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Abstract We consider the problem of minimizing a smooth convex objective func-
tion subject to the set of minima of another differentiable convex function. In order
to solve this problem, we propose an algorithm which combines the gradient method
with a penalization technique. Moreover, we insert in our algorithm an inertial term,
which is able to take advantage of the history of the iterates. We show weak conver-
gence of the generated sequence of iterates to an optimal solution of the optimization
problem, provided a condition expressed via the Fenchel conjugate of the constraint
function is fulfilled. We also prove convergence for the objective function values to
the optimal objective value. The convergence analysis carried out in this paper relies
on the celebrated Opial Lemma and generalized Fejér monotonicity techniques. We
illustrate the functionality of the method via a numerical experiment addressing image
classification via support vector machines.
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1 Introduction and preliminaries

Let H be a real Hilbert space with the norm and inner product given by ‖ · ‖ and
〈·, ·〉, respectively, and f and g be convex functions acting on H , which we assume
for simplicity to be everywhere defined and (Fréchet) differentiable. The object of our
investigation is the optimization problem

min
x∈argmin g

f (x). (1)

We assume that

S := argmin { f (x) : x ∈ argmin g} �= ∅

and that the gradients ∇ f and ∇g are Lipschitz continuous operators with constants
L f and Lg , respectively.

The work [5] of Attouch and Czarnecki has attracted since its appearance a huge
interest from the research community, since it undertakes a qualitative analysis of
the optimal solutions of (1) from the perspective of a penalty-term based dynamical
system.This represented the starting point for the design anddevelopment of numerical
algorithms for solving the minimization problem (1), several variants of it involving
also nonsmooth data up to monotone inclusions that are related to optimality systems
of constrained optimization problems. We refer the reader to [4–8,10,11,13–15,20–
23,33,35] and the references therein for more insights into this research topic.

A key assumption used in this context in order to guarantee the convergence prop-
erties of the numerical algorithms is the condition

∞∑

n=1

λnβn

[
g∗

(
p

βn

)
− σargmin g

(
p

βn

)]
< +∞ ∀p ∈ ran(Nargmin g),

where {λn}∞n=1 and {βn}∞n=1 are positive sequences, g∗ : H → R ∪ {+∞} is the
Fenchel conjugate of g:

g∗(p) = sup
x∈H

{〈p, x〉 − g(x)} ∀p ∈ H;

σargmin g : H → R ∪ {+∞} is the support function of the set argmin g:

σargmin g(p) = sup
x∈argmin g

〈p, x〉 ∀p ∈ H;

and Nargmin g is the normal cone to the set argmin g, defined by

Nargmin g(x) = {p ∈ H : 〈p, y − x〉 ≤ 0 ∀y ∈ argmin g}

for x ∈ argmin g and Nargmin g(x) = ∅ for x /∈ argmin g. Finally, ran (Nargmin g)

denotes the range of the normal cone Nargmin g , that is, p ∈ ran (Nargmin g) if and
only if there exists x ∈ argmin g such that p ∈ Nargmin g(x). Let us notice that for
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Gradient-type penalty method with inertial effects for... 19

x ∈ argmin g one has p ∈ Nargmin g(x) if and only if σargmin g(p) = 〈p, x〉. We also
assume without loss of generality that min g = 0.

In this paper we propose a numerical algorithm for solving (1) that combines the
gradient method with penalization strategies also by employing inertial and memory
effects. Algorithms of inertial type result from the time discretization of differential
inclusions of second order type (see [1,3]) and were first investigated in the context of
the minimization of a differentiable function by Polyak [36] and Bertsekas [12]. The
resulting iterative schemes share the feature that the next iterate is defined by means
of the last two iterates, a fact which induces the inertial effect in the algorithm. Since
the works [1,3], one can notice an increasing number of research efforts dedicated to
algorithms of inertial type (see [1–3,9,16–19,24–28,30–32,34]).

In this paper we consider the following inertial algorithm for solving (1):

Algorithm 1 Initialization: Choose the positive sequences {λn}∞n=1 and {βn}∞n=1, and
a positive constant parameter α ∈ (0, 1). Take arbitrary x0, x1 ∈ H.

Iterative step: For given current iterates xn−1, xn ∈ H (n ≥ 1), define xn+1 ∈ H by

xn+1 := xn + α(xn − xn−1) − λn∇ f (xn) − λnβn∇g(xn).

We notice that in the above iterative scheme {λn}∞n=1 represents the sequence of
step sizes, {βn}∞n=1 the sequence of penalty parameters, while α controls the influence
of the inertial term.

For every n ≥ 1 we denote by �n := f + βng, which is also a (Fréchet) differen-
tiable function, and notice that ∇�n is Ln := L f + βnLg-Lipschitz continuous.

In case α = 0, Algorithm 1 collapses in the algorithm considered in [35] for solving
(1). We prove weak convergence for the generated iterates to an optimal solution of
(1), bymaking use of generalized Fejér monotonicity techniques and theOpial Lemma
and by imposing the key assumption mentioned above as well as somemild conditions
on the involved parameters. Moreover, the performed analysis allows us also to show
the convergence of the objective function values to the optimal objective value of (1).
As an illustration of the theoretical results, we present in the last section an application
addressing image classification via support vector machines.

2 Convergence analysis

This section is devoted to the asymptotic analysis of Algorithm 1.

Assumption 2 Assume that the following statements hold:

(I) The function f is bounded from below;
(II) There exist positive constants c > 1 and K > 0 such that Ln

2 + α−1
λn

≤
− (c + (1 + α)K ) and βn+1 − βn ≤ Kλn+1βn+1 for all n ≥ 1;

(III) For every p ∈ ran(Nargmin g), we have
∑∞

n=1 λnβn

[
g∗

(
p
βn

)
− σargmin g

(
p
βn

)]

< +∞;
(IV) lim infn→+∞ λnβn > 0,

(
1

λn+1
− 1

λn

)
≤ 2

α
for all n ≥ 1 and

∑∞
n=1 λn = +∞.
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20 R. I. Boţ et al.

We would like to mention that in [21] we proposed a forward-backward-forward
algorithm of penalty-type, endowed with inertial and memory effects, for solving
monotone inclusion problems, which gave rise to a primal-dual iterative scheme for
solving convex optimization problems with complex structures. However, we suc-
ceeded in proving only weak ergodic convergence for the generated iterates, while
with the specific choice of the sequences {λn}∞n=1 and {βn}∞n=1 in Assumption 2 we
will be able to prove weak convergence of the iterates generated in Algorithm 1 to an
optimal solution of (1).

Remark 3 The conditions in Assumption 2 slightly extend the ones considered in
[35] in the noninertial case. The only differences are given by the first inequality
in (II), which here involves the constant α which controls the inertial terms (for the
corresponding condition in [35] one only has to take α = 0), and by the inequality(

1
λn+1

− 1
λn

)
≤ 2

α
for all n ≥ 1.

We refer to Remark 12 for situations where the fulfillment of the conditions in
Assumption 2 is guaranteed.

We start the convergence analysis with three technical results.

Lemma 4 Let x ∈ S and set p := −∇ f (x). We have for all n ≥ 1

ϕn+1 − ϕn − α (ϕn − ϕn−1) + λnβng(xn)

≤ ‖xn+1 − xn‖2 + α‖xn − xn−1‖2

+λnβn

[
g∗

(
2p

βn

)
− σargmin g

(
2p

βn

)]
, (2)

where ϕn := ‖xn − x‖2.
Proof Since x ∈ S, we have according to the first-order optimality conditions that
0 ∈ ∇ f (x) + Nargmin g(x), thus p = −∇ f (x) ∈ Nargmin g(x). Notice that for all
n ≥ 1

∇ f (xn) = yn − xn+1

λn
− βn∇g(xn),

where yn := xn + α(xn − xn−1). This, together with the monotonicity of ∇ f , imply
that

〈
yn − xn+1

λn
− βn∇g(xn) + p, xn − x

〉

= 〈∇ f (xn) − ∇ f (x), xn − x〉 ≥ 0 ∀n ≥ 1, (3)

so

2 〈yn − xn+1, xn − x〉 ≥ 2λnβn〈∇g(xn), xn − x〉 − 2λn〈p, xn − x〉 ∀n ≥ 1. (4)

123



Gradient-type penalty method with inertial effects for... 21

On the other hand, since g is convex and differentiable, we have for all n ≥ 1

0 = g(x) ≥ g(xn) + 〈∇g(xn), x − xn〉,

which means that

2λnβn〈∇g(xn), xn − x〉 ≥ 2λnβng(xn). (5)

As for all n ≥ 1

2〈xn − xn+1, xn − x〉 = ‖xn+1 − xn‖2 + ϕn − ϕn+1

and

2α〈xn − xn−1, xn − x〉 = α‖xn − xn−1‖2 + α (ϕn − ϕn−1) ,

it follows

2〈yn − xn+1, xn − x〉 = 2〈xn − xn+1, xn − x〉 + 2α〈xn − xn−1, xn − x〉
= ‖xn+1 − xn‖2 + α‖xn − xn−1‖2

+ϕn − ϕn+1 + α (ϕn − ϕn−1) . (6)

Combining (4), (5) and (6), we obtain that for each n ≥ 1

ϕn+1 − ϕn − α (ϕn − ϕn−1) + λnβng(xn)

≤ ‖xn+1 − xn‖2 + α‖xn − xn−1‖2 − λnβng(xn)

+ 2λn〈p, xn〉 − 2λn〈p, x〉. (7)

Finally, since x ∈ argmin g, we have that for all n ≥ 1

2λn〈p, xn〉 − λnβng(xn) − 2λn〈p, x〉 = λnβn

[〈
2p

βn
, xn

〉
− g(xn) −

〈
2p

βn
, x

〉]

≤ λnβn

[
g∗

(
2p

βn

)
−

〈
2p

βn
, x

〉]

= λnβn

[
g∗

(
2p

βn

)
− σargmin g

(
2p

βn

)]
,

which completes the proof. ��
Lemma 5 We have for all n ≥ 1

�n+1(xn+1) ≤ �n(xn) + (βn+1 − βn)g(xn+1)

+
[
Ln

2
+ α

2λn
− 1

λn

]
‖xn+1 − xn‖2 + α

2λn
‖xn − xn−1‖2. (8)
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22 R. I. Boţ et al.

Proof From the descent Lemma and the fact that ∇�n is Ln-Lipschitz continuous,
we get that

�n(xn+1) ≤ �n(xn) + 〈∇�n(xn), xn+1 − xn〉 + Ln

2
‖xn+1 − xn‖2 ∀n ≥ 1.

Since ∇�n(xn) = − xn+1−yn
λn

, it holds for all n ≥ 1

f (xn+1) + βng(xn+1) ≤ f (xn) + βng(xn)

−
〈
xn+1 − yn

λn
, xn+1 − xn

〉
+ Ln

2
‖xn+1 − xn‖2

and then

f (xn+1) + βn+1g(xn+1) ≤ f (xn) + βng(xn) + (βn+1 − βn)g(xn+1)

− 1

λn
‖xn+1 − xn‖2 + α

λn
〈xn − xn−1, xn+1 − xn〉

+ Ln

2
‖xn+1 − xn‖2,

which is nothing else than

�n+1(xn+1) ≤ �n(xn) + (βn+1 − βn)g(xn+1) +
[
Ln

2
− 1

λn

]
‖xn+1 − xn‖2

+ α

λn
〈xn − xn−1, xn+1 − xn〉 . (9)

By the Cauchy–Schwarz inequalty it holds that

〈xn − xn−1, xn+1 − xn〉 ≤ 1

2
‖xn−1 − xn‖2 + 1

2
‖xn+1 − xn‖2,

hence, (9) becomes

�n+1(xn+1) ≤ �n(xn) + (βn+1 − βn)g(xn+1) + α

2λn
‖xn−1 − xn‖2

+
[
Ln

2
− 1

λn
+ α

2λn

]
‖xn+1 − xn‖2 ∀n ≥ 1.

For x ∈ S and all n ≥ 1, we set

�n := f (xn) + (1 − Kλn)βng(xn) + Kϕn

= �n(xn) − Kλnβng(xn) + Kϕn,

123
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and, for simplicity, we denote

δn :=
(

1

2λn
+ K

)
α + c.

Lemma 6 Let x ∈ S and set p := −∇ f (x). We have for all n ≥ 2

�n+1 − �n − α(�n − �n−1) ≤ −δn‖xn+1 − xn‖2 + α

(
1

2λn
+ K

)
‖xn − xn−1‖2

+ Kλnβn

[
g∗

(
2p

βn

)
− σargmin g

(
2p

βn

)]

+α (�n−1(xn−1) − �n(xn))

+αK (λnβng(xn) − λn−1βn−1g(xn−1)) . (10)

Proof According to Lemma 5 and Assumption 2(II), (8) becomes for all n ≥ 1

�n+1(xn+1) − �n(xn) − Kλn+1βn+1g(xn+1) ≤ −(K + δn)‖xn+1 − xn‖2
+ α

2λn
‖xn − xn−1‖2. (11)

On the other hand, after multiplying (2) by K , we obtain for all n ≥ 1

Kϕn+1 − Kϕn − α (Kϕn − Kϕn−1) + Kλnβng(xn)

≤ K‖xn+1 − xn‖2 + Kα‖xn − xn−1‖2 + Kλnβn

[
g∗

(
2p

βn

)
− σargmin g

(
2p

βn

)]
.

(12)

After summing up the relations (11) and (12) and adding on both sides of the resulting
inequality the expressions α (�n−1(xn−1) − �n(xn)) and α(Kλnβng(xn) − Kλn−1
βn−1g(xn−1)) for all n ≥ 2, we obtain the required statement. ��
The following proposition will play an essential role in the convergence analysis (see
also [1–3,16]).

Proposition 7 Let {an}∞n=1, {bn}∞n=1 and {cn}∞n=1 be real sequences and α ∈ [0, 1)
be given. Assume that {an}∞n=1 is bounded from below, {bn}∞n=1 is nonnegative and∑∞

n=1 cn < +∞ such that

an+1 − an − α(an − an−1) + bn ≤ cn ∀n ≥ 1.

Then the following statements hold:

(i)
∑∞

n=1[an − an−1]+ < +∞, where [t]+ := max{t, 0};
(ii) {an}∞n=1 converges and

∑∞
n=1 bn < +∞.

The following lemma collects some convergence properties of the sequences involved
in our analysis.
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24 R. I. Boţ et al.

Lemma 8 Let x ∈ S. Then the following statements are true:

(i) The sequence {�n}∞n=1 is bounded from below.
(ii)

∑∞
n=1 ‖xn+1 − xn‖2 < +∞ and limn→+∞ �n exists.

(iii) limn→+∞ ‖xn − x‖ exists and
∑∞

n=1 λnβng(xn) < +∞.
(iv) limn→+∞ �n(xn) exists.
(v) limn→+∞ g(xn) = 0 and every sequential weak cluster point of the sequence

{xn}∞n=1 lies in argmin g.

Proof We set p := −∇ f (x) and recall that g(x) = min g = 0.
(i) Since f is convex and differentiable, it holds for all n ≥ 1

�n = f (xn) + (1 − Kλn)βng(xn) + Kϕn

≥ f (xn) + K‖xn − x‖2

≥ f (x) + 〈∇ f (x), xn − x〉 + K‖xn − x‖2 ≥ f (x) − ‖p‖2
4K

,

whichmeans that {�n}∞n=1 is bounded from below. Notice that the first inequality in the
above relation is a consequence of Assumption 2(II), since 1−α

λn
≥ c+ (1+α)K ≥ K ,

thus λnK ≤ 1 − α ≤ 1 for all n ≥ 1.
(ii) For all n ≥ 2, we may set

μn := �n − α�n−1 + α

(
1

2λn
+ K

)
‖xn − xn−1‖2

and

un := �n−1(xn−1) − �n(xn) + Kλnβng(xn) − Kλn−1βn−1g(xn−1).

We fix a natural number N0 ≥ 2. Then

N0∑

n=2

un = f (x1) + (1 − Kλ1)β1g(x1) − f (xN0) − (1 − KλN0)βN0g(xN0).

Since f is bounded from below and g(xN0) ≥ g(x) = 0, it follows that
∑∞

n=2 un <

+∞.
We notice that−δn+α

(
1

2λn+1
+ K

)
= α

2

(
1

λn+1
− 1

λn

)
−c and, since

(
1

λn+1
− 1

λn

)

≤ 2
α
, we have for all n ≥ 1

− δn + α

(
1

2λn+1
+ K

)
≤ 1 − c. (13)

Thus, according Lemma 6, we get for all n ≥ 2

μn+1 − μn = �n+1 − �n − α(�n − �n−1) + α

(
1

2λn+1
+ K

)
‖xn+1 − xn‖2

−α

(
1

2λn
+ K

)
‖xn − xn−1‖2
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≤ −δn‖xn+1 − xn‖2 + Kλnβn

[
g∗

(
2p

βn

)
− σargmin g

(
2p

βn

)]

+αun + α

(
1

2λn+1
+ K

)
‖xn+1 − xn‖2

≤ (1 − c)‖xn+1 − xn‖2 + Kλnβn

[
g∗

(
2p

βn

)
− σargmin g

(
2p

βn

)]
+ αun .

We fix another natural number N1 ≥ 2 and sum up the last inequality for n =
2, . . . , N1. We obtain

μN1+1 − μ2 ≤ (1 − c)
N1∑

n=2

‖xn+1 − xn‖2

+K
N1∑

n=2

λnβn

[
g∗

(
2p

βn

)
− σargmin g

(
2p

βn

)]

+α

N1∑

n=2

un, (14)

which, by taking into account Assumption 2(III), means that {μn}∞n=2 is bounded from
above by a positive number that we denote by M . Consequently, for all n ≥ 2 we have

�n+1 − α�n ≤ μn+1 ≤ M,

so

�n+1 ≤ α�n + M,

which further implies that

�n ≤ αn−2�2 + M
n−2∑

k=1

αk−1 ≤ αn−2�2 + M

1 − α
∀n ≥ 3.

We have for all n ≥ 2

μn+1 ≥ f (x) − ‖p‖2
4K

− α�n,

hence

− μn+1 ≤ α�n − f (x) + ‖p‖2
4K

≤ αn−1�2 + αM

1 − α
− f (x) + ‖p‖2

4K
. (15)
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26 R. I. Boţ et al.

Consequently, for the arbitrarily chosen natural number N1 ≥ 2, we have [see (14)]

(c − 1)
N1∑

n=2

‖xn+1 − xn‖2 ≤ −μN1+1 + μ2

+K
N1∑

n=2

λnβn

[
g∗

(
2p

βn

)
− σargmin g

(
2p

βn

)]
+α

N1∑

n=2

un,

which together with (15) and the fact that c > 1 implies that

∞∑

n=1

‖xn+1 − xn‖2 < +∞.

On the other hand, due to (13) we have δn+1 ≤ δn + 1 for all n ≥ 1. Consequently,
using also that c > 1, (10) implies that

�n+1 − �n − α(�n − �n−1) ≤ −δn‖xn+1 − xn‖2 + (δn − c)‖xn − xn−1‖2

+Kλnβn

[
g∗

(
2p

βn

)
− σargmin g

(
2p

βn

)]
+ αun

≤ −δn‖xn+1 − xn‖2 + δn−1‖xn − xn−1‖2

+Kλnβn

[
g∗

(
2p

βn

)
− σargmin g

(
2p

βn

)]
+ αun ∀n ≥ 1.

According to Proposition 7 and by taking into account that {�n}∞n=1 is bounded from
below, we obtain that limn→+∞ �n exists.

(iii) By Lemma 4 and Proposition 7, limn→+∞ ϕn exists and
∑∞

n=1 λnβng(xn) <

+∞.
(iv) Since �n(xn) = �n − Kϕn + Kλnβng(xn) for all n ≥ 1, by using (ii) and (iii),

we get that limn→+∞ �n(xn) exists.
(v) Since lim infn→+∞ λnβn > 0, we also obtain that limn→+∞ g(xn) = 0. Let

w be a sequential weak cluster point of {xn}∞n=1 and assume that the subsequence
{xn j }∞j=1 converges weakly to w. Since g is weak lower semicontinuous, we have

g(w) ≤ lim inf
j→+∞ g(xn j ) = lim

n→+∞ g(xn) = 0,

which implies that w ∈ argmin g. This completes the proof. ��
In order to show also the convergence of the sequence ( f (xn))∞n=1, we prove first

the following result.

Lemma 9 Let x ∈ S be given. We have

∞∑

n=1

λn [�n(xn) − f (x)] < +∞.
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Proof Since f is convex and differentiable, we have for all n ≥ 1

f (x) ≥ f (xn) + 〈∇ f (xn), x − xn〉.

Since g is convex and differentiable, we have for all n ≥ 1

0 ≥ βng(xn) + 〈βn∇g(xn), x − xn〉,

which together imply that

f (x) ≥ �n(xn) + 〈∇�n(xn), x − xn〉
= �n(xn) +

〈
yn − xn+1

λn
, x − xn

〉
∀n ≥ 1.

From here we obtain for all n ≥ 1 [see (6)]

2λn [�n(xn) − f (x)] ≤ 2〈yn − xn+1, xn − x〉
= ‖xn+1−xn‖2+ϕn − ϕn+1+α(ϕn − ϕn−1)+α‖xn−xn−1‖2.

Hence, by using the previous lemma, the required result holds. ��
The Opial Lemma that we recall below will play an important role in the proof of

the main result of this paper.

Proposition 10 (Opial Lemma) Let H be a real Hilbert space, C ⊆ H a nonempty
set and {xn}∞n=1 a given sequence such that:

(i) For every z ∈ C, limn→+∞ ‖xn − z‖ exists.
(ii) Every sequential weak cluster point of {xn}∞n=1 lies in C.

Then the sequence {xn}∞n=1 converges weakly to a point in C.

Theorem 11 (i) The sequence {xn}∞n=1 converges weakly to a point in S.
(ii) The sequence ( f (xn))∞n=1 converges to the optimal objective value of the opti-

mization problem (1).

Proof (i) According to Lemma 8, limn→+∞ ‖xn − x‖ exists for all x ∈ S. Let w be a
sequential weak cluster point of {xn}∞n=1. Then there exists a subsequence {xn j }∞j=1 of
{xn}∞n=1 such that xn j converges weakly tow as j → +∞. By Lemma 8, we have that
w ∈ argmin g. This means that in order to come to the conclusion it suffices to show
that f (w) ≤ f (x) for all x ∈ argmin g. From Lemma 9, Lemma 8 and the fact that∑∞

n=1 λn = +∞, it follows that limn→∞[�n(xn) − f (x)] ≤ 0 for all x ∈ S. Thus,

f (w) ≤ lim inf
j→+∞ f (xn j ) ≤ lim

n→+∞ �n(xn) ≤ f (x) ∀x ∈ S,

which shows that w ∈ S. Hence, thanks to Opial Lemma, {xn}∞n=1 converges weakly
to a point in S.

(ii) The statement follows easily from the above considerations. ��
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In the end of this sectionwe present some situationswhereAssumption 2 is verified.

Remark 12 Let α ∈ (0, 1), c ∈ (1,+∞), q ∈ (0, 1) and γ ∈
(
0, 2

Lg

)
be arbitrarily

chosen. We set

K := 2

α
> 0,

βn := γ [L f + 2((1 + α)K + c)]
2 − γ Lg

+ (1 − α)γ Knq ,

and

λn := (1 − α)γ

βn
,

for all n ≥ 1.

(i) Since βn ≥ γ [L f +2((1+α)K+c)]
2−γ Lg

, we have βn(2− γ Lg) ≥ γ [L f + 2((1+α)K +
c)], which implies that Ln

2 + α−1
λn

≤ − (c + (1 + α)K ) for all n ≥ 1.
(ii) For all n ≥ 1 it holds

βn+1 − βn = (1 − α)γ K [(n + 1)q − nq ] ≤ (1 − α)γ K = Kλn+1βn+1.

(iii) It holds lim infn→+∞ λnβn = lim infn→+∞(1 − α)γ > 0.
(iv) For all n ≥ 1 we have

1

λn+1
− 1

λn
= 1

(1 − α)γ
(βn+1 − βn) = K

(
(n + 1)q − nq

) ≤ K = 2

α
.

(v) Since q ∈ (0, 1), we have
∑∞

n=1
1
βn

= +∞, which implies that
∑∞

n=1 λn =
+∞.

(vi) Finally, as g ≤ δargmin g , we have g∗ ≥ (δargmin g)
∗ = σargmin g and this implies

that g∗−σargmin g ≥ 0.We present a situationwhereAssumption 2(III) holds and
refer to [10] for further examples. For instance, if g(x) ≥ a

2 dist
2(x, argmin g)

where a > 0, then g∗(x) − σargmin g(x) ≤ 1
2a ‖x‖2 for every x ∈ H . Thus, for

p ∈ ran(Nargmin g), we have

λnβn

[
g∗

(
p

βn

)
− σargmin g

(
p

βn

)]
≤ λn

2aβn
‖p‖2.

Hence
∑∞

n=1 λnβn

[
g∗

(
p
βn

)
− σargmin g

(
p
βn

)]
converges, if

∑∞
n=1

λn
βn

con-

verges or, equivalently, if
∑∞

n=1
1
β2
n
converges. This holds for the above choices

of {βn}∞n=1 and {λn}∞n=1 when q ∈ ( 1
2 , 1

)
.
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3 Numerical example: image classification via support vector machines

In this section we employ the algorithm proposed in this paper in the context of image
classification via support vector machines.

Having a set of training data ai ∈ R
n, i = 1, . . . , k, belonging to one of two given

classes denoted by “−1” and “+1”, the aim is to construct by using this information
a decision function given in the form of a separating hyperplane, which assigns every
new data to one of the two classes with a misclassification rate as low as possible. In
order to be able to handle the situation when a full separation is not possible, we make
use of non-negative slack variables ξi ≥ 0, i = 1, . . . , k; thus the goal will be to find
(s, r, ξ) ∈ R

n × R × R
k+ as optimal solution of the following optimization problem

minimize 1
2‖s‖2 + C

2 ‖ξ‖2
subject to di (a�

i s + r) ≥ 1 − ξi , ∀i = 1, . . . , k
ξi ≥ 0, ∀i = 1, . . . , k,

where for i = 1, . . . , k, di is equal to−1 if ai belongs to the class “−1” and it is equal
to +1, otherwise. Each new data a ∈ R

n will by assigned to one of the two classes by
means of the resulting decision function z(a) = a�s + r , namely, a will be assigned
to the class “−1”, if z(a) < 0, and to the class “+1”, otherwise. For more theoretical
insights in support vector machines we refer the reader to [29].

By making use of the matrix

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1a�
1 d1 1 0 · · · 0

d2a�
2 d2 0 1 · · · 0

...
...

...
...

. . .
...

dka�
k dk 0 0 · · · 1

0�
Rn 0 1 0 · · · 0

0�
Rn 0 0 1 · · · 0
...

...
...

...
. . .

...

0�
Rn 0 0 0 · · · 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
2k×(n+1+k)

the problem under investigation can be written as

minimize 1
2‖s‖2 + C

2 ‖ξ‖2

subject to A

⎛

⎝
s
r
ξ

⎞

⎠ −
(

1Rk

0Rk

)
∈ R

2k+

or, equivalently,

minimize 1
2‖s‖2 + C

2 ‖ξ‖2

subject to

⎛

⎝
s
r
ξ

⎞

⎠ ∈ argmin 1
2dist

2
(

A(·) −
(

1Rk

0Rk

)
,R2k+

)
.
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Fig. 1 A sample of images
belonging to the classes −1 and
+1, respectively

Fig. 2 A sample of
misclassified images

By considering f : Rn × R × R
k → R as f

⎛

⎝
s
r
ξ

⎞

⎠ := 1
2‖s‖2 + C

2 ‖ξ‖2, we have

∇ f

⎛

⎝
s
r
ξ

⎞

⎠ =
⎛

⎝
s
0
Cξ

⎞

⎠ and notice that ∇ f is max{1,C}-Lipschitz continuous.

Further, for g

⎛

⎝
s
r
ξ

⎞

⎠ := 1
2dist

2

⎛

⎝A

⎛

⎝
s
r
ξ

⎞

⎠ −
(

1Rk

0Rk

)
,R2k+

⎞

⎠, we have ∇g

⎛

⎝
s
r
ξ

⎞

⎠ =

A�
(
I − proj

R
2k+

)
⎛

⎝A

⎛

⎝
s
r
ξ

⎞

⎠ −
(

1Rk

0Rk

)⎞

⎠ and notice that ∇g is ‖A‖2-Lipschitz con-

tinuous, where proj
R
2k+ denotes the projection operator on the set R2k+ .

For the numerical experimentsweused a data set consisting of 6.000 training images
and 2.060 test images of size 28× 28 taken from the website http://www.cs.nyu.edu/
~roweis/data.html representing the handwritten digits 2 and 7, labeled by −1 and +1,
respectively (see Fig. 1). We evaluated the quality of the resulting decision function
on test data set by computing the percentage of misclassified images.

We denote by D = {(Xi ,Yi ), i = 1, . . . , 6.000} ⊂ R
784 × {−1,+1} the set of

available training data consisting of 3.000 images in the class −1 and 3.000 images in
the class+1.Due to numerical reasons each imagehas beenvectorized andnormalized.
We tested in MATLAB different combinations of parameters chosen as in Remark 12
by running the algorithm for 3.000 iterations. A sample of misclassified images is
shown in Fig. 2.

In Table 1 we present the misclassification rate in percentage for different choices
for the parameters α ∈ (0, 1) (we recall that in this case we take K := 2/α) and
C > 0, while for α = 0 which corresponds to the noninertial version of the algorithm
we consider different choices of the parameter K > 0 and C > 0. We observe that
when combining α = 0.1 with each regularization parameters C = 5, 10, 100 leads
to the lowest misclassification rate with 2.1845%.

In Table 2 we present the misclassification rate in percentage for different choices
of the parameters C > 0 and c > 1. The lowest classification rate of 2.1845% is
obtained for each regularization parameter C = 5, 10, 100.
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Table 1 Misclassification rate in percentage for different choices for the parameters α and C when c = 2
and q = 0.9

α C = 0.1 C = 1 C = 2 C = 5 C = 10 C = 100

0.1 2.2330 2.2330 2.2330 2.1845 2.1845 2.1845

0.3 2.2330 2.2816 2.2816 2.2816 2.2816 2.2816

0.5 2.2330 2.2330 2.2330 2.2816 2.2816 2.3301

0.7 2.3786 2.3786 2.3786 2.3786 2.3786 2.3786

0.9 2.9126 2.9126 2.9126 2.9126 2.8641 2.8155

0 (K = 0.1) 3.1068 3.0583 3.0583 2.9612 2.9612 2.7184

0 (K = 1) 2.2816 2.2330 2.2330 2.2330 2.2330 2.2330

0 (K = 10) 2.2816 2.2330 2.2330 2.2330 2.2330 2.2330

0 (K = 100) 2.2330 2.2330 2.2330 2.2330 2.2330 2.2330

0 (K = 1000) 2.2330 2.2330 2.2330 2.2330 2.2330 2.2330

Table 2 Misclassification rate
in percentage for different
choices for the parameters C and
c > 1 when α = 0.1 and
q = 0.9

C c = 1.1 c = 2 c = 5 c = 10 c = 100

0.1 2.2330 2.2330 2.2330 2.2330 2.2330

1 2.2330 2.2330 2.2330 2.2330 2.2330

2 2.2330 2.2330 2.2330 2.2330 2.2330

5 2.1845 2.1845 2.1845 2.1845 2.1845

10 2.1845 2.1845 2.1845 2.1845 2.1845

100 2.1845 2.1845 2.1845 2.1845 2.1845

Table 3 Misclassification rate
in percentage for different
choices for the parameters C and
q ∈ (1/2, 1) when α = 0.1 and
c = 2

C q = 0.6 q = 0.75 q = 0.9

0.1 2.2816 2.3301 2.2330

1 2.2330 2.2816 2.2330

2 2.2816 2.2816 2.2330

5 2.2330 2.2816 2.1845

10 2.2330 2.2816 2.1845

100 2.2330 2.2330 2.1845

Finally, Table 3 shows the misclassification rate in percentage for different choices
for the parameters C > 0 and q ∈ (1/2, 1). The lowest classification rate of 2.1845%
is obtained when combining the value q = 0.9 with each regularization parameter
C = 5, 10, 100.
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10. Banert, S., Boţ, R.I.: Backward penalty schemes for monotone inclusion problems. J. Optim. Theory
Appl. 166(3), 930–948 (2015)

11. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces.
CMS Books in Mathematics. Springer, New York (2011)

12. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Cambridge (1999)
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