
Optim Lett (2015) 9:949–960
DOI 10.1007/s11590-014-0837-4

ORIGINAL PAPER

A parallel branch and bound algorithm
for the maximum labelled clique problem

Ciaran McCreesh · Patrick Prosser

Received: 18 August 2014 / Accepted: 18 November 2014 / Published online: 10 December 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract The maximum labelled clique problem is a variant of the maximum clique
problemwhere edges in the graph are given labels, and we are not allowed to use more
than a certain number of distinct labels in a solution. We introduce a new branch-and-
bound algorithm for the problem, and explain how it may be parallelised. We evaluate
an implementation on a set of benchmark instances, and show that it is consistently
faster than previously published results, sometimes by four or five orders ofmagnitude.

Keywords Maximum labelled clique · Parallel branch and bound ·
Combinatorial optimisation · Computational experiments

1 Introduction

A clique in a graph is a set of vertices, where every vertex in this set is adjacent to
every other in the set. Finding the size of a maximum clique in a given graph is one
of the fundamental NP-hard problems. Carrabs et al. [1] introduced a variant called
the maximum labelled clique problem. In this variant, each edge in the graph has a
label, and we are given a budget b: we seek to find as large a clique as possible, but
the edges in our selected clique may not use more than b different labels in total. In
the case that there is more than one such maximum, we must find the one using fewest
different labels. We illustrate these concepts in Fig. 1, using an example graph due to
Carrabs et al.; our four labels are shown using different styled edges.

C. McCreesh (B) · P. Prosser
University of Glasgow, Glasgow, Scotland
e-mail: c.mccreesh.1@research.gla.ac.uk

P. Prosser
e-mail: patrick.prosser@glasgow.ac.uk

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-014-0837-4&domain=pdf

950 C. McCreesh, P. Prosser

Fig. 1 A graph with maximum
clique {1, 2, 3, 4, 5}, using all
four edge labels. If our budget is
only three, a maximum feasible
clique has size four. There are
several such cliques, but
{4, 5, 6, 7} is optimal since it
uses only two labels, whilst
every other uses at least three

1

2

3

4 5

6

7 l1

l2

l3

l4

Carrabs et al. give example applications involving social network analysis and
telecommunications. For social network analysis, vertices in the graph may represent
people, and labelled edges describe some kind of relationship such as a shared interest.
We are then seeking a large, mutually connected group of people, but using only a
small number of common interests. For telecommunications, we may wish to locate
mirroring servers in different data centres, all of which must be connected for redun-
dancy. Labels here tell us which companies operate the connections between data
centres: for simplicity and cost, we have a budget on how many different companies’
connections we may use.

A mathematical programming approach to solving the problem was presented by
Carrabs et al., who used CPLEX to provide experimental results on a range of graph
instances. Here we introduce the first dedicated algorithm for the maximum labelled
clique problem, and then describe how it may be parallelised to make better use of
today’s multi-core processors. We evaluate our implementation experimentally, and
show that it is consistently faster than that of Carrabs et al., sometimes by four or
five orders of magnitude. These results suggest that state of the art maximum clique
algorithms are not entirely inflexible, and can sometimes be adapted to handle side con-
straints and a more complicated objective function without losing their performance
characteristics.

Definitions and Notation Throughout, let G = (V, E) be a graph with vertex set V
and edge set E . Our graphs are undirected, and contain no loops. Associated with G
is a set of labels, and we are given a mapping from edges to labels. We are also given
a budget, which is a strictly positive integer.

The neighbourhood of a vertex is the set of vertices adjacent to it, and its degree is
the cardinality of its neighbourhood. A colouring of a set of vertices is an assignment
of colours to vertices, such that adjacent vertices are given different colours. A clique
is a set of pairwise-adjacent vertices. The cost of a clique is the cardinality of the
union of the labels associated with all of its edges. A clique is feasible if it has cost
not greater than the budget. We say that a feasible clique C ′ is better than a feasible
clique C if either it has larger cardinality, or if it has the same cardinality but lower
cost. The maximum labelled clique problem is to find a feasible clique which is either
better than or equal to any other feasible clique in a given graph—that is, of all the
maximum feasible cliques, we seek the cheapest.

123

The maximum labelled clique problem 951

The hardness of the maximum clique problem immediately implies that the maxi-
mum labelled clique problem is also NP-hard. Carrabs et al. showed that the problem
remains hard even for complete graphs, where the maximum clique problem is trivial.

2 A branch and bound algorithm

In Algorithm 1 we present the first dedicated algorithm for the maximum labelled
clique problem. This is a branch and bound algorithm, using a greedy colouring for
the bound. We start by discussing how the algorithm finds cliques, and then explain
how labels and budgets are checked.

Algorithm 1: An algorithm for the maximum labelled clique problem.
1 maximumLabelledClique : : (Graph G, Int budget) → Vertex Set
2 begin
3 permute G so that vertices are in non-increasing degree order
4 global (C�, L�) ← (∅, ∅)
5 expand(true, ∅, every vertex of G, ∅)
6 expand(false, ∅, every vertex of G, ∅)
7 return C� (unpermuted)

8 expand : : (Boolean first, Vertex Set C , Vertex Set P, Label Set L)
9 begin

10 (order, bounds) ← colourOrder(P)
11 for i ← |P| downto 1 do
12 if |C | + bounds[i] < |C�| or (first and |C | + bounds[i] = |C�|) then
13 return

14 v ← order[i]
15 add v to C
16 L ′ ← L ∪ the labels of edges between v and any vertex in C
17 if |L ′| ≤ (budget if first, otherwise |L�| − 1) then
18 if (C , L ′) is better than (C�, L�) then
19 (C�, L�) ← (C , L ′) P ′ ← the vertices in P that are adjacent to v

20 if P ′ �= ∅ then expand(first, C , P ′, L ′)
21 remove v from C and from P

22 colourOrder (Vertex Set P) → (Vertex Array, Int Array)
23 begin
24 (order, bounds) ← ([], [])
25 uncoloured ← P
26 colour ← 1
27 while uncoloured �= ∅ do
28 colourable ← uncoloured
29 while colourable �= ∅ do
30 v ← the first vertex of colourable
31 append v to order, and colour to bounds
32 remove v from uncoloured and from colourable
33 remove from colourable all vertices adjacent to v

34 add 1 to colour

35 return (order, bounds)

123

952 C. McCreesh, P. Prosser

1 2

3

4

56

7

8 1 3 2 4 8 5 7 6order :

Vertices in colour order

1 1 2 2 2 3 3 4bounds :

Number of colours used

Fig. 2 The graph on the left has been coloured greedily: vertices 1 and 3 were given the first colour, then
vertices 2, 4 then 8 were given the second colour, then vertices 5 and 7 were given the third colour, then
vertex 6 was given the fourth colour. On the right, we show the order array, which contains the vertices in
the order which they were coloured. Below, the bounds array, containing the number of colours used so far

Branching: Let v be some vertex in our graph. Any clique either contains only v

and possibly some vertices adjacent to v, or does not contain v. Thus we may build
up potential solutions by recursively selecting a vertex, and branching on whether or
not to include it. We store our growing clique in a variable C , and vertices which
may potentially be added to C are stored in a variable P . Initially C is empty, and P
contains every vertex (line 5).

The expand function is our main recursive procedure. Inside a loop (lines 11 to
21), we select a vertex v from P (line 14). First we consider including v in C (lines 15
to 20). We produce a new P ′ from P by rejecting any vertices which are not adjacent
to v (line 19)—this is sufficient to ensure that P ′ contains only vertices adjacent to
every vertex in C . If P ′ is not empty, we may potentially grow C further, and so we
recurse (line 20). Having considered v being in the clique, we then reject v (line 21)
and repeat.

Bounding: If we can colour a graph using k colours, we know that the graph cannot
contain a clique of size greater than k (each vertex in a clique must be given a different
colour). This gives us a bound on how much further C could grow, using only the
vertices remaining in P . To make use of this bound, we keep track of the largest
feasible solution we have found so far (called the incumbent), which we store in C�.
Initially C� is empty (line 4). Whenever we find a new feasible solution, we compare
it with C�, and if it is larger, we unseat the incumbent (line 18).

For each recursive call, we produce a constructive colouring of the vertices in P
(line 10), using the colourOrder function. This process produces an array orderwhich
contains a permutation of the vertices in P , and an array of bounds, bounds, in such a
way that the subgraph induced by the first i vertices of order may be coloured using
bounds[i] colours. The bounds array is non-decreasing (bounds[i + 1] ≥ bounds[i]),
so if we iterate over order from right to left, we can avoid having to produce a new
colouring for each choice of v. We make use of the bound on line 12: if the size of the
growing clique plus the number of colours used to colour the vertices remaining in P
is not enough to unseat the incumbent, we abandon search and backtrack.

The colourOrder function performs a simple greedy colouring. We select a vertex
(line 30) and give it the current colour (line 31). This process is repeated until no more
vertices may be given the current colour without causing a conflict (lines 29 to 33).
We then proceed with a new colour (line 34) until every vertex has been coloured

123

The maximum labelled clique problem 953

(lines 27 to 34). Vertices are placed into the order array in the order in which they
were coloured, and the i th entry of the bounds array contains the number of colours
used at the time the i th vertex in order was coloured. This process is illustrated in
Fig. 2.

Initial vertex ordering: The order in which vertices are coloured can have a sub-
stantial effect upon the colouring produced. Here we will select vertices in a static
non-increasing degree order. This is done by permuting the graph at the top of search
(line 3), so vertices are simply coloured in numerical order. This assists with the bitset
encoding, which we discuss below.

Labels and the budget: So far, what we have described is a variation of a series of
maximum clique algorithms by Tomita et al. [12–14] (and we refer the reader to these
papers to justify the vertex ordering and selection rules chosen). Now we discuss how
to handle labels and budgets. We are optimising subject to two criteria, so we will take
a two-pass approach to finding an optimal solution.

On the first pass (first = true, from line 5), we concentrate on finding the largest
feasible clique, but do not worry about finding the cheapest such clique. To do so, we
store the labels currently used in C in the variable L . When we add a vertex v to C ,
we create from L a new label set L ′ and add to it any additional labels used (line 16).
Now we check whether we have exceeded the budget (line 17), and only proceed with
this value of C if we have not. As well as storing C�, we also keep track of the labels
it uses in L�.

On the second pass (first = false, from line 6), we already have the size of a
maximum feasible clique in |C�|, and we seek to either reduce the cost |L�|, or prove
that we cannot do so. Thus we repeat the search, starting with our existing values of
C� and L�, but instead of using the budget to filter labels on line 17, we use |L�| − 1
(which can become smaller as cheaper solutions are found). We must also change the
bound condition slightly: rather than looking only for solutions strictly larger than
C�, we are now looking for solutions with size equal to C� (line 12). Finally, when
potentially unseating the incumbent (line 18), wemust check to see if eitherC is larger
than C�, or it is the same size but cheaper.

This two-pass approach is used to avoid spending a long time trying to find a cheaper
clique of size |C�|, only for this effort to be wasted when a larger clique is found. The
additional filtering power from having found a clique containing only one additional
vertex is often extremely beneficial. On the other hand, label-based filtering using
|L�| − 1 rather than the budget is not possible until we are sure that C� cannot grow
further, since it could be that larger feasible maximum cliques have a higher cost.

Bit parallelism: For the maximum clique problem, San Segundo et al. [10,11]
observed that using a bitset encoding for SIMD-like parallelism could speed up an
implementation by a factor of between two to twenty, without changing the steps taken.
We do the same here: P and L should be bitsets, and the graph should be represented
using an adjacency bitset for each vertex (this representation may be created when
G is permuted, on line 3). Most importantly, the uncoloured and colourable vari-

123

954 C. McCreesh, P. Prosser

ables in colourOrder are also bitsets, and the filtering on line 33 is simply a bitwise
and-with-complement operation.

Note thatC should not be stored as a bitset, to speed up line 16. Instead, it should be
an array. Adding a vertex to C on line 15 may be done by appending to the array, and
when removing a vertex from C on line 21 we simply remove the last element—this
works because C is used like a stack.

Thread parallelism: Thread parallelism for the maximum clique problem has been
shown to be extremely beneficial [2,5]; we may use an approach previously described
by the authors [5,7] here too. We view the recursive calls to expand as forming a tree,
ignore left-to-right dependencies, and explore subtrees in parallel. For work splitting,
we initially create subproblems by dividing the tree immediately below the root node
(so each subproblem represents a case where |C | = 1 due to a different choice of
vertex). Subproblems are placed onto a queue, and processed by threads in order. To
improve balance, when the queue is empty and a thread becomes idle, work is then
stolen from the remaining threads by resplitting the final subproblems at distance 2
from the root.

There is a single shared incumbent, which must be updated carefully. This may be
stored using an atomic, to avoid locking. Care must be taken with updates to ensure
thatC� and L� are compared and updated simultaneously—this may be done by using
a large unsigned integer, and allocating the higher order bits to |C�| and the lower
order bits to the bitwise complement of |L�|.

Note that we are not dividing a fixed amount of work between multiple threads,
and so we should not necessarily expect a linear speedup. It is possible that we could
get no speedup at all, due to threads exploring a portion of the search space which
would be eliminated by the bound during a sequential run, or a speedup greater than
the number of threads, due to a strong incumbent being found more quickly [3]. A
further complication is that in the first pass, we could find an equally sized but more
costly incumbent than we would find sequentially. Thus we cannot even guarantee
that this will not cause a slowdown in certain cases [15].

3 Experimental results

We now evaluate an implementation of our sequential and parallel algorithms exper-
imentally. Our implementation was coded in C++, and for parallelism, C++11 native
threads were used. The bitset encoding was used in both cases. Experimental results
are produced on a desktopmachine with an Intel i5-3570 CPU and 12GBytes of RAM.
This is a dual core machine, with hyper-threading, so for parallel results we use four
threads (but should not expect an ideal-case speedup of 4). Sequential results are from
a dedicated sequential implementation, not from a parallel implementation run with a
single thread. Timing results include preprocessing time and thread startup costs, but
not the time taken to read in the graph file and generate random labels.

Standard benchmark problems In Table 1 we present results from the same set of
benchmark instances as Carrabs et al. [1]. These are some of the smaller graphs from

123

The maximum labelled clique problem 955

Ta
bl
e
1

E
xp
er
im

en
ta
lr
es
ul
ts

In
st
an
ce

|L
|

25
%

bu
dg

et
50

%
bu
dg

et
75

%
bu
dg

et

si
ze

co
st

t s
eq

t p
ar

[1
]

si
ze

co
st

t s
eq

t p
ar

[1
]

si
ze

co
st

t s
eq

t p
ar

[1
]

jo
hn

so
n8

-2
-4

4
3.
13

1.
00

0.
00

0.
00

0.
03

4.
00

1.
87

0.
00

0.
00

0.
02

4.
00

1.
87

0.
00

0.
00

0.
01

28
ve
rt
ic
es
,

8
3.
51

1.
50

0.
00

0.
00

0.
03

4.
00

2.
48

0.
00

0.
00

0.
01

4.
00

2.
48

0.
00

0.
00

0.
02

21
0
ed
ge
s

12
4.
00

2.
85

0.
00

0.
00

0.
01

4.
00

2.
85

0.
00

0.
00

0.
02

4.
00

2.
85

0.
00

0.
00

0.
02

M
A
N
N
_a
9

11
5.
64

2.
76

0.
01

0.
00

3.
18

8.
89

5.
93

0.
02

0.
01

13
.9
8

13
.3
4

8.
99

0.
01

0.
00

6.
47

45
ve
rt
ic
es
,

21
6.
61

5.
60

0.
02

0.
01

12
.4
3

9.
74

10
.6
8

0.
08

0.
02

46
.5
2

13
.3
2

15
.7
3

0.
03

0.
01

15
.5
5

91
8
ed
ge
s

32
7.
00

7.
79

0.
04

0.
01

17
.6
1

10
.2
6

14
.9
9

0.
19

0.
05

10
8.
13

14
.1
2

23
.2
8

0.
03

0.
01

13
.1
8

ha
m
m
in
g6

-4
6

3.
99

1.
97

0.
00

0.
00

0.
32

4.
00

1.
99

0.
00

0.
00

0.
33

4.
00

1.
99

0.
00

0.
00

0.
35

64
ve
rt
ic
es
,

11
4.
00

2.
64

0.
00

0.
00

0.
43

4.
00

2.
64

0.
00

0.
00

0.
42

4.
00

2.
64

0.
00

0.
00

0.
37

70
4
ed
ge
s

17
4.
00

2.
98

0.
00

0.
00

0.
41

4.
00

2.
98

0.
00

0.
00

0.
43

4.
00

2.
98

0.
00

0.
00

0.
44

ha
m
m
in
g6

-2
15

6.
07

3.
82

0.
04

0.
01

41
.3
2

9.
87

7.
86

0.
76

0.
21

38
2.
73

15
.4
2

12
.0
0

2.
44

0.
66

71
1.
20

64
ve
rt
ic
es
,

29
7.
17

7.
12

0.
41

0.
11

22
1.
77

11
.0
1

14
.7
3

6.
25

1.
70

23
68

.7
8

15
.8
6

21
.8
4

11
.7
3

3.
14

20
79

.5
0

18
24

ed
ge
s

44
8.
00

10
.8
1

1.
35

0.
37

42
9.
21

12
.0
0

21
.4
9

20
.1
9

5.
47

49
55

.9
6

17
.1
3

32
.6
5

23
.1
5

6.
28

21
70

.8
4

jo
hn

so
n8

-4
-4

14
5.
99

3.
93

0.
01

0.
00

49
.8
2

7.
98

6.
94

0.
02

0.
01

85
.7
3

11
.0
9

10
.8
9

0.
01

0.
00

16
.3
6

70
ve
rt
ic
es
,

27
6.
30

5.
95

0.
03

0.
01

10
2.
60

9.
07

12
.8
1

0.
02

0.
01

11
0.
53

12
.1
8

20
.2
9

0.
00

0.
00

11
.8
0

18
55

ed
ge
s

40
7.
01

8.
97

0.
05

0.
01

17
7.
13

10
.0
0

19
.0
1

0.
02

0.
01

60
.7
9

12
.9
7

28
.9
3

0.
00

0.
00

2.
39

jo
hn

so
n1

6-
2-
4

23
6.
50

5.
28

0.
15

0.
04

42
48

.2
9

8.
00

8.
91

0.
14

0.
04

19
43

.3
3

8.
00

8.
91

0.
14

0.
04

20
66

.2
6

12
0
ve
rt
ic
es
,

46
7.
75

11
.1
7

0.
29

0.
08

56
60

.2
9

8.
00

12
.2
1

0.
22

0.
06

30
44

.7
5

8.
00

12
.2
1

0.
22

0.
06

32
90

.5
2

54
60

ed
ge
s

69
8.
00

14
.2
3

0.
28

0.
08

36
99

.7
1

8.
00

14
.2
3

0.
28

0.
08

42
27

.7
6

8.
00

14
.2
3

0.
28

0.
08

39
09

.1
5

ke
lle
r4

28
6.
98

6.
89

0.
28

0.
07

>
3h

9.
04

12
.6
8

0.
10

0.
03

>
3h

11
.0
0

18
.7
5

0.
02

0.
01

33
04

.3
0

17
1
ve
rt
ic
es
,

55
8.
00

12
.8
5

0.
32

0.
09

>
3h

11
.0
0

26
.9
8

0.
02

0.
01

40
81

.9
7

11
.0
0

26
.9
8

0.
02

0.
01

41
73

.3
4

94
35

ed
ge
s

83
9.
00

19
.8
2

0.
14

0.
04

>
3h

11
.0
0

31
.8
8

0.
02

0.
01

48
27

.9
9

11
.0
0

31
.8
8

0.
02

0.
01

50
28

.1
6

Fo
r
ea
ch

gr
ap
h,
w
e
us
e
th
re
e
di
ff
er
en
tl
ab
el
se
ts
iz
es

an
d
th
re
e
di
ff
er
en
tb
ud
ge
ts
,w

ith
ra
nd
om

ly
al
lo
ca
te
d
la
be
ls
,a
nd

sh
ow

av
er
ag
es

ov
er

10
0
ru
ns
.I
n
ea
ch

ca
se
,w

e
sh
ow

th
e

av
er
ag
e
si
ze

an
d
co
st
of

th
e
re
su
lt,

th
e
se
qu

en
tia

lr
un

tim
e
in

se
co
nd

s,
th
e
pa
ra
lle

lr
un

tim
e
in

se
co
nd

s
(2

co
re
s,
4
th
re
ad
s)
an
d
th
en

th
e
“E

nh
an
ce
d”

tim
es

re
po

rt
ed

by
C
ar
ra
bs

et
al
.[
1]

123

956 C. McCreesh, P. Prosser

the DIMACS implementation challenge,1 with randomly allocated labels. Carrabs et
al. used three samples for each measurement, and presented the average; we use one
hundred. Note that our CPU is newer than that of Carrabs et al., and we have not
attempted to scale their results for a “fair” comparison.

The most significant result is that none of our parallel runtime averages are above
7 s, and none of our sequential runtime averages are above 24 s (our worst sequential
runtime from any instance is 32.3 s, and our worst parallel runtime is 8.4 s). This is in
stark contrast to Carrabs et al., who aborted some of their runs on these instances after
three hours. Most strikingly, the keller4 instances, which all took Carrabs et al. at least
an hour, took under 0.1 s for our parallel algorithm. We are using a different model
CPU, so results are not directly comparable, but we strongly doubt that hardware
differences could contribute to more than one order of magnitude improvement in the
runtimes.

We also see that parallelism is in general useful, and is never a penalty, even with
very low runtimes. We see a speedup of between 3 and 4 on the non-trivial instances.
This is despite the initial sequential portion of the algorithm, the cost of launching
the threads, the general complications involved in parallel branch and bound, and the
hardware providing only two “real” cores.

Large sparse graphs In Table 2 we present results using the Erdős collaboration
graphs from the Pajek dataset by Vladimir Batagelj and Andrej Mrvar.2 These are
large, sparse graphs, with up to 7,000 vertices (representing authors) and 12,000 edges
(representing collaborations). We have chosen these datasets because of the potential
“social network analysis” application suggested by Carrabs et al., where edge labels
represent a particular kind of common interest, and we are looking for a clique using
only a small number of interests.

For each instance we use 3, 4 and 5 labels, with a budget of 2, 3 and 4. The “3
labels, budget 4” cases are omitted, but we include the “3 labels, budget 3” and “4
labels, budget 4” cases—although the clique sizes are the same (and are equal to the
size of a maximum unlabelled clique), we see in a few instances the costs do differ
where the budget is 4. Again, we use randomly allocated labels and a sample size of
100.

Despite their size, none of these graphs are at all challenging for our algorithm,
with average sequential runtimes all being under 0.2 s. However, no benefit at all is
gained from parallelism—the runtimes are dominated by the cost of preprocessing
and encoding the graph, not the search.

4 Possible improvements and variations

We will briefly describe three possible improvements to the algorithm. These have all
been implemented and appear to be viable, but for simplicity we do not go into detail

1 http://dimacs.rutgers.edu/Challenges/.
2 http://vlado.fmf.uni-lj.si/pub/networks/data/.

123

http://dimacs.rutgers.edu/Challenges/
http://vlado.fmf.uni-lj.si/pub/networks/data/

The maximum labelled clique problem 957

Table 2 Experimental results on Erdős collaboration graphs

Instance |L| budget = 2 budget = 3 budget = 4

size cost tseq size cost tseq size cost tseq

Erdos971 3 5.20 1.98 0.00 7.00 3.00 0.00

472 vertices, 4 4.61 1.86 0.00 5.71 2.78 0.00 7.00 3.98 0.00

1314 edges 5 4.24 1.94 0.00 5.10 2.81 0.00 6.05 3.91 0.00

Erdos972 3 5.30 1.98 0.12 7.00 3.00 0.12

5488 vertices, 4 4.84 1.90 0.12 5.84 2.88 0.12 7.00 3.97 0.12

8972 edges 5 4.35 1.80 0.12 5.18 2.76 0.12 6.04 3.82 0.12

Erdos981 3 5.18 1.99 0.00 7.00 3.00 0.00

485 vertices, 4 4.68 1.91 0.00 5.78 2.88 0.00 7.00 3.99 0.00

1381 edges 5 4.18 1.82 0.00 5.21 2.89 0.00 6.10 3.82 0.00

Erdos982 3 5.29 1.99 0.14 7.00 3.00 0.14

5822 vertices, 4 4.80 1.85 0.14 5.95 2.95 0.14 7.00 3.96 0.14

9505 edges 5 4.26 1.69 0.14 5.19 2.82 0.14 6.19 3.88 0.14

Erdos991 3 5.18 1.97 0.00 7.00 3.00 0.00

492 vertices, 4 4.64 1.89 0.00 5.84 2.91 0.00 7.00 3.98 0.00

1417 edges 5 4.23 1.93 0.00 5.19 2.82 0.00 6.16 3.86 0.00

Erdos992 3 5.36 2.00 0.15 8.00 3.00 0.15

6100 vertices, 4 4.92 1.92 0.15 6.06 2.98 0.15 8.00 3.99 0.15

9939 edges 5 4.27 1.84 0.15 5.32 2.86 0.15 6.38 3.88 0.15

Erdos02 3 5.86 2.00 0.19 8.00 3.00 0.19

6927 vertices, 4 5.04 1.99 0.19 6.43 2.98 0.19 8.00 3.99 0.19

11850 edges 5 4.66 1.82 0.19 5.69 2.83 0.19 6.82 3.91 0.19

For each instance, we use three different label set sizes and three different budgets, with randomly allocated
labels, and show averages over 100 runs. In each case, we show the average size and cost of the result, and
the sequential runtime in seconds

on these points. We did not use these improvements for the results in the previous
section. We also suggest a variation of the problem.

Resuming where we left off: Rather than doing two full passes, it is possible to start
the second pass at the point where the last unseating of the incumbent occurred in the
first pass. In the sequential case, this is conceptually simple but messy to implement:
viewing the recursive calls to expand as a tree, we could store the location whenever
the incumbent is unseated. For the second pass, we could then skip portions of the
search space “to the left” of this point. In parallel, this is much trickier: it is no longer
the case that when a new incumbent is found, we have necessarily explored every
subtree to the left of its position.

Different initial vertex orders: We order vertices by non-increasing degree order at
the top of search. Other vertex orderings have been proposed for the maximum clique
problem, including a dynamic degree and exdegree ordering [14], and minimum-
width based orderings [8,9]. These orderings give small improvements for the harder

123

958 C. McCreesh, P. Prosser

problem instances when labels are present. However, for the Erdős graphs, dynamic
degree and exdegree orderings were a severe penalty—they are more expensive to
compute (adding almost a whole second to the runtime), and the search space is too
small for this one-time cost to be ignored.

Reordering colour classes: For the maximum clique problem, small but consistent
benefits can be had by permuting the colour class list produced by colourOrder to
place colour classes containing only a single vertex at the end, so that they are selected
first [6]. A similar benefit is obtained by doing this here.

A multi-label variation of the problem: In the formulation by Carrabs et al., each
edge has exactly one label. What if instead edges may have multiple labels? If taking
an edge requires paying for all of its labels, this is just a trivial modification to our
algorithm. But if taking an edge requires selecting and paying for only one of its labels,
it is not obvious what the best way to handle this would be. One possibility would be
to branch on edges as well as on vertices (but only where none of the available edges
matches a label which has already been selected).

This modification to the problem could be useful for real-world problems: for
Carrabs et al. example where labels represent different relationship types in a social
network graph, it is plausible that two people could both be members of the same
club and be colleagues. Similarly, for the Erdős datasets, we could use labels either
for different journals and conferences, or for different topic areas (combinatorics,
graph theory, etc.). When looking for a clique of people using only a small number of
different relationship types, it would make sense to allow only one of the relationships
to count towards the cost.However,we suspect that this change couldmake the problem
substantially more challenging.

5 Conclusion

We saw that our dedicated algorithm was faster than a mathematical programming
solution. This is not surprising. However, the extent of the performance difference
was unexpected: we were able to solve multiple problems in under a tenth of one
second that previously took over an hour, and we never took more than 10 s to solve
any of Carrabs et al.’s instances. We were also able to work with large sparse graphs
without difficulty.

Of course, a more complicated mathematical programming model could close the
performance gap. One possible route, which has been successful for the maximum
clique problem in a SAT setting [4], would be to treat colour classes as variables rather
than vertices. But this would require a pre-processing step, and would lose the “ease
of use” benefits of a mathematical programming approach. It is also not obvious how
the label constraints would map to this kind of model, since equivalently coloured
vertices are no longer equal.

On the other hand, adapting a dedicated maximum clique algorithm for this prob-
lem did not require major changes. It is true that these algorithms are non-trivial to
implement, but there are at least three implementations with publicly available source

123

The maximum labelled clique problem 959

code (one in Java [8] and two with multi-threading support in C++ [2,5]). Also of note
was that bit- and thread-parallelism, which are key contributors to the raw performance
of maximum clique algorithms, were similarly successful in this setting.

A further surprise is that threading is beneficial even with the low runtimes of some
problem instances. We had assumed that our parallel runtimes would be noticeably
worse for extremely easy instances, but this turned out not to be the case. Although
there was no benefit for the Erdős collaboration graphs, which were computationally
trivial, for the DIMACS graphs there were clear benefits from parallelism even with
sequential runtimes as low as a tenth of a second. For the non-trivial instances, we
consistently obtained speedups of between 3 and 4. Even on inexpensive desktop
machines, it is worth making use of multiple cores.

Acknowledgments This workwas supported by the Engineering and Physical Sciences Research Council
[Grant Number EP/K503058/1].

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Carrabs, F., Cerulli, R., Dell’Olmo, P.: A mathematical programming approach for the maximum
labeled clique problem. In: Procedia—Social and Behavioral Sciences 108(0), 69–78 (2014). doi:10.
1016/j.sbspro.2013.12.821. http://www.sciencedirect.com/science/article/pii/S187704281305461X

2. Depolli, M., Konc, J., Rozman, K., Trobec, R., Janežič, D.: Exact parallel maximum clique algorithm
for general and protein graphs. J. Chem. Inf. Model. 53(9), 2217–2228 (2013). doi:10.1021/ci4002525

3. Lai, T.H., Sahni, S.: Anomalies in parallel branch-and-bound algorithms. Commun. ACM 27(6), 594–
602 (1984)

4. Li, C.M., Zhu, Z., Manyà, F., Simon, L.: Minimum satisfiability and its applications. In: Proceedings of
the Twenty-Second International Joint Conference on Artificial Intelligence, Volume One, IJCAI’11,
pp. 605–610. AAAI Press, Palo Alto (2011). doi:10.5591/978-1-57735-516-8/IJCAI11-108

5. McCreesh, C., Prosser, P.: Multi-threading a state-of-the-art maximum clique algorithm. Algorithms
6(4), 618–635 (2013). doi:10.3390/a6040618. http://www.mdpi.com/1999-4893/6/4/618

6. McCreesh, C., Prosser, P.: Reducing the branching in a branch and bound algorithm for the maximum
clique problem. In: Principles and Practice of Constraint Programming, 20th International Conference,
CP 2014. Springer, Berlin (2014)

7. McCreesh, C., Prosser, P.: The shape of the search tree for the maximum clique problem, and the
implications for parallel branch and bound. ACM Trans. Parallel Comput. (2014) (To appear; preprint
as CoRR abs/1401.5921)

8. Prosser, P.: Exact algorithms for maximum clique: a computational study. Algorithms 5(4), 545–587
(2012). doi:10.3390/a5040545. http://www.mdpi.com/1999-4893/5/4/545

9. San Segundo, P., Lopez, A., Batsyn, M.: Initial sorting of vertices in the maximum clique problem
reviewed. In: P.M. Pardalos, M.G. Resende, C. Vogiatzis, J.L. Walteros (eds.) Learning and Intelligent
Optimization, Lecture Notes in Computer Science, pp. 111–120. Springer International Publishing
(2014). doi:10.1007/978-3-319-09584-4_12

10. San Segundo, P., Matia, F., Rodriguez-Losada, D., Hernando, M.: An improved bit parallel exact
maximum clique algorithm. Optim. Lett. 7(3), 467–479 (2013). doi:10.1007/s11590-011-0431-y

11. San Segundo, P., Rodríguez-Losada, D., Jiménez, A.: An exact bit-parallel algorithm for the maximum
clique problem. Comput. Oper. Res. 38(2), 571–581 (2011). doi:10.1016/j.cor.2010.07.019

12. Tomita, E., Kameda, T.: An efficient branch-and-bound algorithm for finding a maximum clique with
computational experiments. J. Glob. Optim. 37(1), 95–111 (2007)

13. Tomita, E., Seki, T.: An efficient branch-and-bound algorithm for finding a maximum clique. In: Pro-
ceedings of the 4th International Conference on Discrete Mathematics and Theoretical Computer Sci-

123

http://dx.doi.org/10.1016/j.sbspro.2013.12.821
http://dx.doi.org/10.1016/j.sbspro.2013.12.821
http://www.sciencedirect.com/science/article/pii/S187704281305461X
http://dx.doi.org/10.1021/ci4002525
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-108
http://dx.doi.org/10.3390/a6040618
http://www.mdpi.com/1999-4893/6/4/618
http://dx.doi.org/10.3390/a5040545
http://www.mdpi.com/1999-4893/5/4/545
http://dx.doi.org/10.1007/978-3-319-09584-4_12
http://dx.doi.org/10.1007/s11590-011-0431-y
http://dx.doi.org/10.1016/j.cor.2010.07.019

960 C. McCreesh, P. Prosser

ence, DMTCS’03, pp. 278–289. Springer, Berlin (2003). http://dl.acm.org/citation.cfm?id=1783712.
1783736

14. Tomita, E., Sutani, Y., Higashi, T., Takahashi, S.,Wakatsuki,M.: A simple and faster branch-and-bound
algorithm for finding a maximum clique. In: Rahman, M., Fujita, S. (eds.) WALCOM: Algorithms and
Computation. Lecture Notes in Computer Science, vol. 5942, pp. 191–203. Springer, Berlin (2010).
doi:10.1007/978-3-642-11440-3_18

15. Trienekens, H.W.: Parallel branch and bound algorithms. Ph.D. thesis, Erasmus University Rotterdam
(1990)

123

http://dl.acm.org/citation.cfm?id=1783712.1783736
http://dl.acm.org/citation.cfm?id=1783712.1783736
http://dx.doi.org/10.1007/978-3-642-11440-3_18

	A parallel branch and bound algorithm for the maximum labelled clique problem
	Abstract
	1 Introduction
	2 A branch and bound algorithm
	3 Experimental results
	4 Possible improvements and variations
	5 Conclusion
	Acknowledgments
	References

