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Abstract Pattern recognition of seismic and mor-

phostructural nodes plays an important role in seismic

hazard assessment. This is a known fact in seismology that

tectonic nodes are prone areas to large earthquake and have

this potential. They are identified by morphostructural

analysis. In this study, the Alborz region has considered as

studied case and locations of future events are forecast

based on Kohonen Self-Organized Neural Network. It has

been shown how it can predict the location of earthquake,

and identifies seismogenic nodes which are prone to

earthquake of M5.5? at the West of Alborz in Iran by

using International Institute Earthquake Engineering and

Seismology earthquake catalogs data. First, the main faults

and tectonic lineaments have been identified based on MZ

(land zoning method) method. After that, by using pattern

recognition, we generalized past recorded events to future

in order to show the region of probable future earthquakes.

In other word, hazardous nodes have determined among all

nodes by new catalog generated Self-organizing feature

maps (SOFM). Our input data are extracted from catalog,

consists longitude and latitude of past event between

1980–2015 with magnitude larger or equal to 4.5. It has

concluded node D1 is candidate for big earthquakes in

comparison with other nodes and other nodes are in lower

levels of this potential.

Keywords Clustering � Earthquake prediction � Self-
organizing feature maps (SOFM)

1 Introduction

The Alborz mountain range is part of the northern

boundary between Iran and Eurasia, located South of the

Caspian sea. Historical background and instrumentally

located earthquakes as well as the geological evidences all

show that Alborz region is one of the seismically active

regions in the Middle East (Gheitanchi et al. 2006). One of

the largest shocks (MS 7.7) has occurred on 20 June 1990,

in the West of Alborz. Nearly 40,000 people were killed,

and more than 500,000 lost their homes (Berberian and

Walker 2010). The damage was substantial and spread over

a widely populated area.

Such as this destructive earthquakes in the world moti-

vate to develop the systematic and testable assessments

capable of providing consistent information about the sites

where large earthquakes may occur. This is highly

important for knowledgeable seismic hazard evaluation.

Forecasting earthquake has been faced as a great challenge

in seismology more than 100 years (Geller 1997).

Despite the great effort made and the multiple models

developed by different authors (Tiampo and Shcherbakov

2012), no successful method has been found yet. Due to the

random behavior of earthquakes generation, it may never

be possible to ascertain the exact time, magnitude and

location of the next damaging earthquake (Reyes et al.

2012).

Regional seismicity has usually been disturbed before

large earthquakes, so that, small earthquakes occurred few

months before the main shock in the area that their

M. Allamehzadeh � S. Durudi (&) � L. Mahshadnia

Seismology Department, International Institute of Earthquake

Engineering and Seismology, IIEES, Tehran, Islamic Republic

of Iran

e-mail: somdr@ymail.com

M. Allamehzadeh

e-mail: zadeh66@hotmail.com

L. Mahshadnia

e-mail: l.mahshadnia@iiees.ac.ir

123

Earthq Sci (2017) 30(3):145–155

DOI 10.1007/s11589-017-0190-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s11589-017-0190-7&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11589-017-0190-7&amp;domain=pdf


epicenters seem to be completely random but they follow

some particular patterns or shapes. Spatial prediction of

these earthquakes is complicated, but it is possible by using

advanced statistical methods nowadays.

Many authors have proposed different methods to pre-

dict the occurrence of earthquakes. The work in Ward

(2007) added five different models to the Regional Earth-

quake Likelihood Model (RELM). The first one model

presented by Kagan et al. (2007) was based on smoothed

seismicity and predicted earthquakes with magnitude

greater or equal to 5.0. The second model is similar to the

one proposed by Jackson et al. (2009). The third is based

on fault data analysis. The fourth model is a combination of

the first three models and, finally, the last one is based on

earthquake simulations (Ward 2000).

A related work was presented by Gorshkov et al. (2003).

In this method, land zoning method (MZ) was used for

identifying structural instability for determining the struc-

ture of faulting in the earthquake prone areas. MZ method

is based on geomorphic and geological data and does not

rely on the knowledge about past seismicity (Alexeevskaya

et al. 1977). The fact that earthquakes nucleate at nodes

was first established for the Pamirs and Tien Shan regions

(Gelfand et al. 1972). This is basic assumption to identify

area prone earthquake. The roles of intersecting faults are

observed in different tectonic settings. Talwani (1988)

found that large intraplate earthquakes were related to

intersections and demonstrated by intersecting faults pro-

viding a location for stress accumulation (Gorshkov et al.

2009). This method has been tested in many seismicity

parts of the world, and the results have been confirmed by

occurring extreme events in the areas where they had been

studied before, so that 87% of seismic events occurred at

the nodes that are delineated around the intersections of

lineament (Soloviev et al. 2014). This amount proves the

reliability and statistical significance of the approach.

The pattern recognition technique has employed to

select among all the nodes those, which are prone to

earthquakes above a certain (target) magnitude. The first

application of pattern recognition was introduced by Gel-

fand et al. 1970. Since the early 1970s, the methodology

has been successfully applied in a number of regions

worldwide, including California, where it permitted the

identification of earthquake prone areas that have been

subsequently struck by strong events and that previously

were not considered seismogenic (see the overviews by

Gorshkov et al. 2003; Soloviev et al. 2014).

The morphostructural analysis has been already applied

to the Italian mountain ranges, namely in the Alps (Gor-

shkov et al. 2004) and in peninsular Italy and Sicily

(Gorshkov et al. 2002), and also in Alborz region (Gor-

shkov et al. 2009). The feasibility of such analysis (MZP)

has been established for topographically flat basins within

Iberian Peninsula (Gorshkov et al. 2010) and recently for

the Rhone valley in France (Gorshkov and Gaudemer

2012).

A formal identification of priority areas, most prone to

future seismic activation, can be performed integrating the

space information provided by the earthquake prone areas

with the spacetime information provided by formally

defined earthquakes predictions (e.g., Peresan et al. 2011).

A number of forecasting methodologies have been devel-

oped, mainly based on the analysis of seismicity, and are

currently applied both at national and international scale

(Jordan et al. 2011).

2 Geological and tectonic features

The active belt of seismicity in northern Iran coincides with

the Alborz mountains. The occurrence of moderate to large

earthquakes in the Alborz implies the significance of cur-

rent tectonic deformation taking place on this mountain

belt (Zolfaghari 2008).

The studied area extends from 48�E to 51�E in longi-

tudes and from 35�N to 38�N in latitudes. The region

extended in Alborz, part of Central Iran and Sanandaj-

Sirjan geological zones. The Alborz mountains, forming a

gently sinuous East-West range across northern Iran south

of the Caspian sea, constitute a northern part of the Alpine-

Himalayan orogeny in western Asia. They face the Caspian

block on the north and to the south grade into the plateau of

Central Iran. In its western part, the range shows NW–SE,

trending structures, roughly parallel to the northern part of

the Zagros seismic zone and to the structural alignments of

Caucasus. The western and eastern Alborz, two different

structural trends, meet each other in the Central Alborz. In

the zone of convergence between these two different

alignments, the great Quaternary volcano of Damavand is

shaped (Gheitanchi et al. 2006). Geological evidence and

fault plane solutions of earthquakes in Alborz region

indicate the existence of both thrust and conjugate strike-

slip faulting (Jackson 1992).

Several major faults with almost east-west trends in

north and northeast Tehran, the Rudbar fault system in

northwest, and the Ipak in west are examples of well-

known major faults in Alborz region that have experienced

destructive earthquakes in the past (Fig. 1).

Surrounding the south Caspian basin, the Alborz

mountain range shows strong tectonic activity with several

destructive earthquakes in the past (Berberian and Yeats

2001).

The South Caspian basin is an aseismic block in the

Alpine belt which is surrounded by several zones of high

seismic activity. The Talesh and Alborz mountains are
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overthrusting the ‘‘oceanic-like crust’’ of the South Caspian

basin (e.g., Berberian 1983).

The tectonic blocks and areas in the studied region,

along northwest–southeast, from the northwest to the

southeast, include: the active tectonic area of Talesh which

is composed of several thrust faults with NW trends.

Ghezel Ozan intramountain basin, in the form of a large

syncline with fold axes which is parallel to NW, is located

in the Southwest area of Talesh.

Tarom magmatic arc formed the North of the city of

Zanjan and the Southern part of the Western Alborz in a

mountainous shape. In this block, the faults that are parallel

to mountain ranges are more active than other faults.

Thrust ancient rock units on the Neocene units show the

activity of these faults in the current era.

The border of the Alborz and Central Iran zones, as

longitudinal lineament, passes from Qazvin plain, Zanjan,

and Abhar. The Southern regions in the Tarom mountains,

part of the Central Iran zone, are divided into several tec-

tonic blocks which limited to fault lineaments by the

activity of faults with the trends of NW–SE. The most

important ones are:

The tectonic subsidence basin of Zanjan-Abhar, as a

shape of a narrow plain, covered by Quaternary alluvium,

extends from Znajan to Abhar.

The Soltanieh Horst, as a narrow mountainous line with

trend of NW–SE that is parallel to the Tarom mountains,

extended from Zanjan to Abhar by the active fault of

Soltanieh. This horst is the result of the activity of the

southeast segment of Tabriz fault which is resulted of

Pyrenean orogenic.

The intramountain subsidence of Ozon Dareh is a gentle

synclinal basin which is filled by Cretaceous and Tertiary

rocks, and young alluvium. This plain is parallel to the

Fig. 1 Active faults and seismicity of the region under studied. These data has been recorded from 1900 to 2015
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Southwest segment margin of Soltanieh mountain. Lastly,

Urumieh-Dokhtar zone is located in the middle of Sanan-

daj-Sirjan zone and Soltanieh Graben, and also, it is par-

allel to the both.

3 Methodology

The methodology involves two steps. The first is to identify

objects of recognition using the method of morphostruc-

tural zoning, with the objects being nodes of intersections

of morphostructural lineaments. The second step uses

pattern recognition algorithms to find those intersections,

where large earthquakes may occur.

3.1 Morphostructural zoning method

According to Keilis-Borok (1990), a hierarchical dynamic

system of lithospheric blocks and their boundaries is the

supporting medium of seismicity. Therefore, delineation of

block and fault geometry for a seismic region is a necessary

stage in studying earthquake prone areas. In order to

delineate the block structure of the West and South Alborz,

we employ the morphostructural zoning method.

The methodology used is based on the idea that large

earthquakes nucleate at nodes, specific structures that are

formed around the intersection of mobile boundary zones

separating different blocks of the Earth’s crust. In the

framework of the methodology, nodes are delineated with

morphostructural zoning method (Gorshkov et al. 2003).

The present-day topography of the study region is the

main subject of the analysis in MZ. The study region is

divided into a system of hierarchically ordered areas

characterized by homogeneous present-day topography and

tectonic structure. The blocks are assigned from the highest

to lowest rank, by lineaments. Lower rank blocks are parts

of a higher rank block. The block of a higher category is

divided into two blocks, belonging to the below category.

Usually, three levels of a hierarchy were considered in

different regions. Blocks of the first rank, mountain coun-

tries, are divided into blocks of the second rank, mega-

blocks. Megablocks are further divided into blocks of the

third rank, called blocks. Lineaments themselves include

types and varying degrees including: longitudinal and

transverse ones.

Longitudinal lineaments are approximately parallel to

the regional strike of the tectonic structure and the topog-

raphy and, as a rule, include the prominent faults that

separate mountainous regions from the areas which sub-

sided comparatively or are subsidence basins. Transverse

lineaments go across the regional trends of tectonic struc-

ture and topography. Normally, they appear on the Earth’s

surface discontinuously and are evidenced by escarpments,

rectilinear parts of river valleys, and partly by faults

(Peresan et al. 2013).

One of the dependent parameters of the intensity of

tectonic movements is the difference between maximum

and minimum topographic height. These lineaments show

high adaptation with the isostatic balance, elastic bending,

and horizontal compressive forces in lithosphere (Snyder

and Barazangi 1986).

The variations of the lithospheric thickness or density

play an important role in creating lithospheric forces

(England and McKenzie 1982; Assameur and Mareschal

1995). Large isostatic anomalies may exist in the areas

where tectonic forces are active, therefore, the most

important feature of the seismic activities determined by

height, so the most seismicity areas overlaid on regions

where topographic loading is big or the gradient of the

gravity anomalies is high (Seeber et al. 1981; Keary and

Vine 1996; Jackson and McKenzie 1984; Moores and

Twiss 1995; Dalmayrac and Molnar 1981; Zamani and

Hashemi 2000).

One of the dependent parameters of heterogeneity in the

depth of crust is the difference between maximum and

minimum gravity anomalies (relief anomaly). There are

lineaments which are result of joining points with mini-

mum distance of the difference between maximum and

minimum anomalies contour. These anomalies are depen-

dent of Gravity distribution such as isostatic anomaly.

These lineaments can be a suitable index for determining

the borders of the main lithospheric blocks with relative

displacement and high seismicity potential (Gorshkov et al.

2003).

Therefore, structural lineaments are obtained from

topographic lineaments, which are overlaid with rapid

variation of isostatic anomalies. The variation of thickness

and the distribution of block crust can cause stress systems

with fault spreading potential and seismicity localization at

the border of block (Bott and Dean 1972).

In this study, we identified fundamental faults and tec-

tonic lineaments with the maximum gradient of gravity,

magnetic, topography, isostasy anomalies, and also, we

evaluated their correspondence together and satellite ima-

ges. It has concluded that topographic lineaments have high

adaptation with lineaments, obtained from other anomalies.

These indexes indicate the variations of intensity tectonic

movement, the degree of lithosphere disruption, and the

heterogeneity of depth crust. The points at the intersections

of these lineaments on the active faults have created the

seismic nodes (Fig. 2).

Nogol Sadat (1978) has divided the longitudinal faults

and structural lineaments of the Iran plateau, the bound-

aries of structural and sedimentary blocks, into three main

categories: trends of N striking (formed in the late Pre-

cambrian and Katangai orogeny), NE striking (with left-
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lateral component as old as Devonian age), and NW trends

(left-lateral faults that formed in the Late Precambrian and

Katanga cycle). In addition, other faults with EW trends

that deform Iran plateau are detectable in the topographic,

magnetic, and gravity anomaly maps.

Morphostructural nodes are formed around the inter-

sections of two or more lineaments. A node may include

more than one intersection or junction. The size and

geometry of a node can be outlined with fieldwork if the

morphological field studies are not done for determining

the ranges of nodes, it will consider as a certain circle and

its extent is usually determined by the radius which is

proportional to earthquake magnitude.

The specifications of the important seismic nodes in the

study area are as follows (Fig. 2):

Node D1 The node is located at the intersection of

Masouleh fault (the Northeast of the Qezel-Ozan valley)

and the transverse lineaments which is the border of West

and Central Alborz, and also the transverse lineaments

parallel to Lahijan and Rudbar faults. Masouleh fault

separates two large blocks from each other, which are

different in heights and azimuths together, including Kopet

Dagh mountain (North-Northeast) and Anguran mountain

(Southwest). The Transverse lineament with trend of

NNW, at Southern sector of Talesh fault, separate the

Western Alborz with high tectonic structure along East-

West, and right-lateral displacement, from Central Alborz.

As the result of this lineament in southern parts, the plain

of Zanjan separates from the Southern basin of Qazvin.

The distribution of magnetic intensity at the location of

this node demonstrates the existence of maximum mag-

netic changes along the transverse lineament with the trend

of NE, and also along the Masouleh fault. Since consid-

erable changes are not observed in lithology along the

mentioned lineament, it can be stated that the magnetic

changes in the North of Rudbar were affected from

regional tectonic activity. The occurred quake on June 21,

1990, and its aftershocks at this node confirmed seismic

importance of this node.

Node D2 This node is located at the South of Buin Zahra

and at the intersection of Soltanieh- Parandak longitudinal

lineament, Aypek fault, the Southern fault of Parandak, and

the transverse lineaments with trends of NE and NW.

Historical earthquakes in the range of this node include:

Fig. 2 Seismogenic nodes in Zanjan-Rudbar based on morphostructural zoning method (Hessami et.al. 2003)
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• An earthquake in the third millennium BC, at the

border of the Qazvin plain and the Soltanieh block

(49.9�E–35.6�N).
• The earthquake of 10th of December 1119 AD with

magnitude of 6.5 in Qazvin plain (49.9�E–35.7�N).
• The earthquake of 20th of October 187 AD with

magnitude of 5.7 at the border of the Qazvin plain and

Zanjan (49.8�E–35.8�N).

Node D14 This node is located at the North of Razan at

the intersection of the Kooshk-Nosrat fault, the border of

the Central Iran and Sanandaj-Sirjan zones, and transverse

lineament with trend of NE.

D3 and D4 These nodes, the intersection of the trans-

verse lineaments with trends of SE and NW, on the Talesh

fault lead to obvious changes in the magnetic intensity

along the fault. Such the position can be seen at the node

D6 in the Southern Talesh fault with the difference that

unlike the two nodes mentioned above, this node has no

important historical or instrumental record. So, probably, it

meets seismic quiescence condition.

D15 and D16 These nodes are located at the intersec-

tions of the lineament NE-NW trending, along the San-

gavar fault.

Node D20 This node is located at the East of Mahneshan

and the intersection of the magnetic lineaments with the

trend of N and Soltanieh and Zanjan faults and the north-

ern–southern lineament of Sangavar-Zarin Abad. This node

also has seismic silence behavior.

Node D17 The nodes are located at the East city of

Mianeh and at the intersection of the Sngavar and

Masouleh faults. Also, they show the rest seismic behavior.

3.2 Pattern recognition by SOFM

Pattern recognition is a branch of machine learning that

focuses on the recognition of patterns and regularities in

data, although it is in some cases considered to be nearly

synonymous with machine learning. Pattern recognition

systems are in many cases trained from labeled ‘‘training’’

data (supervised learning), but when no labeled data are

available other algorithms can be used to discover previ-

ously unknown patterns (unsupervised learning).

Typically the categories are assumed to be known in

advance, although there are techniques to learn the cate-

gories (clustering).

In Pattern Recognition applications, many algorithms

and models have been proposed for seismology, especially

for clustering, regression and classification between

earthquakes and explosions. Clustering is defined as

unsupervised classification of patterns into groups.

Applications in which a training data set with categories

and attributes is available and the goal is to assign a new

object to one of a finite number of discrete categories are

known as supervised classification problems (Kohonen

1982; Nakamura 2002; Fritzke 1994).

The Self-organizing feature maps (SOFM) defines a

mapping from the input data space on to an output layer by

the processing units of, e.g., 2-D laminar. Kohonen’s

algorithm creates a vector quantizer by adjusting weights

from common input nodes to M output nodes arranged in a

two-dimensional grid as shown in Fig. 3.

Only two-dimensional inputs, like our catalog data, with

the weight vectors to unit length have been used. Each

neurode in the Kohonen layer receives the input pattern and

computes the scalar product of its weight vector with that

input vector, in other words, the relative distance between

its weight vector and the input vector.

During training, after enough input vectors, weights will

specify cluster or vector centers that sample the input space

(Dowla et al. 1990).

The Kohonen network models the probability distribu-

tion function of the input vectors used during training, with

many weight vectors clustering in portions of the hyper-

sphere that have relatively many inputs, and few weight

vectors in portions of the hypersphere that have relatively

few inputs. The Kohonen networks perform this statistical

modeling, even in the cases where no closed-form analytic

expression can describe the distribution.

The basic SOFM learning algorithm is to:

1. Choose initial values randomly for all reference

vectors.

2. Repeat steps (3), (4), and (5) for discrete time.

3. Perform steps (4) and (5) for each input feature vector.

4. Find the best matching node according to (1).

5. Adjust the feature vectors of all the nodes for each

node of the output layer according to:

Fig. 3 Two-dimensional array of output data used to form feature

maps. The yellow neurode is winner neurode and red ones are

neighborhood neurode
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Table 1 Recorded earthquake

with magnitude equal or greater

than 4.5 in studied area from

1970 until 2015

Date

a-mo-d

Time (UTC)

h:min:s

Lat. (�N) Lon. (�E) Depth (km) Mag. Reference

1980-12-19 16:54:18 35.25 52.38 0 ML:4.5 ISC

1981-08-04 18:53:59 36.45 51.27 0 ML:4.7 ISC

1982-02-05 23:37:12 36.13 53.68 33 ML:4.5 ISC

1982-10-25 16:54:50 35.11 52.31 15 ML:5.4 EHB

1983-03-25 11:57:49 36.04 52.29 20 ML:5.5 EHB

1983-07-22 02:40:59 36.94 49.22 15 ML:5.6 EHB

1983-12-20 22:21:04 36.85 50.85 15 ML:4.8 EHB

1984-09-09 17:55:01 35.53 49.28 49.5 ML:4.6 ISC

1985-07-08 17:02:35 36.27 53.71 33 ML:4.7 ISC

1985-10-14 15:28:33 35.58 52.66 15 ML:4.7 EHB

1986-03-26 15:18:09 36.01 53.68 34.3 ML:4.6 ISC

1988-08-22 21:23:38 35.32 52.34 22.5 ML:5.3 EHB

1990-01-20 01:27:12 35.9 52.97 30 ML:6 EHB

1990-01-20 02:15:07 35.99 53.29 41.6 ML:4.6 ISC

1990-04-21 21:57:52 36.13 53.1 28.5 ML:4.5 ISC

1990-06-20 21:00:10 36.99 49.35 18.5 ML:7.7 ISC

1990-06-20 22:04:07 36.81 49.74 10 ML:4.7 ISC

1990-06-20 22:23:42 36.99 49.17 10 ML:5.4 ISC

1990-06-20 22:58:53 36.83 49.47 15 ML:5.2 EHB

1990-06-20 23:00:39 36.93 49.43 15 ML:5.2 EHB

1990-06-20 23:27:47 36.89 50.25 33 ML:5 ISC

1990-06-20 23:48:47 36.71 49.83 15 ML:5.1 EHB

1990-06-21 00:52:34 36.66 49.67 10 ML:4.7 ISC

1990-06-21 02:08:53 36.79 49.76 15.5 ML:5.4 EHB

1990-06-21 07:50:25 36.86 49.48 15 ML:4.9 EHB

1990-06-21 09:02:16 36.63 49.79 13.6 ML:5.8 EHB

1990-06-21 12:17:30 36.87 49.45 15 ML:5.1 EHB

1990-06-21 21:27:41 36.58 49.69 10 ML:4.8 EHB

1990-06-21 21:31:10 36.76 49.35 15 ML:4.7 EHB

1990-06-22 06:21:52 36.62 49.44 10 ML:4.7 ISC

1990-06-24 09:45:59 36.84 49.41 15 ML:5.3 EHB

1990-06-24 19:05:24 37 49.59 33 ML:4.6 ISC

1990-06-27 03:56:23 36.87 49.71 20 ML:4.9 EHB

1990-06-28 03:20:38 36.87 49.52 20 ML:4.8 EHB

1990-06-28 17:21:07 36.77 49.87 20 ML:4.7 EHB

1990-06-29 06:25:51 36.67 49.91 46 ML:4.5 ISC

1990-07-06 19:34:52 36.86 49.3 20 ML:5.3 EHB

1990-07-13 13:04:11 36.8 50.11 33 ML:4.7 ISC

1990-08-13 06:18:24 36.71 49.89 15 ML:4.6 EHB

1990-08-20 12:20:11 36.8 49.63 15 ML:4.7 EHB

1990-08-21 03:47:28 36.95 49.49 15 ML:4.8 EHB

1990-09-25 12:12:18 36.69 49.77 15 ML:4.9 EHB

1990-10-17 17:06:29 36.88 49.49 15 ML:4.5 EHB

1990-10-22 03:50:24 36.91 49.39 25 ML:4.7 EHB

1990-12-27 13:26:57 36.94 49.24 10.1 ML:4.7 EHB

1990-12-28 04:03:55 36.96 49.2 15 ML:5 EHB

1991-01-22 12:04:25 35.44 52.32 33 ML:4.5 ISC

1991-05-29 15:15:21 36.23 53.24 33.1 ML:4.5 ISC

1991-08-23 22:14:21 35.99 53.27 42 ML:5 ISC
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wiaðt þ 1Þ ¼ wiaðtÞþgðtÞ xiðtÞ�wiaðtÞ½ �:

where g(t) is learning rate. It starts with an initial value g0
and decrease with time but it never reach 0.

Repeat this procedure until convergence, e.g., until the

error between the input data and the corresponding neuron

representing their class falls below a certain threshold.

When the network converges to its final stable state

following a successful learning process, it displays three

major properties:

1. The SFOM map is a good approximation to the input

sample space. This property is important since it provides

a concentration of representation of the given input space.

2. The feature map naturally forms a topologically

ordered output space such that the spatial location of

a neuron in the lattice corresponds to a particular

domain in input space.

3. The feature map embodies a statistical law. In other

words, the input with more frequent occurrence

occupies a larger output domain of the output space.

This property helps to make the SOFM an optimum

codebook of the given input space.

The straightforward way to take advantage of the above

properties for prediction is to create SOFM from the input

vector, since such a feature map provides a faithful topo-

logically organized output of the input vectors.

If the input pattern is allowed to be in any unusual

pattern or distribution, the Kohonen network will always

generate a map of that distribution. These plots look a little

like a topological map of a hilly region. Where many input

vectors are clustered, the grid is similarly bunched and

Table 1 continued

Date

a-mo-d

Time (UTC)

h:min:s

Lat. (�N) Lon. (�E) Depth (km) Mag. Reference

1991-11-28 17:19:56 36.83 49.58 15 ML:5.6 EHB

1991-12-18 16:42:21 36.53 49.69 15 ML:4.6 EHB

1992-09-22 14:05:56 36.29 52.72 35 ML:5.1 EHB

1993-06-30 23:05:37 35.17 53.56 25 ML:4.6 EHB

1993-08-19 10:04:30 35.17 52.1 16.3 ML:4.6 EHB

1993-10-18 01:28:24 36.55 53.78 33 ML:4.5 ISC

1994-11-21 18:55:18 36.05 51.91 43.9 ML:4.5 ISC

1995-04-26 11:46:11 36.93 49.4 15 ML:4.6 EHB

1998-01-09 19:06:13 36.38 52.15 15 ML:4.6 EHB

1998-04-04 02:46:31 36.61 49.52 16.7 ML:4.5 ISC

1999-12-09 22:20:37 36.45 53.57 15 ML:4.5 EHB

2002-04-08 18:30:55 36.42 51.99 8.5 ML:4.8 EHB

2002-04-19 13:46:51 36.52 49.75 28.5 ML:5.2 EHB

2002-06-22 02:58:23 35.6 49.02 11 ML:6.5 EHB

2002-10-10 12:13:43 35.89 52.33 33 ML:4.7 NEIC

2003-06-21 15:00:05 35.63 52.86 23.9 ML:4.5 ISC

2003-12-24 03:50:00 35.17 50.5 15 ML:4.7 EHB

2004-05-28 12:38:45 36.26 51.57 26.7 ML:6.4 EHB

2004-05-28 13:15:07 36.44 51.59 37 ML:4.6 IIEES

2004-05-28 19:47:05 36.43 51.4 25 ML:4.5 EHB

2004-05-29 09:23:49 36.49 51.4 14.2 ML:4.7 EHB

2004-05-29 18:38:07 36.45 51.37 28 ML:4.6 IIEES

2004-05-30 01:42:41 36.4 51.61 28 ML:4.5 IIEES

2008-03-26 18:49:55 36.25 52.73 14.1 ML:4.5 IIEES

2012-01-11 17:08:00 36.37 52.83 16.4 ML:5.2 IIEES

2012-02-10 08:59:40 35.59 52.42 14.3 ML:4.6 IIEES

2012-03-18 02:38:16 36.82 49.2 14.1 ML:4.5 IIEES

2013-03-21 19:37:04 36.19 53.69 14.1 ML:4.8 IIEES

2013-10-16 08:49:32 35.29 49.73 6.1 ML:4.6 IIEES
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crowded. Where only a few input vectors are clustered, the

grid is much sparser. In this work, input sample space is

latitude and longitude of earthquakes from 1980 to 2015

and the discrete output space, respectively, are 9 9 9

neurons that receive input from the previous layer and

generate output to the next layer or outside world.

After data mining nodes in the Western Alborz by using

the mentioned method, the self-organized neural networks

use for determining the approximate next event place and

the relative comparison between the tectonic activity levels

nodes, and also, evaluate the inside scope of any node by

Pattern Recognition method.

Using this method, in addition to identifying hazardous

areas, is in acceptance with MZ method. Similarly, it can

be seen the predicted nucleation of next earthquakes is

more formed around nodes.

4 Conclusions

The SOFM algorithm is renowned as one of the most

elegant competitive learning networks ever designed.

Unlike supervised neural network systems, the Kohonen

SOFM ‘‘acquires the ability’’ to classify nonlinear datasets.

The SOFM acts to ‘‘self-organize’’ and systematically

minimize the Euclidean distance among input values,

producing a constellation of best fit data patterns. That is

given that a set of unambiguous patterns may exist within a

Fig. 4 Simulated earthquakes. The red points are next big events
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given chaotic nonlinear dataset, the SOFM algorithm iso-

lates and numerically classifies seismic nonlinear patterns

that form a visually conspicuous earthquakes cluster of

output values. The SOFM can capture underlying data

patterns and provide illustrative displays of crucial

dimensions and characteristics of a given catalog makes

this algorithm a particularly important tool when con-

ducting any form of data catalog distinguish it from clas-

sical multivariate statistical methodologies for earthquake

forecasting.

By considering historical and instrumental earthquake

catalogs with clear magnitudes, high-risk seismic nodes

identified. Our used inputs in SOFM were longitude and

latitude of recorded earthquakes greater than 4.5 magnitude

(Table 1).

The simulated point by using SOFM in Fig. 4 forecasts

the future big earthquakes.

As is shown in Fig. 4, 36 simulated events have located

on the map as future earthquakes with magnitude greater

than 5.5 located on the map. Among all nodes, node D1 has

most number of points (almost 7 events), also donut

shapes, constituted of events in this node, can be seen, so

that it is determined as highest potential risk region. It was

expectative that this node is located on the Rudbar fault,

with the biggest destructive earthquake in past.

Node D21, within 4 large earthquakes, determined as

next hazardous node. One of the points stands on the

borders of D7 and D14. They all are considered as same

seismicity potential risk together.

Some seismic node patterns near in the middle of

Lahijan fault, between D1 and D7 nodes, have high seis-

micity potential risk (meet seismic quiescence) that can be

introduced as a new hazardous node.

Nearly, 70% of simulated events has stand in the seismic

nodes or on their boundaries. So it can be observed that

simulated earthquakes by neural network are in acceptance

with the ideas of MZ method to determine high-seismic-

risk regions.
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