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Abstract With the improvement of seismic observation

system, more and more observations indicate that earth-

quakes may cause seismic velocity change. However, the

amplitude and spatial distribution of the velocity variation

remains a controversial issue. Recent active source moni-

toring carried out adjacent to Wenchuan Fault Scientific

Drilling (WFSD) revealed unambiguous coseismic velocity

change associated with a local Ms5.5 earthquake. Here, we

carry out forward modeling using two-dimensional spectral

element method to further investigate the amplitude and

spatial distribution of observed velocity change. The model

is well constrained by results from seismic reflection and

WFSD coring. Our model strongly suggests that the

observed coseismic velocity change is localized within the

fault zone with width of *120 m rather than dynamic

strong ground shaking. And a velocity decrease of *2.0 %

within the fault zone is required to fit the observed travel

time delay distribution, which coincides with rock

mechanical experiment and theoretical modeling.

Keywords Wenchuan fault zone � Coseismic velocity

change � Accurately Controlled Routinely Operated

Seismic Source (ACROSS) � Active monitoring �
Forward modeling

1 Introduction

Earthquakes are usually viewed as sudden release of stress

built up in a long period seismogenic process. Laboratory

experiments indicate that seismic velocities may change

with the applied stress. Monitoring of the seismic velocity

changes associated with earthquakes may shed light on

understanding the earthquake process, and exploit the

stress dependence of seismic wave velocity for analyzing

the stress state of the underground media.

Since 1960s, numerous efforts have been made to

measure the seismic velocity change associated with

earthquakes. Prominent coseismic or pre-seismic velocity

changes up to 10 % were reported by different researchers

(e.g., Semenov 1969; Terashima 1974), while other follow-

up studies provided negative arguments that no detectable

changes were observed in seismic velocity. However,

subject to electric technology and signal process technique,

velocity change with magnitude lower than *1.0 % cannot

be detected at the time (e.g., McEvilly and Johnson 1974;

Kanamori and Fuis 1976).

With the development of seismic instrument and data

processing technique, the precision of velocity change

measurement has enhanced a lot during the past two dec-

ades. By comparing waveform from repeating earthquake

and ambient noise before and after large earthquakes,

numerous observations suggested that the coseismic

velocity change was usually around 10-3 (e.g., Poupinet

et al. 1984; Aster et al. 1990; Nadeau et al. 1994a, b; Haase

et al. 1995; Peng and Ben-Zion 2006; Rubinstein et al.

2007; Brenguier et al. 2008; Cheng et al. 2010), which is

much smaller than previously expected to be.

With the accumulation of observation supporting the

coseismic velocity change, where does the velocity change

occurs became another issue in debate. Cheng et al. (2010)
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observed up to 0.4 % velocity in the fault zone during the

2008 Mw7.9 Wenchuan earthquake in China, and they

attribute the velocity to the coseismic stress release in the

fault plane and adjacent rock. However, Takagi et al.

(2012) revealed that the major factor affecting the velocity

change was damage in shallower layers during the passing

of seismic wave from the 2008 M7.2 Iwate-Miyagi Nairiku

earthquake, and the effect of the static stress change might

be masked by the larger effect of the strong motion.

Measurements based on natural event no matter

repeating earthquake or ambient noise are subjected to the

spatial and temporal distribution of those events, thus has

limited spatial and temporal resolution (e.g., Cheng et al.

2010; Wang et al. 2012). Monitoring of the velocity change

with artificial source is an alternative way (e.g., Yamaoka

et al. 2001; Silver et al. 2007; Niu et al. 2008; Yang et al.

2010) which may shed light on where the velocity change

occurs.

Recently, Yang et al. (2010) carried out a continuous

velocity monitoring experiment with one Accurately Con-

trolled Routinely Operated Seismic Source (ACROSS, e.g.,

Yamaoka et al. 2001; Ikuta and Yamaoka 2004; Wang

et al. 2009a, b) and a *10 km portable seismic profile

passing through the No. 3 hole of Wenchuan Fault Scien-

tific Drilling (WFSD, e.g., Yang et al. 2012). They

observed travel time delay of *4–9 ms associated with a

Ms5.5 aftershock from the seismic stations on hanging wall

of the Jiangyou-Guanxian fault, while from stations on the

footwall, they did not observe any travel time delay larger

than measuring error. Those observations may indicate an

inhomogeneous distribution of velocity change. In this

paper, we try to further investigate the spatial distribution

of velocity change by forward modeling.

2 Study region and experiment

2.1 Study region

Temporal variation of stress in fault is one of the important

bases to understanding the mechanism, the healing process

and the developing trend of aftershocks. The Longmenshan

fault zone has three main faults, which are the Maowen-

wenchuan fault, Beichuan-Yingxiu fault, and Jiangyou-

Guanxian fault from west to east (Fig. 1). On May 12, 2008

a destructive earthquake with moment magnitude 7.9

stroke Wenchuan, Sichuan Province, China, which caused

huge economy and life losses. This Wenchuan earthquake

not only caused *350 km long surface rupture (e.g.,

Zhang et al. 2008) in Beichuan-Yingxiu fault but also

induced surface deformation in the Jiangyou-Guanxian

fault with a length of *80 km (e.g., Li et al. 2008). The
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Fig. 1 a A map of the study region around the Wenchuan fault zone. The red solid square denotes the experiment site, which is further zoomed

in (b). Faults and their name are indicated by solid lines and adjacent text, respectively. Dashed straight line indicates the seismic reflection

profile (Xu et al. 2012). Cities are label with circled solid dot. The epicenter of Ms5.5 earthquake is marked with red star. b Detailed distribution

of ACROSS (inverted red triangle) and receivers (solid triangles). Two dark dots labeled with 3 and 3P are sites of Wenchuan Fault Scientific

Drilling No. 3 main hole and pilot hole, respectively
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Jiangyou-Guanxian fault is *10 km east to the Beichuan-

Yingxiu fault (Fig. 1a). Jiangyou-Guanxian fault is a thrust

and strike-slip fault, with a total length is about 400 km,

overall trend NE 40�–45� and the dip angle is a range from

50� to 70� in surface rupture, which decreases with the

increase of depth (e.g., Yang et al. 2012). The stress status

of Wenchuan fault zone is still in the process of healing or

stress modification, which provides a good chance to carry

out dynamic monitoring with active source.

2.2 Active seismic source

To monitor the recovery of Jiangyou-Guanxian fault after

the Wenchuan earthquake, a continuous active source

experiment was carried out from June 20, 2009. The

experiment site is located in Jiulong town Mianzhu county,

Sichuan province, China. An artificial seismic source was

installed on the footwall of Jiangyou-Guanxian fault. The

seismic signal radiated from the source was recorded by a

seismic profile composed of eight seismic stations. The

seismic profile vertically crosses the Jiangyou-Guanxian

fault at the site of WFSD No. 3 hole (Fig. 1b), where 4 m

vertical uplift induced by the Wenchuan earthquake was

evidenced.

ACROSS (e.g., Yamaoka et al. 2001; Ikuta and Yam-

aoka 2004) was laid at the east side of the Jiangyou-

Guanxian fault, about 5.2 km far away, and used as seismic

source in the experiment (Fig. 2). The ACROSS is used to

generate a sweeping centrifugal vertical force by two same

eccentrics rotating in the opposite direction along the same

horizontal axis, and emit elastic waves. The scanning fre-

quency band ranges from 2 to 10 Hz. When the rotational

speed is of ten revolutions per second, the vibration source

can generate *105 N in the vertical direction, and the

scanning signal has some features such as: low frequency,

narrow frequency band, and the excitation energy in the

quadratic relationship with the scanning frequency (e.g.,

Ikuta and Yamaoka 2004; Alekseev et al. 2005; Yang et al.

2010, 2013).

2.3 The logging system

The recording system consists of Guralp-40T short period

seismometer and RefTek-130B recorder. The sensors have

sensitivity of 2,000 V m-1 s-1 and flat frequency response

from 0.5 (2 s) to 100 Hz, and the sampling rate of data

logger was set to 200 samples per second. The working

time of ACROSS and recorders is accurately and contin-

uously controlled by synchronization to the GPS clock.

2.4 Field experiment and observed coseismic velocity

change

The experiment was carried out from June 20, 2009 to

April 20, 2012, and the portable seismic stations was set up

from st02 to st07 (Fig. 1b) during the period from June 20,

2009 to August 10, 2009. The seismic source was operated

daily with *10 sweeps from 21 pm to 02 am at local time.

During each sweep, the source was accelerated from 2 to

10 Hz and then down to 2 Hz within 26 min. The sweeping

seismic signal can be compressed into ordinary seismo-

gram with some well-developed techniques (e.g., Yang

et al. 2013), such as: cross-correlation, water level decon-

volution, and coherence. Water level deconvolution is

adopted in this paper. Please refer to Yang et al. (2010) for

more detail about experiment setting up and source

operation.

There was a bunch of local seismicity during the period

of the experiment. One of the prominent events was the

Ms5.5 aftershock occurred on June 30, 2009 (Fig. 1a),

which was the biggest aftershock in the observation area

during the active source detecting experiment. In order to

measure the subtle changes of seismic velocities caused by

this earthquake, the each portable seismic recording was

deconvoluted with the reference signal observed near the

ACROSS, then band pass filtered with 2–12 Hz Butter-

worth filter, and further stacked to enhance the signal to

noise ratio (SNR). By comparing the seismic records

before (stack from June 22 to June 28) and after (stack

from June 30 to July 7) this earthquake, Yang et al. (2010)

reported an observation of coseismic velocity change

associated with this earthquake. For completeness, the

observed apparent travel time changes are re-plotted in

Fig. 3.

Fig. 2 a The equipment of an ACROSS. b The seismic signal

excitation mechanism of the ACROSS. Two eccentric masses are

driven by a pair of 15 KW servo motors with phase feedback

controller and rotating in the opposite directions, which generate a

sinusoidal vertical force up to 1.0 9 105N in the vertical direction
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There are three main features about the observation

(e.g., Yang et al. 2010): (1) a prominent travel delay was

observed for station located on hanging wall (st05, st06,

and st07); (2) no travel time delay larger than the mea-

suring error was observed from footwall stations (st02,

st03, and st04); and (3) the coseismic delay measured from

the hanging wall station varies from 4 to 9 ms under the

precision *0.4 ms.

3 Forward modeling

Since coseismic travel time delay was observed from one

source and one side receiver, we are unable to estimate the

spatial distribution of velocity change with traditional 2-D

or 3-D inversion. Forward modeling on the other hand may

put some constraints on the volume where the velocity is

most likely to occur. Rohrbach et al. (2013) took similar

forward modeling approach and studied possible surface

wave dispersion variations associated with the seismogenic

process in the epicentral area of the Wenchuan earthquake.

In this section, we carry out forward modeling to identify

the possible distribution of velocity change.

3.1 Observed seismic profile

A seismic profile recorded by portable stations was shown

in Fig. 4a. The seismic profile was generated with the

similar process as Yang et al. (2010, 2013) but for a longer

operation time (February 1, 2010 to April 30, 2011). It can

be drawn from Fig. 4a: (1) the apparent velocity of the first

arrival P wave is *5.0 km/s on both sides of the fault

zone, and there is a time delay of *0.12 s that exists in P

wave across the fault zone. The time delay is suggested to

be the presence of the fault; (2) a secondary P phase arrives

*0.27 s after the first P phase can be identified in stations

close and cross the fault (st04–st08), which has a similar

apparent velocity as first arrival P phase. Since the sec-

ondary phase has a larger SNR than first arrival P phase,
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Fig. 3 a The travel time profile observed by comparing the seismic

signal from the ACROSS before and after Ms5.5 earthquake (Yang

et al. 2010). b–g The zoomed graph between two vertical blue lines in

(a). Note that the travel time delay varies abruptly from the footwall

stations to the hanging wall stations
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Fig. 4 a Seismic profile observed by portable seismic stations by

stacking signals from the ACROSS during the period of February 1,

2010 to April 30, 2011. b Synthetic seismic profile calculated from

the background velocity model shown in Fig. 5
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Yang et al. (2010) measured coseismic travel time delay

with the phase.

3.2 Forward modeling

Our study area is located in middle part of Longmenshan

fault zone, where numerous tomographic studies has been

carried out (e.g., Wang et al. 2007; Wang et al. 2009a, b;

Lei et al. 2009). Recently, a high resolution seismic

reflection survey (Fig. 1a) was conducted by Xu et al.

(2012). Those models suggest that the P-wave velocity of

shallow layer on the west side of Jiangyou-Guanxian fault

is *5.0 km/s, while the velocity on the east side is

*4.5 km/s. The thickness of unconsolidated layer ranges

from 0 to 1 km, and the depth of upper crust is estimated

*3.0 km in our observed area. Providing detailed velocity

structures, the above surveys are unable to evaluate the fine

structure of the fault zone. Recently by analyzing core

sample and logging data of WFSD No. 3 hole, Yang et al.

(2012) suggested that during the period that the dip angle

of Jiangyou-Guanxian fault is *38�–46�, and thickness of

the fracture zone should be *126.03 m.

Combing the results from seismic survey and drill, we

established a background 2-D model (Fig. 5). The study

region is divided into three parts: the hanging wall, the

footwall, and the fault. The hanging and foot walls are

modeled with three horizontal layers (Fig. 5), and the fault

zone is modeled with a low velocity zone with vp

*1.0 km/s, dip angle 40�, and thickness *120 m. We

were unable to determine the S-wave velocity from seismic

reflection data and we simply assigned the S-wave velocity

as vp/1.73, and the density is taken from Tang et al. (2012).

Our model is consistent with the velocity and thickness of

San Andreas fault zone observed from fault zone trapped

wave by Li et al. (1997).

We used the Legendre spectral element method (e.g.,

Komatitsch and Tromp 1999; Liu 2006) in the forward

modeling; this method combines high accuracy and fast

convergence of the Spectral Method with the flexibility in

boundary structure processing of the finite element method,

and was widely used from local to global scale. An

explosive type of Ricker wavelet with dominant frequency

of 8 Hz was used as input source time function. The top of

the model is set as free boundary, while the other three

borders are assigned as absorbing boundary. The location

of source is settled according to its actual relative position,

and receivers are evenly distributed on the surface of model

with interval of 0.1 km.

In the forward modeling, we managed to fit the travel

time of dominant phases with relative amplitude radiated

from the ACROSS. The synthetic seismic profile of the

background model (Fig. 5) is shown in Fig. 4b. Ignoring

the high amplitude surface wave in Fig. 4b, the synthetic

profile catches main features of the observed profile

(Fig. 4a). The first P wave travels at an apparent velocity

*5.0 km/s and secondary P phase *0.27 s later than the

first P wave. The reasonable match between synthetic

(Fig. 4b) and observed (Fig. 4a) profiles validates our

forward model (Fig. 5).

3.3 Relative change in travel time simulation

There are two most common interpretations of the coseis-

mic velocity change. Some are willing to argue that
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Fig. 5 Background velocity used in the forward modeling. The thickness, density, and P wave velocity are labeled in each layer. The fault

geometry is labeled in the top right, and the dashed line indicates the sea level, source and receivers are marked with inverted and normal

triangles, respectively. Refraction surveys are the schematic path of seismic rays. WFSD main and pilot holes are labeled with WFSD 3 and 3P,

respectively
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bypassing large amplitude waves may cause strong shaking

and loose the sediment resulting in velocity drop (e.g.,

Schaff and Beroza 2004; Brenguier et al. 2008; Sawazaki

et al. 2009; Wu et al. 2009; Takagi et al. 2012). Moreover,

Takagi et al. (2012) considered that the velocity change

caused by the static stress changes might be masked by the

larger effect of the strong ground motion produced by an

earthquake. While others tend to attribute observed

coseismic velocity changes to static stress releases in fault

zones (e.g., Li et al. 2007; Cheng et al. 2010).

We consider three different types of velocity change

relative to the background model (Fig. 5): (1) bulk velocity

changes, we decrease the velocity of the whole background

model (Fig. 5); (2) surface velocity change, just decrease

the velocities of uppermost layers of the hanging and foot

walls, and the rest of the model keep fixed; and (3) fault

zone weakening, the velocities of the 120-m thick fault

zone are decreased.

We measured the travel time delay of P wave by cross-

correlating the waveforms calculated from three modified

models with that calculated from background model. The

corresponding travel time delay from three different

seniors is shown in Fig. 6. All the synthetic results repro-

duce the observed travel time delay (4–9 ms) observed

from the hanging wall stations (st05–st07), and the velocity

changes of three modified models are decreased by 0.4 %,

0.7 %, and 2.0 %, respectively. While only the fault zone

weakening model predicts the spatial distribution of the

travel time delay. Consistent with the intuitive envisioning,

the travel time delay gradually increases with the offset for

the bulk velocity change model (dotted line in Fig. 6), and

for the surface velocity change senior, all the travel time

delay are larger than 4 ms.

4 Discussion

Even our background model is well-constrained by geo-

logical survey and drilling data, there still exists some non-

uniqueness in our forward modeling, e.g., trade-off

between thickness and velocity (or velocity change).

However, we are focusing on travel time delay caused by

the relative change of the media, assuming that the possible

non-uniqueness will not affect our main conclusions.

As demonstrated by Yang et al. (2010), the precision of

travel time delay measurement in this experiment is esti-

mated *0.4 ms, any delay larger than this value should be

detectable. We did not observe any linear tendency of the

travel time delay on either sides of the fault, the bulk

velocity change senior is at least like the case. Although the

surface velocity change model failed to model the observed

travel time delay, we are not excluding the surface velocity

change induced by seismic wave passing through. The

velocity changes in the sediment layer are usually taken as

the main cause of observed coseismic velocity change (e.g.,

Schaff and Beroza 2004; Takagi et al. 2012). In our

experiment area, the sediment layer is usually no thicker

than 50 m, which is much shorter than the ray path and the

subtle change in the sediment layer that may be undetect-

able with current experiment configuration.

We proposed a 2.0 % velocity decrease within the fault

zone which is much larger than most previous observations

(e.g., Schaff and Beroza 2004; Cheng et al. 2010). However,

by utilizing repeating explosions and earthquakes, Li et al.

(2007) confirmed a velocity decrease of 1.2 %–2.5 % in the

San Andreas fault zone, which is consistent with our model.

Earlier seismic observation and laboratory (e.g., Scholz

et al. 1973; Terashima 1974) also suggested coseismic

velocity decrease with a similar or higher amplitude.

The velocity decrease is likely to be caused by the

coseismic static stress release. To evaluate the stress drop

in our experiment site, we first relocated the earthquake.

The Ms5.5 earthquake was relocated by including portable

stations using method of Fang et al. (2011). The epicenter

is similar with that provided by China Earthquake Net-

works Center (CENC), while the focal depth decreases

from 24 km to *16.6 km. The static stress drop of a

magnitude 5.5 earthquake is estimated from 30 to 50 MPa

at the focal center (e.g., Abercrombie 1995). And the

corresponding static coseismic stress change at the shallow

layer within Jiangyou-Guanxian fault zone is estimated to

be *7,700–12,500 Pa (e.g., Niu et al. 2008).

The stress-induced velocity change is usually attributed to

the opening and closing of existing cracks in the rock. A large

number of investigations showed that the stress dependence

of seismic wave velocity ranges from 10-9 to 10-6 Pa-1

(e.g., Birch 1960, 1961; Simmons 1964). The stress sensi-

tivity is affected by several factors such as crack density,
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fluid, and applied stress (e.g., Wang et al. 2008). A *2.0 %

velocity change at stress drop of 0.0077–0.0125 MPa cor-

responds to a stress sensitivity of *10-6 Pa-1. Stress sen-

sitivity of *10-6 Pa-1 is little bit larger than the previous

results from laboratory and field measurements (e.g., Sim-

mons 1964; Niu et al. 2008), but consistent with the stress

sensitivity of velocity perturbation from the passive and

active source data in this region (Chen et al. 2014) and the

sensitivity of fractured zone or surface sediments in others

(e.g., Silver et al. 2007; Wang et al. 2008). Coring samples

from the WSFD No. 3 well indicate that the fault zone is not

only heavily fractured but also highly saturated with water

(e.g., Yang et al. 2012). High crack density, high pore

pressure, and existence of fluid all help in enhancing the

stress sensitivity (e.g., Wang et al. 2008).

5 Conclusions

In this paper, we conduct a series of forward modeling by

fitting the previously observed travel time delay to inves-

tigate the distribution of coseismic velocity change. Our

results suggest the observed velocity change is best

explained by a 2.0 % velocity decrease localized within the

120 m wide fault zone. And the fault zone velocity

decrease is supposed to be a result of coseismic stress

release. However, our results do not exclude the dynamic

stress change induced shallow surface change, which will

be further investigated by follow-up studies.
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