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The proof of Theorem 3 in the original publication of the article contains an incorrect
statement that we fix below.

Theorem 3 Let K in (1.2) be compact and let Assumption 1 hold true. For every fixed
u > 0, choose x,, € K to be an arbitrary stationary point of ¢,, in K.

Then every accumulation point x* € K of such a sequence (x,,) C K with u — 0,
is a global minimizer of f on K, and if V f (x*) # 0, x* is a KKT point of P.

Proof Let x,, € K be a stationary point of ¢,,, which by Lemma 2 is guaranteed to
exist. So
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As i — 0and K is compact, there exists x* € K and a subsequence (11¢) C Ry such
that x,,, — X* as £ — 00. We need consider two cases:

Case when gj(x*) > 0,Vj = 1,...,m. Then as f and g; are continuously
differentiable, j = 1, ..., m, taking limit in (0.1) for the subsequence (u¢), yields
V f(x*) = 0 which, as f is convex, implies that x* is a global minimizer of f on R",
hence on K.

The online version of the original article can be found under doi:10.1007/s11590-011-0323-1.
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Case when g;(x*) = 0 for some j € {1,...,m}. Let J :={j : g;(x*) =0} # 0.
We next show that for every j € J, the sequence of ratios (ue/g; (X,,), £ =1, ...,1s
bounded. Indeed let j € J be fixed arbitrary. As Slater’s condition holds, let xg € K
be such that g;(xp) > Oforall j =1, ..., m; then (Vg;(x*),xg — x*) > 0. Indeed,
as K is convex, (Vg;(x*),xo + v — x*) > 0 for all v in some small enough ball
B(0, p) around the origin. So if (Vg;(x*),xg — x*) = 0 then (Vg;(x*),v) > 0 for
all v € B(0, p), in contradiction with Vg; (x*) # 0. Next,
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Observe that

e Every term of the sum By is nonnegative for sufficiently large ¢, say £ > £,
because x,,, — x* and (Vg (x*),xo —x*) > Oforallk € J.
e Ay — 0as{ — oobecause uy — 0 and gx(x,,) = gx(x*) > Oforallk & J.

Therefore |A¢| < A for all sufficiently large ¢, say £ > £, and so for every j € J:
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which shows that for every j € J, the nonnegative sequence (11¢/g; (Xu,)), £ > £2,1s
bounded from above.

So take a subsequence (still denoted (u¢), £ € N, for convenience) such that the
ratios 1u¢/gj(xy,) converge for all j € J, that s,
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andlet1; := Oforevery j ¢ J,sothat;g;(x*) =Oforevery j =1,..., m. Taking
limit in (0.1) as £ — oo, yields:

VI =D 0 Vi), (0.3)

j=1

which shows that (x*, 1) € K xR is a KKT point for P. Finally, invoking Theorem 1,
x* is also a global minimizer of P. O
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