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Abstract Differential Evolution (DE) has shown to be a promising global optimi-
sation solver for continuous problems, even for those with a large dimensionality.
Different previous works have studied the effects that a population initialisation strat-
egy has on the performance of DE when solving large scale continuous problems,
and several contradictions have appeared with respect to the benefits that a particu-
lar initialisation scheme might provide. Some works have claimed that by applying
a particular approach to a given problem, the performance of DE is going to be bet-
ter than using others. In other cases however, researchers have stated that the overall
performance of DE is not going to be affected by the use of a particular initialisation
method. In this work, we study a wide range of well-known initialisation techniques for
DE. Taking into account the best and worst results, statistically significant differences
among considered initialisation strategies appeared. Thus, with the aim of increasing
the probability of appearance of high-quality results and/or reducing the probability
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of appearance of low-quality ones, a suitable initialisation strategy, which depends on
the large scale problem being solved, should be selected.

Keywords Differential evolution - Initialisation strategies - Large scale continuous
optimisation

1 Introduction

Differential Evolution (DE) is one of the most widely used meta-heuristics to deal with
continuous optimisation problems [17]. Due to its simplicity and efficiency, it has not
only been applied to benchmark problems, but also to a wide range of real-world appli-
cations regarding electrical and power systems, robotics, and bio-informatics, among
others [2]. Moreover, DE and its variants have usually been one of the best perform-
ing approaches in different contests, such as the competition on Large Scale Global
Optimisation (LSGO) organised in different editions of the Congress on Evolutionary
Computation (CEC) [10].

Regarding large scale problems, i.e., problems with a large dimensionality, typi-
cally more than 100 decision variables [6], a significant number of works have tried
to modify different aspects of DE for searching the vast decision space in a more
efficient way [2]. For instance, in [12], a novel proposal that groups dependent deci-
sion variables in different sets was combined with DE, being the latter responsible for
optimising each set of variables separately. Another work proposed a linearly scalable
exponential crossover operator that provided promising results considering a recent set
of scalable benchmarks [19]. Recently, two novel schemes that improve the trial vector
generation strategy of DE were proposed, which showed to increase the performance
of that algorithm when dealing with large scale problems [13]. Finally, the analysis of
different strategies for initialising the population of DE with the aim of improving its
performance with large scale optimisation problems has gained a noticeable popularity
in recent years [5, 18].

Some controversies have arisen concerning the benefits that a particular initial-
isation strategy, applied together with DE, might provide when solving large scale
problems [5]. The common belief is that some initialisation strategies can improve the
performance of DE for solving problems with a high dimensionality. For instance, the
main conclusion given in [6] is that, in opposition to the application of basic random
number generators as initialisation strategies, other more advanced methods should be
considered in order to increase the performance of DE when dealing with large scale
problems, with the most suitable initialiser depending on the problem at hand. In a
more recent work [5] however, authors claimed that the initialisation approach does
not significantly affect the performance of DE. In that paper, the behaviour of several
advanced initialisation methods with different features was analysed when dealing
with a set of large scale problems. Those initialisation strategies were combined with
the best performing configuration found for one of the most widely used DE variants.
Although a few differences among initialisation techniques appeared in some cases
when functions were analysed separately, all initialisation approaches performed in a
statistically similar fashion taking into account the test suite as a whole.
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In the current work, we try to shed some light on the above, by performing a novel
study which consists of analysing the behaviour of a wide range of initialisation strate-
gies in the overall, best, and worst cases. Those initialisation mechanisms are applied
with the aforementioned best parameterisation of DE to the same set of large scale
problems considered in [5]. We show that initialisation strategies present a consider-
ably larger number of statistically significant differences for the best and worst cases in
comparison to the overall case, and therefore, a proper mechanism should be selected
with the aim of increasing the probability of appearance of high-quality results and/or
reducing the probability of appearance of low-quality ones, especially in cases where
a high number of executions is not feasible.

The rest of this paper is organised as follows. DE and the particular variant applied
herein are described in Sect. 2. Section 3 is focused on introducing the initialisation
strategies considered for our study. Afterwards, in Sect. 4, the different experiments
conducted are exposed, together with their discussion. Finally, some conclusions and
lines of future work are shared in Sect. 5.

2 Differential evolution

DE is a stochastic direct search method especially suited for continuous global opti-
misation [17]. In DE, the decision variables of a given problem are defined by a vector
X = [x1,x2, ..., Xi, ..., Xp], being D the number of decision variables or the dimen-
sionality of the problem, and every x;—1 .. p areal number. As we previously mentioned,
the term large scale problems is used to refer to those optimisation problems with a
large dimensionality, typically D > 100. The quality of each vector X is given by
the objective function f(X)(f : 2 € RP? — R). The goal of the global optimi-
sation, considering a minimisation problem, is thus to find a vector X% € 2 where
f(X#%) < f(X) holds for all X € £2. In the particular case of box-constrained contin-
uous optimisation problems, the feasible region §2 is defined by particular values for
the lower (a;) and upper (b;) bounds of each variable, i.e., 2 = ]_[l-';l [a;, bi].
Taking into account the most widely used nomenclature for DE [17], i.e., DE/x/y/z,
where x is the vector to be mutated, y defines the number of difference vectors used, and
z indicates the crossover scheme, in this work we applied the approach DE/rand/1/bin.
We selected this variant due to its simplicity and popularity. The operation of this
DE variant is as follows. First of all, a population P = [X1,Xs,..., X, ..., Xyp]
with N P individuals, also called vectors in the field of DE, is initialised by using a
particular strategy. Each individual comprises D decision variables. The value of the
decision variable i belonging to the individual X; is denoted by x; ;. Then, successive
iterations are evolved by executing the following steps. For each vector X; in the
current population, called target vector, a new mutant vector V ; is created using a
mutant vector generation strategy. Several mutant vector generation strategies have
been devised [2]. In our case, we applied the rand/1 scheme, which is probably the
most popular one. The mutant vector V; for target vector X; is thus created as shown
in Eq. 1, where r1, 2, and r3 are mutually exclusive integers chosen at random from
the range [1, N P]. Furthermore, they are all different from the index j. The mutation
scale factor F allows the exploration and exploitation abilities of DE to be balanced.
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Vj = Xr3 + F x (Xr| _sz) @))

After applying the mutant vector generation strategy, the mutant vector is combined
with the target vector to generate the frial vector U through a crossover operator. The
combination of the mutant vector generation strategy and the crossover operator is
usually referred to as the trial vector generation strategy. The most commonly applied
operator for combining the target and mutant vectors—and the one considered in this
paper—is the binomial crossover (bin). The crossover operation is controlled by means
of the crossover rate C R. The binomial crossover generates a trial vector as shown in
Eq. 2. A uniformly distributed random number in the range [0, 1] is given by rand ;,
andiyqng € [1, 2, ..., D]is anindex selected in a random way that ensures that at least
one variable is propagated from the mutant vector to the trial one. For the remaining
cases, the probability of the variable being inherited from the mutant vector is CR.
Otherwise, the variable of the target vector is taken into consideration.

@)

I X if (randj; < CRori = irana)
I Xji otherwise

The trial vector generation strategy, as described above, might generate vectors
outside the feasible region 2. One of the most widely used schemes is based on
randomly reinitialising the infeasible values in their corresponding feasible ranges,
and it is the one applied herein. Finally, after generating N P trial vectors, each one is
compared against its corresponding target vector. For each pair, the one that minimises
the objective function is selected to survive. In case of a tie, in our implementation the
trial vector survives.

3 Initialisation strategies for differential evolution

A wide range of initialisation strategies have been proposed in order to improve the
results obtained by DE [2,5,18]. In the current work, we compared the same set of
initialisation strategies considered in [5], which are introduced herein.

Pseudo-Random Number Generators (PRNGs) and Chaotic Number Generators
(CNGs) are one of the most frequently used approaches for initialising a population
of individuals [11,15]. In the case of PRNGs, one of the most popular methods is
Mersenne Twister (MT) [9], which is included as a typical PRNG on a large number
of programming languages. Particularly, we used the variant that provides a period of
219937 and 623-dimensional equidistribution with 32-bit accuracy. Regarding CNGs, we
considered Tent Map (TM) [3]. This approach produces a chaotic sequence of numbers
uniformly distributed in the range [0, 1], and has shown some benefits, like a higher
iterative speed, with respect to other CNGs, such as Logistic Map [3].

The aforementioned types of schemes take into account both randomness and uni-
formity to generate the initial population. There exist other kinds of schemes however,
that only consider uniformity, and therefore, are usually deterministic. From among
those strategies, we applied the methods Sobol Set (SS) [1] and Good Lattice Points
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(GLP) [16], which are able to provide a set of points well distributed in the decision
space.

Finally, Opposition-based Learning (OBL) mechanisms as initialisation methods
for DE have gained a significant popularity in recent years [18]. Instead of considering
randomness and/or uniformity, OBL generates an initial population and calculates the
opposite one with the aim of selecting the fittest individuals from both populations as
the starting set. There are different variants of OBL schemes [18]. In addition to the
approaches considered in [5], i.e., OBL and Quasi-Opposition-based Learning (QOBL),
we also applied Quasi-Reflection Opposition-based Learning (QROBL) herein, since a
recent work [4] stated that the quasi-reflected opposition individual is more likely to
be closer to the optimal solution than the opposition and quasi-opposition individuals.

4 Experimental evaluation

This section is devoted to describe the experiments conducted with the version of DE
introduced in Sect. 2 integrated with the different initialisation strategies depicted in
Sect. 3.

Experimental method

The approach DE/rand/1/bin, as well as the initialisation strategies considered, were
implemented by using the Meta-heuristic-based Extensible Tool for Cooperative Opti-
misation (METCO) [7]. Tests were run on Teide High Performance Computing facilities,
which are composed of 1100 Fujitsu® computer servers, with a total of 17800 com-
puting cores and 36 TB of memory. Since all experiments used stochastic algorithms,
each execution was repeated numRep = 3 x 103 times, with the aim of comparing
the different initialisation strategies with enough statistical confidence. With respect
to the former, comparisons were carried out by applying the following statistical anal-
ysis [14]. First, a Shapiro-Wilk test was performed to check whether the values of the
results followed a normal (Gaussian) distribution or not. If so, the Levene test checked
for the homogeneity of the variances. If the samples had equal variance, an ANOVA
test was done. Otherwise, a Welch test was performed. For non-Gaussian distribu-
tions, the non-parametric Kruskal-Wallis test was used. For all tests, a significance
level « = 0.05 was considered.

Problem set

Experiments were carried out using a set of scalable continuous optimisation problems
proposed in CEC’ 13 for its LSGO competition [8]. It is important to remark that this set
of functions is the latest benchmark suite provided for large scale global optimisation
in the field of the CEC. Consequently, it was also considered for the LSGO competi-
tion organised during CEC’15.! The set is composed of 15 functions (f1—f15) with
different features: fully-separable functions (category 1: f1—f3), partially additively
separable functions (category 2: f4—f11), overlapping functions (category 3: fi2—f14),
and a non-separable function (category 4: fis5). Following the indications given for

I We should note that, although special sessions on LSGO were proposed for CEC’14 and CEC’16, the
corresponding competitions were not organised.
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Table 1 Different parameterisations of the scheme DE/rand/1/bin

Parameter Value Parameter Value
Stopping criterion 3 x 10 evals. Mutation scale factor (F') 0.5
Population size (N P) 150 individuals Crossover rate (CR) 0.9
Initialisation strategies MT, TM, GLP, SS, Decision variables (D) 1000
OBL, QOBL, QROBL Decision variables (f13, f14) 905

the different editions of the LSGO competition, in the current work, the number of
decision variables D was fixed to 1000 for all the aforementioned functions, with the
exception of problems fi3 and f14, where D was fixed to 905 decision variables due
to overlapping subcomponents.

Parameters

The experiments conducted applied a common parameterisation for different config-
urations of the scheme DE/rand/1/bin, which can be observed in Table 1. The only
difference among configurations resides on the initialisation strategy used. In pre-
vious work [5], a configuration of the scheme DE/rand/1/bin using those parameter
values, from among a candidate pool with more than 80 different configurations of
that approach, was able to provide the best overall results for problems fi—fis with
1000 decision variables. That is the reason why we have selected those values for
the parameters N P, F, and CR. Finally, rules of the LSGO competition indicate that
the stopping criterion has to be fixed to a maximum number of 3 x 10° function
evaluations. In order to perform the analyses, DE was applied with each considered
initialisation strategy to each of the 15 benchmark problems, thus giving a total num-
ber of 3.15 x 103 runs. Following the recommendations given in [5,10], Eq. 3 was
applied to assign a seed s(i) to the i-th run of every DE configuration, regardless of
the initialisation method.

s(i)=1i Vie{l,2,...,numRep} 3)

Table 2 shows rankings of the considered initialisation strategies when the best
300 and the worst 300 executions, i.e., those with the lowest and highest values of
the objective function at the end of the runs, respectively, are taken into account.
Results regarding all the executions are also shown. In order to calculate rankings
the following steps were performed. First, the number of approaches that a particular
strategy statistically outperformed (1), as well as the number of times that it was
statistically outperformed (| ) by the remaining schemes, considering all problems,
were calculated by applying the statistical procedure explained at the beginning of
the current section. Approach A statistically outperforms scheme B if there exist
statistically significant differences between them, i.e., if the p-value is lower than
o = 0.05, and if at the same time, A provides a lower mean and median of the
objective value than B, since we are dealing with minimisation problems. Afterwards,
the score assigned to a strategy is given by the difference between the number of
schemes it was able to beat and the number of schemes that were able to beat it.
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Table 2 Ranking of initialisation strategies considering the best 300 and the worst 300 executions for
problems f1—f15

Set Best 300 Worst 300 All
Strategy 1 J Score  Rank 1 J Score  Rank 1 4 Score  Rank

OBL 26 8 18 1 26 7 19 1 13 1 12 1
MT 21 9 12 2 17 17 0 2 13 3 10 2
™ 16 14 2 3 18 20 -2 3 12 13 -1 3
QOBL 14 16 -2 4 13 19 -6 5 5 11 -6 5
QROBL 11 20 -9 5 16 20 —4 4 7 10 =3 4
GLP 14 23 -9 5 20 27 -7 6 6 9 3 4
SS 15 27 =12 6 18 18 0 2 5 14 -9 6

Results are also shown considering all executions

Finally, a ranking is established by sorting strategies in descending order taking into
account the scores assigned.

If we consider the whole set of executions, the best performing overall approach was
OBL, although followed by MT with a similar score. In this case, it can be observed that
scores assigned to both aforementioned approaches were lower than those assigned to
the first-ranked scheme in the best and worst cases. This means that, if all executions are
taken into account, the number of differences among initialisation strategies (122 cases
out of 630) significantly decreases in comparison to the number of differences that
appears regarding the best (234 cases) and the worst results (256 cases). Furthermore,
since two methods obtained similar scores, no initialisation strategy was able to provide
a clear advantage with respect to the remaining ones when considering the set of
problems as a whole. As a result, it might seem that the initialisation technique does
not affect the overall performance of DE when solving large scale problems. The above
agrees with the conclusions given in [5].

Nevertheless, it can be observed that OBL was the best performing initialisation
strategy in cases when the best and the worst 300 executions were analysed, since it
obtained significantly better scores than the remaining approaches. The method OBL
was statistically better in a larger number of cases than the remaining strategies, while
it was statistically worse in a lower number of cases when compared to the remaining
schemes. By the application of OBL as an initialisation technique, we therefore might
increase/reduce the probability of appearance of high-quality/low-quality executions
when using DE for solving large scale continuous optimisation problems. A more in-
depth analysis of this method however, should be carried out for each problem, with
the aim of providing more evidence of its advantages and drawbacks.

4.1 Analysis of the scheme OBL considering all the results
This section focuses on comparing the approach OBL with respect to the remaining

strategies when considering all the executions. Table 3 shows, for each problem, the
p-values obtained from the statistical comparison between the scheme OBL and the
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Table 3 Statistical comparison between OBL and the remaining strategies considering problems f1—fi5
and all executions

o

f Init. p-value Dif. f Init. p-value  Dif. f Init. p-value

fi  MmT 1.84e-02 * fr  MT 8.58e-01 f3  MT 6.08e-01
GLP 8.20e-02 <« GLP 4.25e-01 GLP 5.11e-01
SS 6.89¢-02 <« SS 5.96e-15 SS 9.45e-01
™ 4.56e-02 * ™ 2.34e-02 ™ 4.50e-01

QROBL  1.13e-01
QOBL  2.55e-01
fa MT 8.73e-01
GLP 3.85e-01
SS 6.16e-01
™ 9.54e-01
QROBL  2.83e-01
QOBL  6.38e-01
f7 MT 8.27e-01
GLP 4.67e-01
SS 4.33e-01
™ 3.28e-01
QROBL  2.70e-01
QOBL 1.58e-01

QROBL 1.91e-76
QOBL  3.78e-76
fs MT 5.16e-01
GLP 5.89e-01
SS 2.09e-01
™ 3.71e-01
QROBL  9.49e-01
QOBL  9.75e-01
fs MT 2.13e-01
GLP 2.55e-01
SS 9.22e-01
™ 8.62e-01
QROBL  5.55e-01
QOBL 5.20e-01

QROBL  1.23e-01
QOBL  8.03e-01
fe MT 3.59¢-01
GLP 4.28e-01
SS 4.49¢-01
™ 3.37e-01
QROBL  6.17e-01
QOBL  3.51e-01
fo MT 5.46e-01
GLP 3.61e-01
SS 9.57e-01
™ 5.30e-01
QROBL 2.81e-01
QOBL 6.64e-01

flo MT 8.16e-01 fi1 MT 1.51e-01 fl2 MT 7.07e-01
GLP 3.25e-01 GLP 3.67e-01 GLP 2.92e-07
SS 4.90e-01 SS 9.14e-01 SS 4.68e-08

™ 0.00e+00
QROBL  7.30e-01
QOBL 9.15e-01

™ 5.36e-01
QROBL  9.19e¢-01
QOBL 1.14e-01

™ 7.03e-01
QROBL  4.03e-07
QOBL 1.10e-03

f13  MT 9.96e-01 f1a  MT 3.74e-01 f15 MT 2.33e-01
GLP 2.62e-01 GLP 4.73e-01 GLP 0.00e+00
SS 3.25e-01 SS 4.25e-01 SS 1.26e-214

™ 8.02e-01
QROBL  2.87e-01
QOBL 7.31e-01

™ 4.48e-01
QROBL  5.80e-01
QOBL  4.87e-01

™ 0.00e+00
QROBL  1.58e-12
QOBL 9.05e-08

A A R T 2 2 T A A A A S A O

A A A O A A A A A R A A A
I A e A A S A A A A N A 2 2

Data in boldface show those cases where OBL statistically outperformed other initialisation strategy, i.e.,
where an 4 is also shown in columns called “Dif”

remaining approaches. It also shows cases for which OBL was able to statistically
outperform other strategy (1), cases where other strategy outperformed OBL ({,), and
cases where statistically significant differences between OBL and the corresponding
method did not arise (<>). Finally, in cases where statistically significant differences
between OBL and the corresponding scheme appeared, but one approach obtained the
lowest mean, while the other one provided the lowest median, an ‘*’ is shown. It
can be observed that in 10 out of 15 problems, no statistically significant differences
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appeared between OBL and the remaining initialisation strategies. This confirms our
previous statement concerning the lack of differences between initialisation methods
when the overall results are considered. Generally speaking, there was no strategy that
clearly provided better results than the remaining ones regardless of the addressed
problem. Despite that, some differences arose in some cases. OBL was better than sev-
eral approaches when solving functions f2, f10, f12, and fis, with each one belonging
to a different category. For instance, in the case of the non-separable function fjs, OBL
showed a clear superiority together with MT. Only in the case of function f, OBL was
statistically worse than another scheme (TM).

4.2 Analysis of the scheme OBL considering the best results

This section is devoted to compare the initialisation scheme OBL in regard to the
remaining approaches when the best 300 executions are considered. Results of this
analysis are shown in Table 4.

It is important to remark that, taking into account the best 300 executions, differ-
ences between OBL and the remaining methods appeared in 11 out of 15 problems,
being this a significant increase concerning the previous analysis of the overall results.
OBL did not present statistically significant differences with any other approach for
functions fu, f5, fo,and f11. At the same time, in 8 out of 15 problems, OBL was able
to outperform other strategies, and in 4 out of those 8 functions, it was not worse than
any other initialisation strategy. Considering function fi4, for example, OBL was sta-
tistically better, together with MT and Ss, than the remaining schemes. This means that,
if users would like to increase the probability of appearance of high-quality results
when solving problem fi4, they should initialise the population of DE with one of
those three strategies. Moreover, depending on the problem being solved, the most
suitable initialisation strategy changes. For instance, taking into account function fg,
the best performing scheme was OBL, together with MT and GLP, while in the case of
f7, QOBL provided the best performance.

4.3 Analysis of the scheme OBL considering the worst results

In this section, we carry out a similar analysis than the one exposed in the previous
section, but in this case, we compare the strategy OBL with respect to the remaining
approaches when considering the worst 300 executions. Results of this study are shown
in Table 5.

In the worst case, differences between OBL and the remaining methods appeared in
14 out of 15 problems. As in the best case, this is a significant increase of differences
in comparison to the study considering all executions. Only in the case of function f3g,
OBL did not present statistically significant differences with any other approach. In 11
out of 15 problems, OBL was able to outperform other strategies. In fact, in 10 out of
those 11 functions, it was not worse than any other initialisation strategy. For instance,
considering function f;, OBL was statistically better, together with MT and TM, than the
remaining schemes. This means that, in the worst case, DE would attain better results
for problem f> by applying one of those three strategies. Additionally, depending on
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Table 4 Statistical comparison between OBL and the remaining strategies considering problems f1—fi5
and the best 300 executions

f Init. p-value Dif. f Init. p-value Dif. f Init. p-value Dif.
N MT 3.06e-01 <« f» ™mT 4.78e-02 1 f3 MT 2.96e-02 1
GLP 4.32e-01 <« GLP 2.96e-01 <« GLP 1.45e-01 <«
Ss 3.98e-02 | Ss 5.23e-11 ¢ Ss 3.90e-04 1
™ 1.69e-02 1 ™ 3.41e-07 | ™ 3.06e-01 <«
QROBL  2.95e-03 1 QROBL  1.93e-47 ¢ QROBL 5.78e-02 <«
QOBL 9.45e-01 <« QOBL 1.18e-46 1 QOBL 3.79-01 <«
fa MT 7.75e-01 <« fs MT 9.55e-01 <« fe MT 5.80e-02 <«
GLP 6.88¢-02 <« GLP 5.55e-01 <« GLP 1.41e-02 |
SS 2.83e-01 <« SS 5.94e-01 <« SS 6.58e-01 <«
™ 8.10e-01 <« ™ 9.28e-01 <« ™ 847e-01 <«
QROBL  1.93e-01 <« QROBL  1.34e-01 <« QROBL  8.09e-02 <«
QOBL 421e-01 <« QOBL 1.44e-01 <« QOBL 9.00e-01 <«
f7 Mt 3.45¢-01 <  fg MT 2.16e-01 <  fg MT 432e-01 <
GLP 7.59-01 <« GLP 5.84e-02 <« GLP 7.32e-01 <«
SS 521e-02 <« SS 2.81e-03 1 SS 6.85¢e-01 <«
™ 4.08¢e-01 <« ™ 2.86e-02 1 ™ 2.35e-01 <«
QROBL  7.20e-01 <« QROBL  4.62¢-03 1 QROBL 4.70e-01 <«
QOBL 3.34e-02 | QOBL 2.97e-02 1 QOBL 8.28¢-01 <«
flo  MT 7.37e-02 <« fi1 MT 347e-01 <« fl2  MT 2.97e-02 |
GLP 1.31e-01 <« GLP 1.02e-01 <« GLP 3.37e-14 ¢
SS 6.75¢e-01 <« SS 5.33e-01 <« SS 2.81e-10 1
™ 9.35e-03 * ™ 6.13e-01 <« ™ 1.87e-02 |
QROBL  5.25¢-01 <« QROBL  6.51e-01 <« QROBL  3.76e-07 1
QOBL 3.93¢-01 <« QOBL 4.46e-01 <« QOBL 1.31e-04 1
fi3  MT 4.12e-02 | fla  MT 9.6le-01 <« fi5 MT 4.46e-01 <
GLP 337e-02 | GLP 5.42e-05 ¢ GLP 1.05e-99 1
SS 3.79e-02 1 SS 2.65e-01 <« SS 5.45e-90 1
™ 3.08e-01 <« ™ 1.05e-04 1 ™ 1.05e-99 1
QROBL  8.23e-02 <« QROBL  6.99¢-03 1 QROBL  4.48e-12 1
QOBL 1.06e-01 < QOBL 8.76e-03 1 QOBL 3.63e-09 1

Data in boldface show those cases where OBL statistically outperformed other initialisation strategy, i.e.,
where an 4 is also shown in columns called “Dif”

the problem being solved, as in the best case, the most suitable initialisation strategy
changes. Taking into account function fg, for example, the best performing scheme
was OBL, together with TM, GLP and QROBL, while in the case of f14, SS provided the
best performance.

Finally, it is worth mentioning that, if we consider the best and worst cases simul-
taneously, there exist two problems (f3 and fi5) for which OBL, and other schemes,
were the best performing initialisation approaches. The above means that those ini-
tialisation strategies allow the probability of appearance of high-quality results to be
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Table 5 Statistical comparison between OBL and the remaining strategies considering problems f1—f15
and the worst 300 executions

f Init. p-value Dif. f Init. p-value Dif. f Init. p-value Dif.
f1 MT 5.99¢-03 H MT 3.64e-01 3 MT 5.52e-01

GLP 3.17e-01 GLP 3.46e-05 GLP 9.69¢-01

SS 1.07e-02 SS 7.8%e-12 SS 8.73e-02

™ 2.78e-01 ™ 2.15e-01 ™ 9.76e-04

QROBL  5.69¢-02
QOBL 1.44¢-03

QROBL  1.14e-46
QOBL 6.32e-47

QROBL  7.93e-02
QOBL 8.97e-01

fa MT 2.26e-01 fs  MT 3.40e-01 fo MT 1.66e-02
GLP 3.07e-02 GLP 1.11e-05 GLP 6.30e-01
SS 9.43e-01 SS 6.11e-06 SS 8.42e-02
™ 4.84e-01 ™ 2.63e-02 ™ 3.81e-01

QROBL  8.38e-01
QOBL 5.32e-01

QROBL  7.29¢-02
QOBL 7.61e-01

QROBL  4.82e-02
QOBL 6.03e-01

f1 MT 3.89¢-01 f§ MT 3.06e-01 fo  MT 1.39¢-02
GLP 5.06e-01 GLP 6.97e-01 GLP 1.22e-01
Ss 3.78e-01 Ss 5.76e-01 Ss 5.33e-04
™ 7.63e-01 ™ 8.04e-01 ™ 7.74e-02

QROBL  4.41e-02
QOBL 2.18e-01

QROBL  3.64e-01
QOBL 6.42¢-01

QROBL  1.57e-01
QOBL 1.34e-02

flo  MT 1.03e-03 fi1 MT 7.09e-02 fl2  MT 1.15e-01
GLP 4.91e-02 GLP 7.72e-01 GLP 3.40e-04
SS 1.76e-02 SS 2.19¢-01 SS 2.81e-03
™ 1.05e-99 ™ 6.34e-02 ™ 4.53e-01

QROBL  6.77e-04
QOBL 1.65e-01

QROBL  1.08e-01
QOBL 2.24e-05

QROBL  1.56e-01
QOBL 2.17e-01

fil3  MT 9.64¢-01 fla  MT 1.76e-01 fis  MT 4.90e-01
GLP 5.48e-03 GLP 5.55e-01 GLP 1.56e-69
SS 8.38e-01 SS 1.72e-03 SS 2.10e-10
™ 8.04e-01 ™ 1.02e-01 ™ 2.75e-90

O 2 A A A A A A A A A A O O

QROBL  8.95e-01
QOBL 6.62e-02

QROBL  7.64e-02
QOBL 2.05e-01

QROBL  4.78e-14
QOBL 7.86e-10

T 2 A A A A A A O

¢
I S A e A S S A A

Data in boldface show those cases where OBL statistically outperformed other initialisation strategy, i.e.,
where an 4 is also shown in columns called “Dif”

increased, and at the same time, are able to reduce the probability of appearance of
low-quality results when solving those two particular functions.

5 Conclusions and future work

Some controversies have arisen in recent years regarding the benefits of using a given
initialisation strategy for solving large scale problems with DE. Some works have stated
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that certain initialisation mechanisms are able to increase the performance of DE. Other
authors however, have claimed that the initialisation strategy does not significantly
change the way DE performs.

Analysing the overall case, we showed that differences among the initialisation
strategies considered were not statistically significant for a considerable number of
problems. Bearing the above in mind, it might seem that the initialisation technique
does not generally affect the performance of DE when solving large scale problems.
However, when studying the best and worst cases, which had not been previously
analysed, significant differences appeared among initialisation mechanisms, with OBL
being the best performing approach for a wide range of problems. As a result, with
the aim of increasing the probability of appearance of high-quality results and/or
decreasing the probability of appearance of low-quality solutions when DE is used
to solve large scale problems, a suitable initialisation strategy, which depends on the
problem at hand, should be selected. For those cases where we do not have enough a
priori information about the problem being solved, for instance, when dealing with
black-box optimisation problems, OBL seems to be a promising scheme. Finally, we
should note that the above is even more important in those scenarios where only a
few executions can be performed, for example, when solving large scale real-world
problems with time-consuming evaluation functions.

Although QOBL and QROBL are extensions of OBL, the experimental evaluation
carried out in this work showed that they were not able to provide better results
than the latter. It is likely that this is because different variants of DE, with different
parameter values, components, and stopping criteria, are studied depending on the
considered work. Another possibility might be the dimensionality used for defining
the problems. Due to the above reasons, it would be interesting to study whether more
sophisticated initialisation strategies, such as QROBL and QOBL, among others, are able
to provide some benefits with respect to the traditional OBL scheme. Another line of
future work would be to analyse the behaviour of different mechanisms based on OBL,
as well as other initialisation schemes, in the worst and best cases, by combining them
with different variants of DE applied to several sets of problems. This might allow the
conclusions extracted in this work to be generalised.

Finally, we should note that another factor that could affect the quality of the algo-
rithm initialisation is the population size. As it was already mentioned, a significant
number of configurations of one of the most widely used DE variants were analysed in
a previous work considering the overall case. Those configurations were obtained by
combining different values for the parameters of DE, including the population size. The
best performing configuration was applied with one of the biggest population sizes
considered. In opposition to the resolution of problems with lower dimensionalities,
where smaller populations perform better, the analyses carried out in the aforemen-
tioned work concluded that an increase of the population size to some threshold values
is more suitable when dealing with large scale optimisation. Nevertheless, those stud-
ies also concluded that differences among the initialisation strategies considered were
not statistically significant when using larger population sizes. Bearing the above in
mind, and considering that the said best performing configuration was also applied in
the current work, the effects that the population size, together with the initialisation
strategy, may have on the quality of the algorithm initialisation, were not analysed
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herein. Since the overall case has already been analysed however, it would be very
interesting to carry out a study about the performance of DE through the combination
of different initialisation strategies and different population sizes taking into account
the best and worst cases.
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