ )

Eε · y ≥ Tmin

Algorithm Greedy
Require: Tmin , ε
1: y = 0
2: for t := 1 to τ do
3: i := 0
4: while Tmin(t) >

∑
1≤x≤t y(x) · ετ−x and i < t do

5: y(t − i) := 1
6: increment i
7: end while
8: if i = t and Tmin(t) >

∑
1≤x≤t y(x) · ετ−x then exit /* “no solution” */

9: end if
10: end for
11: return y

If the electricity price is fixed (ie wlog γ = 1), there is a single heater which can
either be “OFF” or in a single “ON” state contributing some value T to the house
temperature, then we claim that Algorithm Greedy can be used to find an optimal
solution for the problemabove in polynomial time. The idea is to solve the τ constraints
Eε · y ≥ Tmin iteratively, one by one. The algorithm while loop has the task of trying
to build a vector y that satisfy the temperature constraints. It is easy to argue (formally
by induction on t) that after the t-th iteration of the main for loop, if we did not enter
the if on line 8, then y(1), . . . , y(t) is a minimal solution of the problem. Note that
the left-hand side of the t-th inequality,

∑
1≤x≤t y(x) · ετ−x , is just y(t) · ετ−t plus

the left-hand side of the t −1-th inequality. Hence if the process reached stage t either∑
1≤x≤t−1 y(x) · ετ−x ≥ Tmin(t), in which case the same assignment will be picked

up in the while loop in stage t or
∑

1≤x≤t−1 y(x) · ετ−x < Tmin(t), in which case a
different assignment will be computed. The new assignment will satisfy all previous
constraints because of the order in which variables y(x) are set (starting from the ones
multiplying the largest monomials ετ−x ).

The analysis so far leaves the variable energy cost case open. While we are not
able to answer this in full in the reminder of this section we present a polynomial time
strategy to solve the problem above provided ε is a positive constant smaller than 1/2.
In what follows we denote this problem as PS( 12 ). The result hinges on a particular
property of the sequence ετ , as defined in (2), and on the computational feasibility of
a class of Knapsack instances involving sequences of this type. The main result of
this section is the following:

Theorem 4 PS( 12 ) can be solved in polynomial time.

Asequence of non-negative real numbersw = (w(1), . . . , w(a)) is left independent
if for all positive integers j ≤ a we have

∑ j−1
i=1 w(i) < w( j). Note that if w is left
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Algorithm EKP
Require: w, p, and M
1: i := a
2: while i > 0 and w(i) ≥ M do decrement i
3: end while
4: if i = 0 then
5: if M > 0 then return argmin1≤ j≤a(p( j))
6: else return ∅
7: end if
8: else
9: S := EKP(wi−1, pi−1, M − w(i))
10: if mini< j≤a(p( j)) <

∑
j∈S p( j) + p(i) then return argmini< j≤a(p( j))

11: else return S ∪ {i}
12: end if
13: end if

independent, then so is any of its prefixes wi = (w(1), . . . , w(i)), for i < a. Also,
it is easy to see that the sequence ετ is left independent, provided ε ∈ (0, 1/2). Left
independent sequences also have another important property.

Lemma 2 Minsack(w,p, M) can be solved in polynomial time, for any profit vector
p and bound M, provided w is left independent.

Proof Algorithm EKP solvesMinsack(w,p, M) in polynomial time ifw is left inde-
pendent. The process returns the empty set if M ≤ 0, otherwise it searches for the
greatest w(i) for i ≤ a lower than M and run recursively on i and M − w(i). It then
compares

∑
j∈S p( j) + p(i) with the lowest p( j) with j > i and return S ∪ {i} if the

former was lower and { j} otherwise.
We prove that EKP works as promised by induction on a. The case a = 1 is

simple: if w(1) ≥ M > 0 we return {1} and if M ≤ 0 we return ∅. Suppose now
the algorithm works for 1, 2,…, a − 1. The first case of the main if doesn’t really
need any comment: if M ≤ 0 then ∅ is the best solution and else we choose the j
minimizing p( j) since all the w( j) work. To show that the algorithm works in the
second case we just have to prove that S ∪ {i} is the smallest solution without a j > i .
It’s quite simple to show: since we have

∑
1≤ j≤i−1 w( j) < w(i) < M if we don’t take

a j > i then we are forced to take i and so we just have to find the minimal solution
forMinsack(wi−1,pi−1, M − w(i)) which is exactly S by induction hypothesis. ��

In what follows if S ⊂ T let χ S ∈ {0, 1}τ be the vector of size τ such that
χS(t) = 1 ⇐⇒ t ∈ S. Also, min S (resp. max S) is the smallest (largest) element
of S and if t1 ≤ t2, then [t1 . . . t2] denotes the set {t1, t1 + 1, . . . , t2}. Finally for any
S ⊂ T let v(S) = ∑

t∈S ετ−t and for any vector p of size τ denote p[S] the expression∑
t∈S p(t).

Lemma 3 Let p be a vector of size τ and S1, S2 ⊂ T .

1. If S1, S2 are disjoint then v(S1 ∪ S2) = v(S1) + v(S2) and p[S1 ∪ S2] = p[S1] +
p[S2].
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2. The function v is injective.
3. v(S1) < v(S2) if and only if there exist t ∈ T \S1 and S ⊂ [1 . . . t − 1] such that

S2 = (S1\[1 . . . t]) ∪ {t} ∪ S.

Proof The first claim is trivial. Suppose S1 �= S2, we will show that v(S1) �= v(S2).
Let t = max S1ΔS2, where S1ΔS2 is the symmetric difference of S1 and S2. Without
loss of generality we may assume that t ∈ S2. Then by the left independence of
ετ we have v(S1 ∩ [1 . . . t]) < ετ−t ≤ v(S2 ∩ [1 . . . t]). This in turns implies that
v(S1 ∩ [1 . . . t]) + v(S1\[1 . . . t]) < v(S2 ∩ [1 . . . t]) + v(S2\[1 . . . t]), also using
S1\[1 . . . t] = S2\[1 . . . t]. The result now follows by the first part of the statement as
v(S1) < v(S2).

We now argue about the final claim. If there exists a t as stated such that S2 =
(S1\[1 . . . t]) ∪ {t} ∪ S then by left independence we have v(S1 ∩ [1 . . . t]) < ετ−t

since t /∈ S1. Therefore:

v(S1) = v(S1 ∩ [1 . . . t]) + v(S1\[1 . . . t]) by the first statement

< ετ−t + v(S1\[1 . . . t])
≤ v(S) + ετ−t + v(S1\[1 . . . t]) for any S ⊂ [1 . . . t − 1]
= v(S2) again by the first statement

Conversely, let t = max S1ΔS2. Then it must be t ∈ S2 since otherwise by definition
of the symmetric difference we would have S1\[1 . . . t] = S2\[1 . . . t] and so, by the
same argument used to prove the other implication, we would have

v(S2) = v(S2 ∩ [1 . . . t]) + v(S2\[1 . . . t]) = v(S2 ∩ [1 . . . t − 1]) + v(S2\[1 . . . t])
< ετ−t + v(S2\[1 . . . t]) = ετ−t + v(S1\[1 . . . t])
< v(S1)

which is not possible by hypothesis. Hence S2 = (S1\[1 . . . t]) ∪ {t} ∪ S with S =
S2 ∩ [1 . . . t − 1] ⊂ [1 . . . t − 1] ��
If M is a positive real number, we call ε-decomposition of M the subset Sε(M) of T
such that:

v(Sε(M)) = min{v(I ) | I ⊂ T and v(I ) ≥ M}.

Thus v(Sε(M)) is the smallest number greater than M which can be written as a sum
of powers of ε� for � ∈ T . Note that Sε(M) can be computed asMinsack(ετ , ετ , M).

We are now ready to complete the proof of Theorem 4. We claim that algorithm
Main takes Tmin , the cost function γ and ε as arguments and returns an optimal
solution to the given instance of PS( 12 ) in time polynomial in τ . The process starts
by creating the ε-decompositions of the numbers Tmin(t) and stores them in the array
Sol (at the same time checking whether the given problem is trivially unfeasible).
The second loop is the main part of the algorithm. In the t th iteration we focus on
Sol[t] (assuming it is not empty). Thanks to the left independence of the rows of Eε ,
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Algorithm Main
Require: Tmin , γ , ε
1: let Sol be an array of sets all initialized to ∅
2: let Aux := ∅
3: for t = 1 to τ do
4: let Sol[t] be the ε-decomposition of Tmin(t)
5: if Sol[t] ∩ [t + 1 . . . τ ] �= ∅ then print “no solution” and exit
6: end if
7: end for
8: for t := 1 to τ do
9: if Sol[t] �= ∅ then
10: Aux := Sol[min Sol[t] − 1] ∪ Sol[t]
11: for k ∈ [min Sol[t]…t]\Sol[t] do
12: if γ [Aux] > γ [Sol[k − 1] ∪ {k} ∪ (Sol[t]\[1 . . . k])] then
13: Aux := Sol[k − 1] ∪ {k} ∪ (Sol[t]\[1 . . . k])
14: end if
15: end for
16: Sol[t] := Aux
17: for j := t + 1 to τ do
18: if v(Sol[ j] ∩ [1 . . . t]) ≤ v(Sol[t]) then Sol[ j] := Sol[ j]\[1 . . . t]
19: end if
20: end for
21: end if
22: end for
23: return Sol[τ ]

instead of searching the minimal combination satisfying the first t constraints among
all the possible combinations, we can concentrate on a set of less than τ possibilities.
Then we update the rest of Sol in order to simplify the search of solutions in the next
iterations.

Note that all the set operations, computations of γ [S], v(S), and Sε(Tmin(t)) can
be done (using algorithm EKP as a subroutine) in time O(τ ); all loops have at most τ
iterations and we have a maximum of two interlocked loops. Hence Algorithm Main
runs in O(τ 3).

Next we argue that Algorithm Main returns a solution if and only if the given
instance I of PS( 12 ) is feasible. This can be seen through the following chain of
equivalences:
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there is a solution

⇐⇒ T is a solution

⇐⇒ ∀t ∈ T Tmin(t) ≤
∑

k∈[1...t]
ετ−k

⇐⇒ ∀t ∈ T v(Sε(Tmin(t))) ≤
∑

k∈[1...t]
ετ−k

(by definition of ε-decomposition)

⇐⇒ Main returns a solution (by left independence),

To complete the proof of the Theorem we need to argue that if S is returned by Main
it is an optimal solution to I. In what follows, given an instance I of PS( 12 ), for
t ∈ T , denote by It the sub-problem of obtained using (Eε)t , the sub-matrix of Eε

formed by the first t rows and columns, and the prefixes (Tmin)t and γ t . Note that I
coincides with Iτ . Also if 1 ≤ k < t and S is such that (Tmin)t ≤ (Eε)t · χ S then
(Tmin)k ≤ (Eε)k · χ S∩[1...k], since, for each j ∈ {1, . . . , k}, only the first j elements
of the j th row of Eε are non-zero.

Assume that we ranMain and that the algorithm returned a solutions. We will show
by induction on t that Sol[t] (seen as a set in [1 . . . t]) is a solution to the sub-problem
of size t . The case t = 1 is obvious. We suppose now that Sol[k] is a solution to the
sub-problem of size k for 1 ≤ k < t and we want to show that Sol[t] is a solution to
the sub-problem of size t .

First show that we have (Tmin)t ≤ (Eε)t · χSol[t]. By construction we have
Sol[t] = Sol[k − 1] ∪ {k} ∪ (Sε(Tmin(t))\[1 . . . k]) for m ≤ k ≤ t with m being
the minimum of Sol[t] at the begining of the t th iteration. Therefore, by induction
hypothesis (Tmin)k−1 ≤ (Eε)k−1 · χSol[k−1] = (Eε)k−1 · χSol[t]∩[1...k−1]. Let’s now
consider k ≤ j < t . We must have v(Sol[ j]) < v(Sε(Tmin(t)) ∩ [m . . . j]) since
otherwise we would have j < m because of the for loop on lines 17–20 in Algo-
rithm Main, which isn’t possible since m ≤ k ≤ j . So, by induction hypothesis,
Tmin( j) ≤ v(Sol[ j]) < v(Sε(Tmin(t)) ∩ [m . . . j]) ≤ v(Sε(Tmin(t)) ∩ [1 . . . j]) <

v(Sol[t]∩[1 . . . j] byLemma3, since k /∈ Sε(Tmin(t)), and this for all j ∈ [k . . . t−1].
Finally by Lemma 3 we also have Tmin(t) ≤ v(Sε(Tmin(t))) ≤ v(Sol[t]).

Now take another feasible solution S ⊂ [1 . . . t]. We will show that γ [Sol[t]] ≤
γ [S]. Since (Tmin)t ≤ (Eε)t · χ S , we also have that v(Sε(Tmin(t))) ≤ v(S) and
so by Lemma 3 there exist j ∈ [1 . . . t]\Sε(Tmin(t)) ∪ min Sε(Tmin(t)) and S′ ∈
[1 . . . j−1] such that S = (Sε(Tmin(t))\[1 . . . j])∪{ j}∪S′ (with j = min Sε(Tmin(t))
in case of equality since v is injective). If j < m then we have S\[1 . . .m − 1] =
Sε(Tmin(t))\[1 . . .m − 1] and so by induction hypothesis we have:

γ [Sol[m − 1]] ≤ γ [S ∩ [1 . . .m − 1]]
γ [Sol[m − 1]] + γ [Sε(Tmin(t))\[1 . . .m − 1]] ≤ γ [S ∩ [1 . . .m − 1]] + γ [S\[1 . . .m − 1]]
γ [Sol[m − 1] ∪ {m} ∪ (Sε(Tmin(t))\[1 . . .m])] ≤ γ [S]

where the last inequality follows from Lemma 3.3 and since m ∈ Sε(Tmin(t)).
This gives γ [Sol[t]] ≤ γ [S] since γ [Sol[t]] ≤ γ [Sol[m − 1]] ∪ {m} ∪
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(Sε(Tmin(t))\[1 . . .m])) by construction.Now if j ≥ m similarlywe have S\[1 . . . j−
1] = { j} ∪ (Sε(Tmin(t))\[1 . . . j]) and so:

γ [Sol[ j − 1]] ≤ γ [S ∩ [1 . . . j − 1]]
γ [Sol[ j − 1]] + γ [{ j} ∪ Sε(Tmin(t))\[1 . . . j]] ≤ γ [S ∩ [1 . . .m − 1]] + γ [S\[1 . . . j − 1]]

γ [Sol[ j − 1] ∪ { j} ∪ (Sε(Tmin(t))\[1 . . . j])] ≤ γ [S],

which gives us again γ [Sol[t]] ≤ γ [S].

4 Conclusion

We studied a number of energy allocation optimization problems which may occur in
domestic buildings. Two broad cases were considered: a “must-use” scenario where a
set of appliances must be scheduled over a given time horizon, and a “comfort-aware”
scenario where the appliances help to satisfy a predefined environment comfort level.
In all cases we were interested in minimal energy cost solutions. Our main goal was to
investigate the computational complexity of the relevant problems and characterize the
border between polynomial-time tractability and NP-hardness. We studied the effect
of the number of appliances on the complexity of problems of the first type, and that
of the type and distribution of the AC units, as well as the energy price and the thermal
properties of the given environment on problems of the second type. The main result
of the paper is a proof that although it is NP-hard to schedule the operation of a single
air-conditioning (AC) unit, working at various temperature levels in a variable energy
price regime, there is a polynomial time algorithm for controlling one such device
working at a single temperature level, for houses with low thermal inertia. The proof
of such result uses the algorithmic properties of a variant of thewell-knownKnapsack
problem.
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