Erratum to: On convex optimization without convex representation

Jean B. Lasserre

Published online: 6 April 2014
© Springer-Verlag Berlin Heidelberg 2014

Erratum to: Optim Lett (2011) 5:549-556

DOI 10.1007/s11590-011-0323-1
The proof of Theorem 3 in the original publication of the article contains an incorrect statement that we fix below.

Theorem $\mathbf{3}$ Let \mathbf{K} in (1.2) be compact and let Assumption 1 hold true. For every fixed $\mu>0$, choose $\mathbf{x}_{\mu} \in \mathbf{K}$ to be an arbitrary stationary point of ϕ_{μ} in \mathbf{K}.

Then every accumulation point $\mathbf{x}^{*} \in \mathbf{K}$ of such a sequence $\left(\mathbf{x}_{\mu}\right) \subset \mathbf{K}$ with $\mu \rightarrow 0$, is a global minimizer of f on \mathbf{K}, and if $\nabla f\left(\mathbf{x}^{*}\right) \neq 0, \mathbf{x}^{*}$ is a KKT point of \mathbf{P}.
Proof Let $\mathbf{x}_{\mu} \in \mathbf{K}$ be a stationary point of ϕ_{μ}, which by Lemma 2 is guaranteed to exist. So

$$
\begin{equation*}
\nabla \phi_{\mu}\left(\mathbf{x}_{\mu}\right)=\nabla f\left(\mathbf{x}_{\mu}\right)-\sum_{j=1}^{m} \frac{\mu}{g_{j}\left(\mathbf{x}_{\mu}\right)} \nabla g_{j}\left(\mathbf{x}_{\mu}\right)=0 \tag{0.1}
\end{equation*}
$$

As $\mu \rightarrow 0$ and \mathbf{K} is compact, there exists $\mathbf{x}^{*} \in \mathbf{K}$ and a subsequence $\left(\mu_{\ell}\right) \subset \mathbb{R}_{+}$such that $\mathbf{x}_{\mu_{\ell}} \rightarrow \mathbf{x}^{*}$ as $\ell \rightarrow \infty$. We need consider two cases:

Case when $g_{j}\left(\mathbf{x}^{*}\right)>0, \forall j=1, \ldots, m$. Then as f and g_{j} are continuously differentiable, $j=1, \ldots, m$, taking limit in (0.1) for the subsequence $\left(\mu_{\ell}\right)$, yields $\nabla f\left(\mathbf{x}^{*}\right)=0$ which, as f is convex, implies that \mathbf{x}^{*} is a global minimizer of f on \mathbb{R}^{n}, hence on \mathbf{K}.

The online version of the original article can be found under doi:10.1007/s11590-011-0323-1.

[^0]Case when $g_{j}\left(\mathbf{x}^{*}\right)=0$ for some $j \in\{1, \ldots, m\}$. Let $J:=\left\{j: g_{j}\left(\mathbf{x}^{*}\right)=0\right\} \neq \emptyset$. We next show that for every $j \in J$, the sequence of ratios $\left(\mu_{\ell} / g_{j}\left(\mathbf{x}_{\mu_{\ell}}\right), \ell=1, \ldots\right.$, is bounded. Indeed let $j \in J$ be fixed arbitrary. As Slater's condition holds, let $\mathbf{x}_{0} \in \mathbf{K}$ be such that $g_{j}\left(\mathbf{x}_{0}\right)>0$ for all $j=1, \ldots, m$; then $\left\langle\nabla g_{j}\left(\mathbf{x}^{*}\right), \mathbf{x}_{0}-\mathbf{x}^{*}\right\rangle>0$. Indeed, as \mathbf{K} is convex, $\left\langle\nabla g_{j}\left(\mathbf{x}^{*}\right), \mathbf{x}_{0}+\mathbf{v}-\mathbf{x}^{*}\right\rangle \geq 0$ for all \mathbf{v} in some small enough ball $\mathbf{B}(0, \rho)$ around the origin. So if $\left\langle\nabla g_{j}\left(\mathbf{x}^{*}\right), \mathbf{x}_{0}-\mathbf{x}^{*}\right\rangle=0$ then $\left\langle\nabla g_{j}\left(\mathbf{x}^{*}\right), \mathbf{v}\right\rangle \geq 0$ for all $\mathbf{v} \in \mathbf{B}(0, \rho)$, in contradiction with $\nabla g_{j}\left(\mathbf{x}^{*}\right) \neq 0$. Next,

$$
\begin{align*}
\left\langle\nabla f\left(\mathbf{x}_{\mu_{\ell}}\right), \mathbf{x}_{0}-\mathbf{x}^{*}\right\rangle= & \underbrace{\sum_{k \notin J}^{m} \frac{\mu_{\ell}}{g_{k}\left(\mathbf{x}_{\mu_{\ell}}\right)}\left\langle\nabla g_{k}\left(\mathbf{x}_{\mu_{\ell}}\right), \mathbf{x}_{0}-\mathbf{x}^{*}\right\rangle}_{A_{\ell}} \tag{0.2}\\
& +\underbrace{\sum_{k \in J}^{m} \frac{\mu_{\ell}}{g_{k}\left(\mathbf{x}_{\mu_{\ell}}\right)}\left\langle\nabla g_{k}\left(\mathbf{x}_{\mu_{\ell}}\right), \mathbf{x}_{0}-\mathbf{x}^{*}\right\rangle}_{B_{\ell}}
\end{align*}
$$

Observe that

- Every term of the sum B_{ℓ} is nonnegative for sufficiently large ℓ, say $\ell \geq \ell_{0}$, because $\mathbf{x}_{\mu_{\ell}} \rightarrow \mathbf{x}^{*}$ and $\left\langle\nabla g_{k}\left(\mathbf{x}^{*}\right), \mathbf{x}_{0}-\mathbf{x}^{*}\right\rangle>0$ for all $k \in J$.
- $A_{\ell} \rightarrow 0$ as $\ell \rightarrow \infty$ because $\mu_{\ell} \rightarrow 0$ and $g_{k}\left(\mathbf{x}_{\mu_{\ell}}\right) \rightarrow g_{k}\left(\mathbf{x}^{*}\right)>0$ for all $k \notin J$.

Therefore $\left|A_{\ell}\right| \leq A$ for all sufficiently large ℓ, say $\ell \geq \ell_{1}$, and so for every $j \in J$:
$\left\langle\nabla f\left(\mathbf{x}_{\mu_{\ell}}\right), \mathbf{x}_{0}-\mathbf{x}^{*}\right\rangle+A \geq \frac{\mu_{\ell}}{g_{j}\left(\mathbf{x}_{\mu_{\ell}}\right)}\left\langle\nabla g_{j}\left(\mathbf{x}_{\mu_{\ell}}\right), \mathbf{x}_{0}-\mathbf{x}^{*}\right\rangle, \quad \ell \geq \ell_{2}:=\max \left[\ell_{0}, \ell_{1}\right]$,
which shows that for every $j \in J$, the nonnegative sequence $\left(\mu_{\ell} / g_{j}\left(\mathbf{x}_{\mu_{\ell}}\right)\right), \ell \geq \ell_{2}$, is bounded from above.

So take a subsequence (still denoted $\left(\mu_{\ell}\right), \ell \in \mathbb{N}$, for convenience) such that the ratios $\mu_{\ell} / g_{j}\left(\mathbf{x}_{\mu_{\ell}}\right)$ converge for all $j \in J$, that is,

$$
\lim _{\ell \rightarrow \infty} \frac{\mu_{\ell}}{g_{j}\left(\mathbf{x}_{\mu_{\ell}}\right)}=\lambda_{j} \geq 0, \quad \forall j \in J
$$

and let $\lambda_{j}:=0$ for every $j \notin J$, so that $\lambda_{j} g_{j}\left(\mathbf{x}^{*}\right)=0$ for every $j=1, \ldots, m$. Taking limit in (0.1) as $\ell \rightarrow \infty$, yields:

$$
\begin{equation*}
\nabla f\left(\mathbf{x}^{*}\right)=\sum_{j=1}^{m} \lambda_{j} \nabla g_{j}\left(\mathbf{x}^{*}\right), \tag{0.3}
\end{equation*}
$$

which shows that $\left(\mathbf{x}^{*}, \lambda\right) \in \mathbf{K} \times \mathbb{R}_{+}^{m}$ is a KKT point for \mathbf{P}. Finally, invoking Theorem 1, \mathbf{x}^{*} is also a global minimizer of \mathbf{P}.

[^0]: J. B. Lasserre ($\boxed{\square}$)

 LAAS-CNRS and Institute of Mathematics, University of Toulouse, LAAS, 7 avenue du Colonel Roche, 31077 Toulouse Cédex 4, France
 e-mail: lasserre@laas.fr

